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Abstract—State-of-the-art image retrieval systems achieve scalability by using a bag-of-words representation and textual retrieval

methods, but their performance degrades quickly in the face image domain, mainly because they produce visual words with low

discriminative power for face images and ignore the special properties of faces. The leading features for face recognition can achieve

good retrieval performance, but these features are not suitable for inverted indexing as they are high-dimensional and global and thus

not scalable in either computational or storage cost. In this paper, we aim to build a scalable face image retrieval system. For this

purpose, we develop a new scalable face representation using both local and global features. In the indexing stage, we exploit special

properties of faces to design new component-based local features, which are subsequently quantized into visual words using a novel

identity-based quantization scheme. We also use a very small Hamming signature (40 bytes) to encode the discriminative global

feature for each face. In the retrieval stage, candidate images are first retrieved from the inverted index of visual words. We then use a

new multireference distance to rerank the candidate images using the Hamming signature. On a one millon face database, we show

that our local features and global Hamming signatures are complementary—the inverted index based on local features provides

candidate images with good recall, while the multireference reranking with global Hamming signature leads to good precision. As a

result, our system is not only scalable but also outperforms the linear scan retrieval system using the state-of-the-art face recognition

feature in term of the quality.

Index Terms—Face recognition, content-based image retrieval, inverted indexing, image search.

Ç

1 INTRODUCTION

GIVEN a face image as a query, our goal is to retrieve
images containing faces of the same person appearing in

the query image from a web-scale image database containing
tens of millions face images. In this paper, we assume face
images are frontal with up to about 20 degrees of pose
changes, such that the five face components (e.g., eyes, nose,
and mouth) are visible in a given face image. Fig. 1 shows
some example online celebrity face images with various
poses, expressions, and illumination. Such a face retrieval
system has many applications, including name-based face
image search, face tagging in images and videos, copyright
enforcement, etc. To the best of our knowledge, little work
aims at web-scale face image retrieval.

A straightforward approach is to use the bag-of-visual-
words representation that has been used in state-of-the-art
scalable image retrieval systems [8], [21], [23], [28]. How-
ever, the performance of such a system degrades signifi-
cantly when applying on face images. There are two major
reasons. On one hand, the visual word vocabulary, learned
from local SIFT-like features detected from the face images,
has difficulty in achieving both high discriminative power
(to differentiate different persons) and invariance (to
tolerate the variations of the same person). Second, existing
systems ignore strong, face-specific geometric constraints
among different visual words in a face image.

Recent works on face recognition have proposed various
discriminative facial features [6], [11], [12], [13], [22], [29],
[33], [35]. However, these features are typically high-
dimensional and global and thus not suitable for quantiza-
tion and inverted indexing. In other words, using such
global features in a retrieval system requires essentially a
linear scan of the whole database in order to process a
query, which is prohibitive for a web-scale image database.

In this paper, we propose a novel face image representa-
tion using both local and global features. First, we locate
component-based local features that not only encode geo-
metric constraints, but are also more robust to pose and
expression variations. Second, we present a novel identity-
based quantization scheme to quantize local features into
discriminative visual words, allowing us to index face
images, a critical step to achieve scalability. Our identity-
based quantization can better handle intraclass variation
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using multiple examples from multiple identities. Finally, in
addition to the local features, we compute a 40-byte
Hamming signature for each face image to compactly
represent a high-dimensional discriminative global (face
recognition) feature.

Our face retrieval system takes advantages of the fact
that local features and global features are complementary.
Local features allow us to efficiently traverse the index of a
large scale face image database, and return top candidate
images (e.g., 1,000 candidates). While the precision may be
low, we can achieve good recall in this index traversing
stage. Then, the Hamming signatures (derived from global
features), which are as small as 40 KB for 1,000 images, are
used to rerank the candidate images. By using a new
multireference distance metric, the precision can be sig-
nificantly improved. Overall, our face retrieval system is not
only scalable, but also outperforms state-of-the-art retrieval
or recognition systems in terms of both precision and recall,
which is demonstrated by experiments with a database
containing more than one million face images.

1.1 Related Work

State-of-the-art large scale image retrieval systems have
relied on bag-of-words image representation and textual
indexing and retrieval schemes for scalability. In these
systems, feature detectors first detect distinctive and
repeatable points or regions, such as Difference of Gaussian
(DoG) [15], Maximally Stable Extremal Region (MSER) [18]
in the image, from which discriminative feature descriptors
[15], [20], [32] are then computed. These descriptors are
subsequently quantized into visual words with a visual
vocabulary [28] which is trained by the unsupervised
clustering algorithms [21], [23]. To further improve the
scalability, Jegou aggregates partial information of the
standard bag-of-features vector to build the “miniBOF”
(mini-Bag-of-Features) vector [9], which is more compact in
the index. On the other hand, to improve the precision,
some compact information can be embedded [8] for each
visual word in the index, which compensates for the
information loss in the quantization. However, the perfor-
mance of these traditional image retrieval systems degrades
significantly when applied to face images.

In recent years, many effective features have been
proposed for face recognition. For example, Local Binary
Pattern (LBP) [22] feature, variations of LBP [30], [34], [38],

and V1-like feature [25] are designed to capture the
micropatterns of the face. Besides these “low level” features
mentioned above, Kumar et al. [11] incorporate the traits
information with the attribute and simile classifiers. Efforts
are also made to tackle the face alignment and matching
problem in face recognition. In [35], Wright proposes an Rp-
tree (Random Projection tree)-based approach to implicitly
encode the geometric information into the feature. It is
nontrivial to make these global feature-based methods
scalable. One might consider using k-d tree [4] or Locality
Sensitive Hashing (LSH) [5], [10] to avoid scanning every
image. But we have found these approximated nearest
neighbor search methods do not scale or work well with
high-dimensional global face features.

Our multireference reranking approach is closely related
to Pseudo-Relevance Feedback (PRF) approaches [2], [3],
[17], [26], [36], [37] originated from the query expansion
techniques in text information retrieval. Standard PRF
methods assume the top k initial retrieval results are
relevant documents. The additional information obtained
from these top k documents are then used in the Relevance
Feedback [17], [27] step to expand the original query and to
improve the retrieval precision/recall. Chen et al. [3]
proposed PRF in content-based image retrieval by reweight-
ing the visual words using the initial top k retrieval results.
Both RF and PRF try to better understand and represent the
query by incorporating textual features and other informa-
tion from the selected relevant documents. In our multi-
reference approach, we focus on improving the ranking
precision of the top 1,000 face candidates without issuing a
new expanded query. We try to obtain a more comprehen-
sive and robust representation of the query face to account
for appearance variations and information loss in Hamming
signatures. We also assume that the reference images of the
same identity have been retrieved to the top 1,000
candidates in the first stage using local features. However,
instead of directly choosing the top k candidates (k� 1;000)
as relevant documents as has been done in PRF, we use the
global Hamming signatures in an iterative algorithm to
robustly select the references from the top 1,000 initial
return candidates, i.e., some of the top k candidates may not
be in our reference set, while some candidates beyond top k
may be in our reference set.

2 LOCAL FEATURES FOR INDEXING

In this section, we describe the details of the local features
and a novel identity-based quantization for inverted
indexing.

2.1 Component-Based Local Features

Fig. 2 shows our local feature extraction and indexing
pipeline. First, five facial components (two eyes, nose tip, and
two mouth corners) are located on a detected face [31] by a
neural-network-based component detector [14]. The face is
then geometrically normalized by a similarity transform that
maps the positions of two eyes to canonical positions.

We define a 5� 7 grid at each detected component. In
total, we have 175 grid points from five components. From
each grid point, we extract a square image patch. A T3hS2
descriptor (responses of steerable filters) [32] is then
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Fig. 1. Example online celebrity face images with variances in pose,
expression, and illumination.



computed for each patch. All descriptors are quantized into
visual words that are subsequently indexed. Notice that the
existing interest point-based local feature detectors [19] are
not suitable for face images. Such detectors tend to detect
features in regions with rich textures or high contrast. They
do not perform as well on face images since they contain
mostly smooth textures.

Compared to defining grid points over the whole face
[13], [35], our features are localized to the components,
which allows flexible deformation among the components,
and are more robust to face pose and expression variations.
Also note that gird points from different components have
some overlaps; this, together with the histogram-based
T3hS2 descriptors, allows our system to tolerate some
degree of errors in the component localization.

To enforce geometric constraints among features, we
assign each grid point a unique ID, which is called the
“position id.” The position id will be concatenated with
the feature quantization id (described next) to form the
“visual word.” By doing so, each visual word carries strong
geometric information—two features can be matched only if
they come from the same component and are extracted from
the same grid point in that component. This is in contrast to
existing models that allow features to match even if they are
coming from different grid points in the face, which performs
worse in our task.

2.2 Identity-Based Quantization

For scalability, the extracted local features need to be
quantized into a set of discrete visual words using a visual

vocabulary which is often obtained by an unsupervised
clustering algorithm (e.g., k-means) [21]. But unsupervised
learning is not very good for training a vocabulary for face
images, where intraclass variations are often larger than
interclass variations when the face undergoes pose and
expression changes. Quantization errors will degrade the
retrieval performance.

In this section, we propose an identity-based quantization
scheme using supervised learning. Our training data consist
ofP different people and each person has T face examples, at
various poses, expressions, and illumination conditions.
Fig. 3 shows example face images of one person and
constructed visual words. Since each person has a unique
“person id” and each grid point has a unique “position id,”
we define a visual word as the pair <person id; position id>
and associate it with T local feature descriptors computed
from the training samples of the “person id.” In other words,
each visual word is an example-based representation—
containing multiple examples. That is the strength of our
identity-based quantization—the features under various
pose/lighting/expression conditions have a chance to be
quantized to the same visual word.

With the identity-based visual vocabulary, the quantiza-
tion is simply performed by the nearest-neighbor search
using k-d trees. For each position id, we build a k-d tree on
all training features (T � P descriptors associated with the
visual words, see Fig. 4) at the given position. Given a new
face image, we extract 175 descriptors and find their
nearest neighbors independently. The resulting pair
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Fig. 2. Local feature extraction and indexing.

Fig. 3. Identity-based vocabulary from one person. A visual word is
formed by concatenating two IDs: <person id;position id>. The final
vocabulary is the combination of all visual words from all persons.

Fig. 4. Identity-based quantization of a local feature extracted at the
“Position ID1.”



<person id; position id> is the quantization result. Fig. 4
illustrates the quantization process. Mathematically, let Sji
be the set of T feature descriptors associated with the
visual word <person id ¼ i; position id ¼ j>. The obtained
person id IDðqjÞ of a feature descriptor qj at the
jth position can be computed as:

IDðqjÞ ¼ arg min
i

n
min
p

�
d
�
qj; pji

�
; pji 2 S

j
i

�o
; ð1Þ

where dðq; pÞ is the L2 distance between features q and p.
To improve repeatability, we use soft quantization [24]—a

descriptor is quantized to top R identities according to (1),
where R is called a “soft factor.” In our implementation,
we first collect 3�R nearest neighbors for each descriptor.
The top R distinct pairs of <person id; position id> in the
resulting 3�R nearest neighbors are the soft quantization
results. To avoid significantly increasing the storage of index,
soft quantization is only applied to the query image.

The number of persons P and the number of examples T
affect the effective vocabulary size (P � 175), the discrimi-
native power-invariance trade-off, and system complexity.
Increasing P is equivalent to increasing the size of the
vocabulary, thus increasing the discriminative power of
visual words. In the meantime, increasing the example
number T will lead to a more comprehensive face
representation of the person, which will help reduce
quantization errors. However, there is a trade-off between
the discriminative power and the invariance to noises and
appearance variations. Moreover, large P and/or T also
increases the memory and computational cost for perform-
ing quantization. In our implementation, we choose P and
T empirically and find P ¼ 270 and T ¼ 60 performs best
given a fixed budget of memory consumption.

Our approach is related to recent “simile classifier” [11]
which also uses the traits information of a set of reference
persons. In their work, a number of binary classifiers are
trained from the selected regions using the reference persons,
while we use the reference persons for the purpose of
quantization of the local feature.

As demonstrated in the experiment later, our iden-
tity-based quantization can give good recall in the top

1,000 candidate images, even comparable with the
exhaustively linear scan system using leading global face
recognition feature. But the precision of the top candidate
images may be lower due to the unavoidable quantization
errors, as demonstrated in Fig. 5. In the next section, we
present a reranking method to improve the precision.

3 GLOBAL MULTIREFERENCE RERANKING

Our basic idea is to rerank the top candidate images using a
very light and compact global signature so that we can
improve the precision but without losing the scalability. In
this section, we first describe a Hamming signature and
then present a multireference reranking method.

3.1 Hamming Signature for Global Feature

Our compact Hamming signature is based on a leading
face recognition feature, called Learning-based (LE) De-
scriptor [1]. In the following, we briefly introduce the LE
descriptor. For each detected face, a standard facial
component [14] detector is used to extract fiducial points
and align the face. A DoG filter (with �1 ¼ 2:0 and
�2 ¼ 4:0) [6] is then applied to remove illumination
variations. For each pixel p in the DoG-filtered image, its
neighboring pixels are sampled from concentric rings
centered at the pixel p. These sampled pixels are used to
form a low level feature vector. We follow [1] to use a
double-ring sampling pattern with an inner circle of
radius r1 ¼ 1 and an outer circle of radius r2 ¼ 2. On
each circle of radius r, we sample r� 8 pixels at uniform
intervals. These sampled pixels, as well as the pixel at the
center, are normalized and then fed into a learning-based
encoder to generate a discrete code. In our implementa-
tion, we use a random-projection tree-based encoder and
set the code number to 256, which is reported in [1] to be
a good trade-off of performance and computational cost.
The input image is thus converted into a “code” image
after the encoding. These codes are further aggregated in a
grid of 5� 7 cells, and a code histogram is computed for
each cell. The result histograms are concatenated into a
8,960-dimensional vector (256� 5� 7 ¼ 8;960), and then
compressed by Principal Component Analysis (PCA) to
form a 400D LE descriptor.
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Fig. 5. Face query pipeline. There are two major steps: 1) using local features to traverse index to collect candidate images, and 2) multireference
ranking of candidate images. False positives are shown in red boxes.



To create the Hamming signature, we first randomly
sample Np projection directions in the original LE descrip-
tor space. For each direction, the LE descriptors from a set
of training face images are projected onto it. The median of
the projected values is chosen as the threshold for that
direction. Thus, the global LE descriptor G can be
approximated by the following Np-bit Hamming signature:

B ¼ ½b1; b2; . . . ; bNp
�; bi ¼

1; G � Pi � hi;
0; G � Pi < hi;

�
ð2Þ

where Pi is the ith random projection and hi is the
corresponding threshold in that projection.

The more projection directions we use, the better the
approximation is [8]. In our implementation, we choose
320 random projections, i.e., Np ¼ 320. This results in a
40-byte compact Hamming signature, which is an order of
magnitude smaller than the original global LE descriptor in
terms of both storage and computation (Hamming distance
can be efficiently computed by XOR operation).

Although Hamming signature is an approximation, we
will show that, by combined use of a multireference distance
metric, it can achieve better retrieval precision than the linear
scan system using the original 400D LE descriptor.

3.2 Multireference Reranking

The candidate images returned from traversing index are
initially ranked based on the number of matched visual
words, i.e., it is solely based on the query image. Images of
one face contain variations induced by changes in pose,
expression, and illumination. We account for such intraclass
variations by using a set of reference images to rerank the
candidate images. In particular, we rerank each candidate
based on its average distance to the reference images.

In addition to being more robust to intraclass variations,
the use of multiple references can also compensate for the
information lost during Hamming embedding—while a
false candidate image may be confused with the query
image due to Hamming embedding, it can hardly be
confused with the majority of the reference images.

We need to be careful in selecting the reference images
—inappropriate or incorrect references may hurt the
system. In this paper, we use an iterative approach to select
reference images from the returned top candidates. At each
iteration, we select a reference image that is close to both the
query image and the reference images from the previous
iteration. More specifically, at each iteration we select an
image I that minimizes the following cost:

D ¼ dðQ; IÞ þ � � 1

jRj
X
i

dðRi; IÞ; ð3Þ

where Q is the query image, R ¼ fRig is the current
reference set, dð�; �Þ is the Hamming distance between two
faces, and � is a weighting parameter. I is then added to R.
The iterative process stops when the expected number of
reference images are chosen, or the distance D is larger than
a threshold.

The above iterative approach will select a cluster of
reference images that are not only close to the query image
but also close to each other. In particular, the second term in
(3) prevents selecting faces far from the center of the current

reference images. By using a conservative threshold, the
majority of the reference images are expected to be from the
same person in the query image. Even though there might
be some face images different from the person in the query,
such “wrong” faces are still close (i.e., similar) to the query
face image. As a result, they do not affect the performance
much since the majority of the references are correct.
Experiments showed that our “multireference” reranking is
robust to “wrong” images, i.e., with 50 percent “wrong”
images in the reference set, our reranking algorithm still
performs as well. Fig. 5 shows the basic process of the
multireference reranking.

In our approach, we use a fixed size of reference set for
all of the queries. One alternative is to set up some
thresholds for choosing the reference set adaptively.
However, in our experiments, the observation is this
adaptive approach doesn’t make significant improvement
from our fixed reference size approach. One possible reason
is that the face feature space is not uniform. Faces in a dense
region have smaller distances among each other. Applying
a threshold to decide the number of reference images may
bring many unrelated images. On the other hand, faces in a
sparse region of the feature space may result in insufficient
reference images. Another variation of our multireference
approach is to assign each reference image a weight while
computing the distances from query images to the reference
set. However, our experiments also show the change is
minor by incorporating this weighting scheme.

4 EXPERIMENTS

4.1 Data Sets

We use a face detector [31] to detect one million face
images from the web to serve as our basic data set. We
then use 40 groups of labeled face images from the Labeled
Face in Wild (LFW) data set [7]. Each group consists of 16
to 40 face images of one person, and there are 1,142 face
images in total. These 1,142 labeled images are added to
the basic data set to serve as our ground-truth data set. In
order to evaluate the scalability and retrieval performance
with respect to the size of the database, we also sample the
basic data set to form three smaller data sets of 10, 50, and
200 K images, respectively.

4.2 Evaluations

In the following evaluation, we select 220 representative face
images from the ground-truth data set to serve as our
queries. Following existing image retrieval works [8], we use
mean average precision (mAP) as our retrieval performance
metric. For each query, we compute its average precision
from its precision-recall curve. The mAP is the mean value of
all average precisions across 220 queries.

Baseline. We use a fixed-grid approach as our baseline. The
local features are sampled from a regular 16� 11 grid over
the face. As we mentioned before, interest-point detectors
(such as DoG [15] or MSER [18]) perform worse than the
fixed-grid approach. The visual vocabulary is obtained by
applying the hierarchical k-means clustering on 1.5 million
feature descriptors. We call this the “non-component-based
baseline quantization.” We evaluate the baseline with two
vocabulary sizes: 10 and 100 K visual words for each grid
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point position, respectively. We have also experimented with
1 K visual words for each grid point position, but it performs
worse than 10 or 100 K. We set the soft quantization factor to
30, which performs best for baseline approaches. Note that
we do not use soft quantization during indexing for baseline
or our approaches.

To compare with state-of-the-art global face features, we
also present the results using exhaustive linear scan of
global features to retrieve top face images.

Local features evaluation. Fig. 6 shows the advantage of the
component-based feature. Features extracted at the compo-
nent level perform better for both baseline quantization and
identity-based quantization. Fig. 7 gives the mAP results
using different quantization methods. Here, the soft factor of
identity-based quantization is set to 10, which performs the
best. We can see that the identity-based quantization
significantly outperforms the baseline quantization—with
1 M images in the database, a 50.8 percent improvement over
baseline quantization without multireference reranking.
With multireference reranking, both quantization schemes
have significant mAP improvements, and the identity-based
scheme still achieves a 58.5 percent improvement over
baseline. Increasing the vocabulary size of the baseline
quantization (from 10 to 100 K visual words per grid point
position) slightly improves the mAP (by about 0.02), but it is
still inferior to our identity-based quantization.

Multireference reranking. We evaluate multireference
reranking with several parameter settings, including 1) the
number of reference images Nr ¼ 1 or 10, and 2) using
either the 400D global feature (see Section 3.1) or our
Hamming signature. Fig. 8 shows that our multireference
reranking significantly improves the mAP performance
using either the compact Hamming signature or the global
feature. With Nr ¼ 10 and Hamming signature, our system,
while having significantly less computational and storage
cost, outperforms the approach of exhaustive linear scan
using state-of-the-art global features.

We also have two interesting observations from Fig. 8.
First, multireference is important when using Hamming
signatures in the reranking. As we can see, with 1 M images
in the database, the mAP of Nr ¼ 10 has a 47.8 percent

improvement over Nr ¼ 1 when using Hamming signatures
in reranking; the improvement is only 20.2 percent when
using global features in reranking. For Nr ¼ 10, using
Hamming signatures achieves a mAP similar to using
global feature reranking, but requires only about 10 percent
storage space and is significantly faster.

Second, even with Nr ¼ 1 (i.e., the reference image is the
query image itself), reranking the top-1,000 candidates
outperforms exhaustive linear scan of the whole database
using global features, as indicated by the curve “global, rerank
1” and the curve “linear” in Fig. 8. This indicates local features
are complementary to global features—the candidate images
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Fig. 6. Comparison of “component”-based and “non-component”-based
local feature extraction approaches with different quantization methods.
“Identity” means the identity-based quantization and “10K VWs” is the
baseline quantization with vocabulary size equal to 10 K.

Fig. 7. (a) Comparison of “identity”-based quantization and baseline
quantization. “Identity” is the result of our “identity”-based quantization
approach. “10 K VWs” and “100 K VWs” are the baseline quantization
with 10 and 100 K visual words, respectively. (b) Comparison of
“identity”-based quantization and baseline quantization with multirefer-
ence reranking. “Rerank10” is the result of 10-reference reranking using
Hamming signatures. “Linear” is the linear scan approach with global
features. In our implementation, the reranking is performed on the top-
1,000 candidate images returned from the traversing index.



chosen by the local features can be more easily differ-
entiated and ranked by the global features.

Impact of Hamming signature length. A larger Hamming
signature gives better reranking accuracy, but with a larger
storage and computational cost. From Fig. 9, we can see that
in both cases of “Hamming, rerank 10” and “Hamming,
rerank 1,” the mAP consistently improves as the lengths of
Hamming signatures increase. By using a Hamming
signature with more than 400 bytes, the mAP is similar to
or even slightly better than using the original 400D global
features. With our multireference algorithm, with a smaller
number of bytes we achieve an accuracy similar to that of
using the global features. With Nr ¼ 10, the 80-byte Ham-
ming signatures achieve the same performance as “global,

rerank 10.” However, with Nr ¼ 1 it requires 400 bytes to
achieve the same performance as “global, rerank 1.” This
shows the importance of our multireference algorithm in
compensating for the information loss during Hamming
embedding, which is also consistent with our observation
from Fig. 8.

Table 1 compares the runtime of reranking methods
using both original global feature and Hamming signatures
with different lengths. We can see that with a proper length
of code, the Hamming signature-based reranking approach
is also significantly faster than the global feature-based
approach while achieving similar performance.

Impact of Nr and �. There are two parameters in our
multireference algorithm: 1) the number of reference images
Nr, and 2) the value � in (3) for selecting reference images.
We set these two parameters empirically using our 1 M data
set. To simplify the searching of Nr and �, we fix Nr while
varying �, and vice versa. From Fig. 10, we can see ðNr ¼
10; � ¼ 6:0Þ is the optimal setting.

Impact of multireference selection range and reranking range.
Another two important parameters affecting the overall
performance are: 1) the selection range of the reference
images S, and 2) the reranking range M. Our multi-
reference algorithm selects reference images in the top-S
candidates using (3) and then reranks the top-M candi-
dates. The selection range S should be large enough to
cover the true positive candidates. However, a too large S
can bring in more false positives to the reference set,
which decreases the retrieval accuracy. In the other hand,
the choice of the reranking range M is a trade-off of the
recall and computational cost. In a practical image
retrieval system, reranking more candidates may involve
more network or I/O operations. The impact of these two
parameters is shown in Fig. 11, empirically using our 1 M
data set. We fix M ¼ 1; 000 while varying S and fix S ¼
1;000 while varying M. From Fig. 11a, we can see S ¼
1;000 is the optimal setting. And in Fig. 11b, we can also
observe a mAP drop from M ¼ 105 to M ¼ 106, which
again shows the complementarity between local features
and global features. In our system, we set M to 1,000 as a
trade-off of the retrieval accuracy and the computational
cost of reranking.

4.3 Scalability

To evaluate the scalability, we analyze the computational
and storage cost with respect to the number of images in the
database. We ignore fixed costs that are independent of
database size as they do not affect the scalability.

Computational cost. Let N be the number of images and
D the dimension of the global feature. The computational
cost of the linear scan approach is N �D of addition/
minus/absolute operations. In our approach, for each local
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Fig. 8. Comparison of different reranking methods. “Identity” is the result
of identity-based quantization but without reranking. “Hamming, rerank
1” means reranked by Hamming signatures with one reference image
(the query image). “Hamming, rerank10” means reranked with 10
reference images. “Global, rerank 1” and “global, rerank10” means
reranked using global features with one and 10 reference images,
respectively. For reference purpose, we also include “linear,” the result
of the linear scan approach.

Fig. 9. Comparison of reranking methods using different lengths of
Hamming signatures. “Hamming, rerank 1” means reranked by
Hamming signatures with one reference image (the query image).
“Hamming, rerank10” means reranked with 10 reference images.
“Global, rerank 1” and “Global, rerank10” means reranked using 400D
global features with one and 10 reference images, respectively.

TABLE 1
Runtime of Multireference Reranking Using Different Features

“Global” means reranked using 400D global features with 10 reference
images. “H-16” means reranked using 16-byte Hamming signatures with
10 reference images, and so on.



feature in the query, only a small portion of the index
needs to be traversed. Denote C the percentage of the index
need to be traversed, which is related to the vocabulary
size and the soft quantization factor. Let NF be the number
of local features extracted from each face. The computa-
tional cost of our approach is C �NF �N voting opera-
tions. The value of C �NF is one or two orders of
magnitude smaller than D, also the voting operation is
faster than L1-norm computation. In other words, using
indexing has significantly better scalability than the linear
scan approach in terms of computational cost.

Fig. 12 shows the query processing time w.r.t. the
number of images in the database. We perform our
experiments with a single 2.6 GHz CPU on a desktop
with 16 G memory. Our approach scales well w.r.t. to
database size.

Storage cost. In our implementation, we extract 175 visual
words for each face image. A 1:4 compression ratio can be
easily achieved by compressing the index [16]. On average,
each visual word costs about 1 byte in the index. For each
image, we store a 40-byte Hamming signature instead of the
original 400D global feature. Thus, in our system, the total
storage cost for each face image is only about 200 bytes,
which is easily scalable.

4.4 Example Results

In this section, we compare and visualize results using real
examples. Fig. 13 shows the results of different approaches.
We can see that there are seven false positives in the top-10

images in Fig. 13a, the baseline quantization approach

without reranking. By using our identity-based quantization

approach, the number of false positives is reduced to three, as

shown in Fig. 13b. Our multireference reranking approach

further improves the accuracy as shown in Fig. 13d, which

does not have any false positives in the top-10. We also

present the results by linear scan with global features in

Fig. 13c, which are better than Fig. 13a and Fig. 13b, but still
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Fig. 11. Comparison of different settings of selection range (S) and
reranking range (M) using 1 M data set: (a) mAP of various S values
while M ¼ 1; 000. (b) mAP of various M values while fixing S ¼ 1;000.

Fig. 10. Comparison of different settings of Nr and � using 1 M data set:
(a) mAP of various � values while fixing Nr ¼ 10. (b) mAP of various
Nr values while � ¼ 6:0.

Fig. 12. Query time per image (not including fixed time cost for face
detection and feature extraction).



inferior to our approach using reranking. This is also

consistent to the mAP results shown in Fig. 8.
Note that the first image in the multireference ranking case

(Fig. 13d) is different from the first image of the other three

approaches. This is because multireference reranking uses

the distance to the reference set rather than just the query

image. As a result, the image sharing the most common

appearance with the reference set will be ranked first. Fig. 14

gives more example results of our approach with identity-

based quantization and multireference reranking.
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Fig. 13. Example query results using different approaches. The left column is the query image and the top-ranked images are shown on the right.

(a) Baseline quantization approach. (b) Identity-based quantization approach. (c) Linear scan approach with the global features. (d) Identity-based

quantization with 10-reference reranking using Hamming signatures. False positives are shown in red boxes.

Fig. 14. Example results of our approach—identity-based quantization with 10-reference reranking using Hamming signatures. The left column are
the queries and the top-ranked images are shown on the right.



Fig. 15 shows two challenging cases of our approach.
Faces of babies and faces with occlusion are generally
similar and much easier to confuse with each other.
However, our results show that even if our approach
cannot find the faces of the same person, it can still retrieve
a lot of other faces shared with some common attributes
(baby, with sunglasses, etc.). This shows the potential of our
approach in the applications of face attribute tagging,
classification, etc.

5 CONCLUSION

We have designed a face image retrieval system with novel
components that exploit face-specific properties to achieve
both scalability and good retrieval performance, as demon-
strated by experiments with a one million face database. In
our component-base local feature sampling, we currently
treat 175 grid point positions equally. In the future, we plan
to learn a weight for each grid point position. In our
identity-based quantization, we currently construct the
visual word vocabulary by manually selecting 270 people
and 60 face images for each person. An interesting future
work is to design a supervised learning algorithm to
automate this process to further improve the visual word
vocabulary for face. Our system is highly scalable, and we
plan to apply it on a web-scale image database using a
computer cluster.
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