Deep Neural Networks for Speech and Image Processing

Alex Acero Microsoft Research May 24th, 2012

Agenda

- Intro to neuroscience
- Artificial Neural Networks
- Deep Neural Networks
- Application to Speech Recognition

Carnegie Mellon 1990

Neurons

Human brain: \Box 100 billion neurons (10¹¹) ~7000 synapses per neuron Neurons are □ Non-deterministic □ slow: 1ms Sigmoid nonlinearity $\sigma\left(\sum w_i v_i - b\right)$

$$\sigma(x) = (1 + e^{-x})^{-1}$$

Neuroscience

Mysteries in neuroscience
 What's the difference between a human brain and that of a monkey?
 Can we cure Alzheimer?

 Neurons pick up patterns

> Hebbian rule: "Neurons that fire together, wire together"

Perceptron: the birth of ANN

Rosenblatt (1958)Linear classifier

Perceptron learning

• Minimize errors $E = \sum_{t} e_{1}^{2}(t)$ $e_{1} = h_{1} - l_{1}$ $h_{1} = \sigma \left(\sum_{i=1}^{3} w_{1i} v_{i} \right)$

$$w_{1j}^{k+1} = w_{1j}^k - \alpha \frac{\partial E}{\partial w_{1j}}$$

$$\frac{\partial E}{\partial w_i} = 2\sum_t e_1(t)h_1(t)[1-h_1(t)]v_i(t)$$

Neural Networks Winter starts

Minsky and Papert (1969) XOR cannot be modeled with a perceptron

Artificial Neural Networks

1948: Alan Turing proposes artificial neural networks (ANN)

Back propagation

Bryson and Hoback (1969) invent it h_{21} Hinton (1974) rediscovers it $E = \sum_{i} e_1^2(t) \qquad e_1 = h_{21} - l_1$ W₂₃ *W*₂₂ $h_{21} = \sigma \left(\sum_{i=1}^{3} w_{2i} h_{1i} \right) \qquad h_{12} = \sigma \left(\sum_{i=1}^{3} w_{1i} v_i \right)$ h_{11} *W*₁₃ $w_{1i}^{k+1} = w_{1i}^k - \alpha \frac{\partial E}{\partial w_{1i}}$ v_1 $\frac{\partial E}{\partial w_{1i}} = 2\sum_{i} e_1(t)h_{21}(t)[1 - h_{21}(t)]w_{22}\frac{\partial h_{12}(t)}{\partial w_{1i}}$ Chain rule $\frac{\partial h_{12}(t)}{\partial w_{1i}} = h_{12}(t)[1 - h_{12}(t)]v_i(t)$

ANN in Speech Recognition: The classic period

- 1988 Morgan & Bourlard use NN for ASR
- 1989 Waibel et al. propose TDNN
- 1990: Robinson et al propose Recurrent NN

The second winter of ANN

- HMMs became dominant technology for ASR in 1990s because:
- It performed as well or better than ANN
- But it was a lot faster to train so HMMs could benefit from large training corpora whereas ANN could not

A renaissance of Neural Networks

- 2006: Hinton invents Deep Belief Networks (DBN):
 - Pre-train each layer from bottom up
 - Each pair of layers is an Restricted Boltzmann Machine (RBM), 1983
 - □ Jointly fine-tune all layers using back-propagation
- MNIST: handwritten digit recognition

Great results due to good initialization

Restricted Boltzmann Machines I

Given v and h binary valued vectors

$$p(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{Z} \qquad E(\mathbf{v}, \mathbf{h}) = -\mathbf{b}^{\mathrm{T}}\mathbf{v} - \mathbf{c}^{\mathrm{T}}\mathbf{h} - \mathbf{v}^{\mathrm{T}}\mathbf{W}\mathbf{h} \qquad Z = \sum_{\mathbf{v}, \mathbf{h}} e^{-E(\mathbf{v}, \mathbf{h})}$$
$$p(\mathbf{h} | \mathbf{v}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{\sum_{\tilde{\mathbf{h}}} e^{-E(\mathbf{v}, \tilde{\mathbf{h}})}} = \frac{e^{\mathbf{b}^{\mathrm{T}}\mathbf{v} + \mathbf{c}^{\mathrm{T}}\mathbf{h} + \mathbf{v}^{\mathrm{T}}\mathbf{W}\mathbf{h}}}{\sum_{\tilde{\mathbf{h}}} e^{\mathbf{b}^{\mathrm{T}}\mathbf{v} + \mathbf{c}^{\mathrm{T}}\tilde{\mathbf{h}} + \mathbf{v}^{\mathrm{T}}\mathbf{W}\tilde{\mathbf{h}}}} = \frac{e^{\mathbf{c}^{\mathrm{T}}\mathbf{h} + \mathbf{v}^{\mathrm{T}}\mathbf{W}\mathbf{h}}}{\sum_{\tilde{\mathbf{h}}} e^{\mathbf{c}^{\mathrm{T}}\tilde{\mathbf{h}} + \mathbf{v}^{\mathrm{T}}\mathbf{W}\tilde{\mathbf{h}}}} = \prod_{i} p(h_{i} | \mathbf{v})$$
$$p(h_{i} = 1 | \mathbf{v}) = \sigma(c_{i} + \mathbf{v}^{\mathrm{T}}\mathbf{W}_{i})$$

Restricted Boltzmann Machines II

- Posterior of binary visible units $p(v_i = 1 | \mathbf{h}) = \sigma(b_i + \mathbf{W}_i \mathbf{h})$
- When visible units are Gaussian
 E(v, h) = ¹/₂(v - b)^T(v - b) - c^Th - v^TWh
 still
 p(h_i = 1|v) = σ(c_i + v^TW_i)
- Posteriors of visible units are Gaussian $p(\mathbf{v}|\mathbf{h}) = N(\mathbf{v}, \mathbf{b} + \mathbf{h}\mathbf{W}^{T}, I)$

RBM estimation

ML parameter estimation

 $\hat{\mathbf{c}}, \hat{\mathbf{b}}, \widehat{\mathbf{W}} = \underset{\mathbf{c}, \mathbf{b}, \mathbf{W}}{\operatorname{argmax}} p(\mathbf{v} | \mathbf{c}, \mathbf{b}, \mathbf{W}) = \underset{\mathbf{c}, \mathbf{b}, \mathbf{W}}{\operatorname{argmax}} \sum_{\mathbf{h}} p(\mathbf{v}, \mathbf{h} | \mathbf{c}, \mathbf{b}, \mathbf{W})$

■ is highly non-linear ⊗

Contrastive Divergence

$$\Delta w_{ij} = \langle v_i h_j \rangle_{data} - \langle v_i h_j \rangle_{model}$$

• Approximate $\langle v_i h_j \rangle_{model}$

- i. Initialize v_0 at data
- ii. Sample $\mathbf{h_0} \sim p(\mathbf{h}|\mathbf{v_0})$
- iii. Sample $\mathbf{v_1} \sim p(\mathbf{v}|\mathbf{h_0})$
- iv. Sample $\mathbf{h_1} \sim p(\mathbf{h}|\mathbf{v_1})$
- v. Call (v_1, h_1) a sample from the model.
- (v_∞, h_∞) is a true sample from the model. (v₁, h₁) is a very rough estimate but works

Neural Network training

RBM pre-training (contrastive divergence)
 Back-propagation

State-of-the-art: GMM-HMM

- Generatively model frames of acoustic data with two stochastic processes:
 - A hidden Markov process to model state transition
 - □ A Gaussian mixture model to generate observations
- Trained with maximum likelihood (ML) criterion using EM followed by discriminative training (e.g. MPE)

Context Dependent DNN-HMM

Dong Yu & Li Deng

 Extend from phoneme recognition (Mohamed et al. 2009) to LVCSR

Introduced priors, transition prob tuning, and DBN labels in the DBN-HMM

Context Dependent DNN-HMM

- Convert state posterior to state likelihood [Renals et al., 1994] $p_{o|s}(o|s) = \frac{p_{s|o}(s|o)}{p_s(s)}p_o(o)$
- $p_o(o)$ is constant with input
- o = feature vector augmented with neighbors (5+5) [Renals et al., 1994]
- <u>new</u>: classes s are conventional model's senones directly [Yu et al. 2010]
 - □ in our system: ~9000
 - long-standing assumption: too many to be accurately modeled by MLP
 - □ the key ingredient for large WER reduction
- → hence name: CD-DNN-HMMs

Switchboard Experiments Frank Seide, Dong Yu, Gang Li

training:

- □ SWBD-I corpus (309h)
- \square PLP with derivatives, windowed MVN, HLDA \rightarrow 39 dim
- usual left-to-right HMMs, 9304 senones
- GMM baseline: 40 Gaussians/state; BMMI discriminative training

recognition:

- speaker-independent single-pass
- dev set: Hub5'00-SWB NOTE: speaker overlap!
- eval sets: RT03S & internal STT corpora
- □ LM and dict from Fisher transcripts, PP=84
- for comparison: our "best-ever" multi-pass baseline
 - □ trained on 2000 hours (SWBD-I + Fisher)
 - VTLN, GD, multi-pass MLLR, ROVER

Experimental Results

300h Switchboard phone conversations (cf. our best: 1700h)

acoustic model & training	recognition mode	RT03S		Hub5'00
		FSH	SW	SWB
GMM 40-mix, ML, SWB 309h	single-pass SI	30.2		26.5
GMM 40-mix, BMMI, SWB 309h	single-pass SI	27.4		23.6
CD-DNN 7 layers x 2048, SWB 309h, this paper	single-pass SI			
(rel. change GMM BMMI \rightarrow CD-DNN)				
GMM 72-mix, BMMI, Fisher 2000h	multi-pass adaptive	18.6		17.1

Experimental Results

300h Switchboard phone conversations (cf. our best: 1700h)

acoustic model & training	recognition mode	RT03S		Hub5'00
		FSH	SW	SWB
GMM 40-mix, ML, SWB 309h	single-pass SI	30.2		26.5
GMM 40-mix, BMMI, SWB 309h	single-pass SI	27.4		23.6
CD-DNN 7 layers x 2048, SWB 309h, this paper	single-pass SI	18.5		16.1
(rel. change GMM BMMI \rightarrow CD-DNN)		(-33%)		(-32%)
GMM 72-mix, BMMI, Fisher 2000h	multi-pass adaptive	18.6		17.1

Experimental Results

300h Switchboard phone conversations (cf. our best: 1700h)

acoustic model & training	recognition mode	RT03S		Hub5'00
		FSH	SW	SWB
GMM 40-mix, ML, SWB 309h	single-pass SI	30.2	40.9	26.5
GMM 40-mix, BMMI, SWB 309h	single-pass SI	27.4	37.6	23.6
CD-DNN 7 layers x 2048, SWB 309h, this paper	single-pass SI	18.5	27.5	16.1
(rel. change GMM BMMI \rightarrow CD-DNN)		(-33%)	(-27%)	(-32%)
GMM 72-mix, BMMI, Fisher 2000h	multi-pass adaptive	18.6	25.2	17.1

acoustic model & training	recognition mode	voicemails		tele-
		MS	LDC	conf
GMM 40-mix, ML, SWB 309h	single-pass SI	45.0	33.5	35.2
GMM 40-mix, BMMI, SWB 309h	single-pass SI	42.4	30.8	33.9
CD-DNN 7 layers x 2048, SWB 309h, this paper	single-pass SI	32.9	22.9	24.4
(rel. change GMM BMMI \rightarrow CD-DNN)		(-22%)	(-26%)	(-28%)

Summary

CD-DNN-HMM scales to "benchmark" data

- 9000 senones, 300h, STT task
- unusual 33% relative error reduction (historically, not many technologies achieved this)

Key factors

- Increase in computing power allows more experiments:
 - direct modeling of tied triphone states [Yu et al., 2010]
 - effective use of neighbor frames (-14%) [Renals et al., 1994]
 - modeling ability of deep networks (-24%) [Yu et al., 2010]
- Training still a problem:
 - Still slow: need GPUs
 - Can get stuck in local optimum

Natural or Artificial?

Artificial neural networks better than natural?

What is the language spoken in Latin America?

Latin

- In human intelligence tasks, ANN might do better than natural ones ... one day
- But for now, ANN have a lot to learn from nature
 Randomness, an accident or Darwin at his best?
 Local learning instead of backprop?

Thank you