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Abstract

Although the scale of isotropic visual elements such as
blobs and interest points, e.g. SIFT[12], has been well stud-
ied and adopted in various applications, how to determine
the scale of anisotropic elements such as edges is still an
open problem. In this paper, we study the scale of edges,
and try to answer two questions: 1) what is the scale of
edges, and 2) how to calculate it. From the points of human
cognition and physical interpretation, we illustrate the ex-
istence of the scale of edges and provide a quantitative def-
inition. Then, an automatic edge scale selection approach
is proposed. Finally, a cognitive experiment is conducted to
validate the rationality of the detected scales. Moreover, the
importance of identifying the scale of edges is also shown
in applications such as boundary detection and hierarchical
edge parsing.

1. Introduction
The concept of scale in computer vision was first for-

mally discussed in the scale space in the 1980s, which was
developed by Witkin [19] and Koenderink [7] to describe
the image representations at different resolutions. Thus, the
scale in the scale space is regarded as a parameter of image
resolution [7], based on the fact that an image will derive
different levels of details at different resolutions, as shown
in Fig. 1.

The scale of isotropic visual elements, such as blobs and
interest points, was then studied based on the isotropic as-
sumption [19] in the scale-space theory. Lindeberg further
analyzed the magnitude changes of local extreme points in
the scale space and proposed a normalized scale selection
strategy for different detectors [8, 9, 11]. In this way, the
scale was further explained as the size of a blob or the dif-
fusion region around an interest point. Afterwards, based
on Lindeberg’s formulation, Lowe replaced the Hessian de-
tector in [11] with a Difference of Gaussian (DoG) for effi-
ciency and developed the SIFT feature [12], which is now
widely used in computer vision researches.

Although it has been well acknowledged since the suc-
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Figure 1. Images at different resolutions will exhibit different lev-
els of edge details. Two examples in the cognitive experiment are
shown here. For each image, the subjects were asked to label the
most salient edges at each resolution.

cess of SIFT that studying the scale of visual elements is
one of the most fundamental prerequisites for feature de-
tection and representation, there is still not a commonly ac-
ceptable explanation to the scale of anisotropic elements,
such as edges.

Therefore, in this work, we study the scale of edges, and
try to answer the following two questions:
1) What is the scale of edges?

Most of existing work related to the scale of edges was
studied based on the isotropic assumption [7]. As a natural
extension, Lindeberg proposed a scale selection method for
edges based on the normalized isotropic scale space [10].
However, as admitted in [10] and also shown in our study,
this “scale” is just a measurement of the diffusion degree of
the step edge, which can be viewed as the “shadow” region
of the step edge. Another classical work was proposed by
Jurie and Schmid [6], in which the scale of a contour was
defined as the size of a circle which is the most coincident
with the contour, but it only works for contours near parts
of circles and cannot deal with straight lines of any length.

As pointed by Perona and Malik [15], the isotropic as-
sumption is inappropriate for anisotropic elements. In-
stead, they introduced an anisotropic assumption and the
anisotropic scale-space theory was developed. Related
work includes [2, 18]. However, this series of work merely
focused on image processing and did not go a step further
towards telling what is the scale of edges.

In this paper, we study the scale of edges from the view
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Figure 2. Flowchart of the technical details in calculating the scale of edges.

of human cognition. Fig. 1 shows two examples about
how human beings observe edges in an image. In Fig. 1,
the salient edges at different resolutions of an image are la-
beled by the subjects. These subjective examples illustrate
the phenomenon that images of different resolutions exhibit
different level of edge details. This could also be explained
by the principle of human vision system: visual perception
treats an image at several resolutions simultaneously, and
human eye seems to possess visual information to “zoom
in” on the right range of scale [7]. Based on these evidences,
the scale of edges is formulated as a resolution-related pa-
rameter at which the edges are the most salient to human.
Then, the existence of such optimal scale is studied in the
anisotropic scale space. Moreovoer, we also explain and
validate this process from the view of heat propagation. Fi-
nally, a quantitative definition of the scale of edges is given.

2) How to calculate the scale and what is it used for?
Based on the definition, an edge scale selection approach

is proposed, whose flowchart is shown in Fig. 2. First, the
scale space of an image is constructed via the anisotropic
diffusion. Then, we extend the Harris detector [5] to a 3D
version in the spatial-scale space to measure the edge re-
sponse, and a novel scale selection algorithm is proposed to
calculate the pixel-wise scales. As a result, an edge cube
is constructed to indicate the positions and scales of edges.
Finally, by introducing the assumption that edge pixels in
the same edge structure are likely to have similar scales,
two algorithms are adopted to refine the edge cube and cal-
culate the scale of edge segments. Based on the data col-
lected from a cognitive experiment, a comparison with Lin-
deberg’s method [10] is conducted to show the effectiveness
of the proposed edge scale calculation approach.

Since the scale is a basic attribute of edges, better under-
standing of the scale of edges will benefit many edge-related
applications, such as hierarchical edge parsing and bound-
ary detection. As shown in the experiments, edges could be
hierarchically represented: the edges with larger scales tend
to be outer boundaries and the ones with finer scales are
likely to be inner details. Besides, the importance of iden-
tifying the scale of edges is also illustrated in the boundary
detection task. We not only propose a new low-level fea-
ture derived from the edge cube, but also illustrate how the
scales influence the boundary detection process by propos-
ing a scale-specific algorithm. Moreover, the proposed de-
tector works well in localization owing to the anisotropic

assumption. This makes it suitable for applications which
need high localization accuracy such as medical image pro-
cessing and remote sensing image processing.

2. Preliminaries: The Anisotropic Scale Space
This section briefly reviews the anisotropic scale space.

Suppose I(x, y; t) represents the image intensity at position
(x, y) and scale t. In contrast to the homogeneity & isotropy
assumption in the isotropic scale space, Perona and Malik
claimed that the diffusion should respect the existence of
edges rather than blurring all the pixels in the same way
[15]. Thus, they proposed the anisotropic diffusion and sug-
gested a new way to construct the scale space. The basic
idea is to perform more diffusion at non-edge positions and
less on edges [1], where the prior knowledge of the exis-
tence of edges is indicated by the first-order gradient. The
scale space was formulated by the anisotropic diffusion:

It = div(g(‖∇I‖)∇I), (1)

where g is a monotonically decreasing function.
In practice, due to the lack of a closed-form solution,

Eqn. 1 is usually approximated in an iterative way:

It+1 = It + λ[g(‖∇It‖)‖∇It‖], (2)

where the iteration number t is considered as a scale param-
eter [15] in the scale space.

3. The Scale of Edges
The study of the scale of edges starts from the observa-

tions from a group of human cognitive samples of observ-
ing edges at different resolutions, based on which a general
description to the scale of edges is introduced. We further
illustrate the existence of the optimal scales for edges, fol-
lowed by a physical interpretation. Finally, a quantitative
definition of the scale of edges is given.

3.1. What is the Scale of Edges?
To study the scale of edges, we first turn to human ob-

servations to the salient edges1 at different scales of each
image. As shown in Fig. 1, subjects were asked to label
the most salient edges at each resolution. We can see that,

1The saliency of edges is subjectively judged by human labelers.



as the image resolution decreases, some edges become un-
observable while some others are still salient. For example,
at low resolutions, the interior edges of the Sydney Opera
seems invisible, whereas the back-shell structure is more
perceivable at low resolutions than at higher resolutions.

Above observations show that an edge will only be per-
ceivable in a range of resolutions, which is consistent with
the study in [7]. We claim that the scale of edges is related
to the saliency of edges observed by human, and this rela-
tionship results in that the scale of edges is determined by
the perceivable range of resolutions. Therefore, we provide
a general definition for the scale of edges as:
The scale of edges is a parameter to indicate at which res-
olution(s) an edge is the most salient for human.

The scale space was proposed to quantitatively study the
image representations at different resolutions [7], with large
scales modeling the images at small resolutions and vice
versa. Thus, the anisotropic scale space [18] is naturally
adopted for our analysis to the scale of edges due to its edge
preserving property [15].

Inherited from the original definition in the scale space,
the scale t in the anisotropic scale space might be a suitable
parameter to describe the scale of edges when the image
resolution changes. In the next part, we will further illus-
trate the existence of an optimal scale for edges in the scale
space by analyzing the behaviors of edges.

3.2. Existence of Optimal Scales for Edges

Since the illuminance of any image will be flat at infinite
large scales in the scale space [7, 15], which means all the
pixels will be of the same grey value, thus we have

lim
t→∞

‖∇I(x, y; t)‖ = 0,∀(x, y) ∈ R2. (3)

As a result, the strength of edges which is measured by
the first-order gradient is not always decreasing as the scale
increases. Fig. 3 (a) shows the representations of a one-
dimensional signal composed with a square signal overlaid
by a sinusoidal distortion and Gaussian noises, filtered by
different scales of anisotropic diffusion. Fig. 3 (b) illus-
trates the corresponding first-order derivatives. The edges in
a one-dimensional signal are defined as the local extrema of
the first-order derivatives. From Fig. 3 we can see that, dif-
ferent signals present different behaviors at different scales:
from scale 1 to 2, the sinusoidal signal is enhanced, but it
vanishes at scale 3; meanwhile, the square signal becomes
more obvious from scale 2 to 3.

Based on the above observations, we can draw the fol-
lowing conclusions:

1) The existence of the optimal scales: For each edge com-
ponent, its first-order gradient will increase within a cer-
tain range of scales as illustrated in Fig. 3, and then
be suppressed to 0 if we continually increase the scale
to infinitely large, as inferred from Eqn. 3. Therefore,
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Figure 3. A square signal overlaid by a sinusoidal distortion
and Gaussian noises, which is shown in red. The signals and
their corresponding first-order derivatives at different scales after
anisotropic diffusions are also shown. Note that the amplitudes
are normalized to the same value for observing the details of sig-
nal changes.

for any edge there will always exist an optimal scale at
which the response2 r(∇I(·; t)) reaches the maximum.

2) Different level of edges are salient at different scales:
This can be inferred from the behaviors of different sig-
nals in Fig. 3. That is, different signals behave to be the
most salient at different scales.

To conclude, above two evidences illustrate that there ex-
ist optimal scales for edges, with the ability of separating
different signals at different scales. This optimal scale can
be considered as the scale of edges. This is the foundation
of scale selection and applications in the rest of this paper.

3.3. Physical Interpretation
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Figure 4. Illustration of the existence of the scale of edges from the
point of view of heat propagation. The 3D-Harris edge responses
of a given pixel at different scales are also shown in this figure.

An interpretation from the point of view of heat propa-
gation is given in this section to further illustrate the exis-
tence of the scale of edges.

It is a common sense that the Gaussian filtering can be
modeled as a heat propagation process in a uniform heat-
transfer medium. The scale t is the time of propagation from
the initial status to the current intensity distribution. Ana-
logically, the representations of edges at different scales are
also interpreted as a heat propagation process in this paper.

2More generally, we use r(·) to represent the edge response. The first-
order gradient is the simplest case. In practice, r(·) can incorporate extra
factors. E.g., in the 3D-Harris in Section 4.1, r(·) is the output of Eqn. 9.



However, the difference from the Gaussian filtering is
that the structure of edges changes the way that heat prop-
agates. The edges play a role of insulated containers in the
heat propagation, making the trends inside and outside them
very different. These insulated containers make the scale
space anisotropic, and hence reinforce the edges at a cer-
tain range of scales. This process is visually demonstrated
in Fig. 4 (c). As time goes on, there is one moment when
the intensity inside a container is overflowed and the edge
is over diffused. Thus, at this scale, the edge represented by
the container has the largest gradient over scales.

A real example is also shown in Fig. 4 (a) and (b). To
measure the edge response, the 3D-Harris response, which
will be further explained in Section 4, is calculated at dif-
ferent scales for a fixed point (marked in red in Fig. 4 (a)).
The distribution of the 3D-Harris responses of this point is
shown in Fig. 4 (b). We can see that the edge response is
first enhanced and then suppressed as the scale increases.

3.4. Quantitative Definition: the Scale of Edges
To conclude the above analysis and evidences from both

human cognition and physical interpretation, we explicitly
define the scale of edges as follows:

The scale of edges is the scale s in the anisotropic scale
space satisfying that r(∇I(·; t)) is a local maximum over
scales, where r(·) is a monotonically increasing function
and r(∇I(·; t)) is the measurement of edge saliency, i.e.
s = maxt r(∇I(·; t)).

This definition suggests the principle of scale selection
for edges, which will be studied in the next section in detail.

4. Scale Selection for Edges
In this section, we study how to calculate the scale of

edges. First, a novel 3D-Harris detector is proposed for cal-
culating the scale of edge pixels. Then, two approaches, i.e.
Scale Propagation and Edge Segment Scale Selection, are
introduced to estimate the scale of edge segments by con-
sidering the structural information of edges.

4.1. Estimating the Pixel-Wise Scale of Edges
According to the definition of the scale of edges, the

principle of scale selection for edge pixels is to find the local
maxima:

s(x, y) = arg max
t
r(∇I(x, y; t)), (4)

where r(·) is a measurement of edge saliency.
To leverage the spatial/geometrical property of edges and

avoid detecting isolated points, a 3D-Harris detector is pro-
posed in the spatial-scale domain to measure the edge re-
sponse of each pixel in the anisotropic scale space.

4.1.1 Harris Detector

The Harris detector [5] was proposed to detect corner points
and edges by considering the change of image intensity

within a window when shifting around nearby regions. It
evaluates the variations in two principal directions defined
by the eigenvectors of the second-moment matrix:

M = g ∗
(

I2x IxIy
IxIy I2y

)
, (5)

and a response value for each pixel is calculated by:

R = det(M)−k · trace(M)2 = λ1λ2−k(λ1 +λ2)2, (6)

where λi are the eigenvalues ofM . By choosing a proper k,
the pixels with negative response R < 0 are considered as
edge candidates, since there exists a significant difference
between the variances in two principal directions.

4.1.2 3D-Harris Detector for the Scale of Edge Pixels

In this work, we analyze the edges in the 3D scale space
instead of in the 2D image plane. Therefore, a 3D-Harris
detector is proposed in the scale space by introducing the
following two constraints:

1) Spatial constraint: an edge should be local maxima of
the spatial gradient over image intensity;

2) Scale constraint: the right scale of edges requires
∇It = ∂‖∇I‖

∂t = 0.

The first constraint is based on the local maxima of the gra-
dient, whereas the other one is based on the zero-crossing of
the gradient. The inconsistency between the two constraints
makes it difficult to calculate the 3D version of the second-
moment matrix M and the edge response R as in [5]. Thus,
a transformed gradient ∇Ĩt is designed to convert the zero-
crossing point∇It = 0 to a local maximum:

∇Ĩt = sign(∇It)(1−
∇It

max(abs(∇It))
). (7)

Then, the second-moment matrix of 3D-Harris is defined:

M = g ∗

 I2x IxIy Ix∇Ĩt
IxIy I2y Iy∇Ĩt
Ix∇Ĩt Iy∇Ĩt ∇Ĩ2t

 , (8)

where the matrix M encodes the variances when shifting
the 3D window in the direction of [∆x,∆y,∆t], and the
eigen-values of M measure the changes in the three princi-
pal directions.

Similar to the 2D situation, the response

R = det(M)−k·trace3(M) = λ1λ2λ3−k(λ1+λ2+λ3)3,
(9)

is defined to measure the significance of these changes.
Since edge points typically vary in less than two princi-

pal directions, only the points with negative responses will
be considered as edge points, which is consistent with the



2D situation [5]. Moreover, as a larger contrast will lead
to a larger |R|, |R| is chosen as the measurement of edge
saliency. Fig. 2 (a-b) shows an example, where (a) is the im-
age representations at different scales and (b) is obtained by
preserving the points with R < 0. The proposed 3D-Harris
can detect the edges in the scale space, and the intensity |R|
reflects the strength of edges at different scales.

Therefore, using 3D-Harris to detect the scales of edge
pixels is to find the optimal scale s to satisfy:

s(x, y) = arg max
t
|R(x, y, t)|, R(x, y, t) < 0. (10)

Fig. 2 (c) shows the detected edge pixels with their corre-
sponding scales in the (x, y, s)-cube, which is called “edge
cube” in this work3.

4.2. From Scale of Edge Pixels to Scale of Edges
The edges have structural information rather than iso-

lated points. To determine the scale of edges, two structure-
consistent assumptions are considered: 1) the pixels on an
edge are spatially continuous, and 2) the pixels on the same
edge segment usually have similar scales.

Thus, a two-step approach is introduced to estimate the
scale of edges based on the edge cube. First, a greedy algo-
rithm is used to extract edge segment. Then, two strategies,
i.e. Scale Propagation and Edge Segment Scale Selection,
are introduced to calculate the scale of edge segments.

4.2.1 Edge Segment Extraction

For each edge pixel pi = (xi, yi, si) in the edge cube, we
use a greedy algorithm to find its adjacent edge pixel pi+1

on the same edge segment by considering two factors: the
consistency in edge response R(p) = R(x, y, s) and seg-
ment orientation −−−−→pipi+1 = (xi+1 − xi, yi+1 − yi):

pi+1 = arg max
p∈N (pi)

−|R(p)−R(pi)|+ λ
−−−−→pi−1pi · −→pip
|−−−−→pi−1pi||−→pip|

,

(11)
where N (pi) is the spatial neighbors of pi regardless of
scale value, and the orientation change is measured by the
cosine similarity. The point with the largest consistency is
chosen as the successor of this segment. The algorithm be-
gins from 1-neighbor points (|N (pi)| = 1), and stops if all
non-isolated points (|N (pi)| > 0) are processed. Then, the
edges are organized as a set of edge segments C = {C}.

4.2.2 Scale Propagation

Let i (i = 1, ..., n) denote the index of the i-th edge pixel
on segment C, and si is the detected scale of the i-th edge
pixel. We further refine the scales based on two assump-
tions: 1) nearby pixels on the same edge segment should

3In this paper, we use t to denote the scale in the scale space, and s to
denote the selected optimal scale of edges.

have similar scales, and 2) the scales should be consistent
with the results of 3D-Harris. Thus the cost function is:

F(S∗) =
1

2

n∑
i,j=1

Wij‖s∗i − s∗j‖2 +µ

n∑
i=1

‖s∗i − si‖2, (12)

where s∗i is the refined scale after scale propagation, and
Wij is the similarity to measure the geodesic distance be-
tween i and j. Then the scales S∗ = {s∗i } of edges pixels
on edge C can be obtained by minimizing F(S∗) [20].

For each edge segment C, the scale propagation algo-
rithm is performed to smooth the scale and the edge re-
sponse R. Then, a statistic of pixel-wise scales S(C) such
as mean or median can be used as the scale of C.

4.2.3 Edge Segment Scale Selection

Another approach to determine the scale of an edge seg-
ment C is to search the local maximum of its response
R(C, t) in the scale space, which is a robust statistic of
the edge response of edge pixels on C, i.e. R(C, t) =
stat({R(x, y, t), {x, y} ∈ C}). Thus we have,

S(C) = argmax
t
|R(C, t)|, R(C, t) < 0. (13)

In this work, we use the median as the statistic for its ro-
bustness to outliers.

The edge cubes refined using the above two algorithms
are shown in Fig. 2 (d-e). We can see that, the edge cube
after scale propagation looks smoother than that after edge
segment scale selection, since it provides continuous scales
for edge pixels; and using edge segment scale selection, the
scales of pixels on a same edge segment are identical.

Therefore, these two algorithms could be used in differ-
ent scenarios. The scale propagation exhibits more informa-
tion of an edge segment and might be more proper for depth
estimation, object alignment, and affine estimation; whereas
the edge segment scale selection is simpler for implemen-
tation and calculation. In the experiments of this paper, we
adopt the edge segment scale selection strategy.

5. Experiments and Applications
In this section, we first evaluate the detected scales of

edges. Then, as a natural application, the scale of edge is
used in the task of boundary detection. Finally, we illustrate
its potential for hierarchical edge parsing.

5.1. Evaluation: The Scale of Edges
A quantitative experiment is performed to evaluate the

proposed definition and algorithms for the scale and scale
selection of edges. We first introduce the Multi-Scale Edge
Dataset which was collected by conducting a cognitive ex-
periment, followed by the evaluation measurement. Then,
the proposed algorithms are compared with Lindeberg’s
method [10] for edge scale selection.



𝐴𝑐𝑐𝑢 𝐴𝑐𝑐𝑢𝑜𝑟𝑑𝑒𝑟𝑒𝑑  

Lindeberg [10] 0.300 0.103 

3D-Harris 0.370 0.469 

SegSelection 0.373 0.470 

SegPropagation 0.375 0.478 

(a) (b) (c) (d)
Figure 5. Comparison of different algorithms on the scale of edges. (a) Quantitative comparisons. (b) Heatmap of the scales detected by
3D-Harris. (c) Heatmap of the scales detected by Lindeberg’s method [10]. (d) Circlemap of the scales detected by Lindeberg’s method.
Larger circles indicate the edge points of larger scales. For better viewing, please see the electronic version.

5.1.1 The Multi-Scale Edge Dataset

To address the problem of “what is the scale of edges from
human cognition”, a perceptual experiment was performed
to record the scale information of edges. We collected 40
photos rich in scale information but not too complex for
manual labeling. Each image was shown to subjects at five
resolutions4 from lowest to highest. For each resolution, a
subject was first asked to label the edges which are visually
salient enough to him / her. The edges labeled at lower res-
olutions were automatically shown at higher resolutions to
reduce the labeling work. Examples are shown in Fig. 1.

5.1.2 Evaluation Measurement

Based on the labeled edges, we construct the groundtruth
for evaluation. Naturally, an edge labeled at a lower reso-
lution could be considered to have a larger scale than that
labeled at a higher resolution. Let shi and shj denote the
scales corresponding to a lower resolution and a higher res-
olutions at which edges Ci and Cj were labeled. Although
there is no quantitative relationship between the image res-
olution and the scale of edges, we can have the following
inference: shi > shj . We call shi as the groundtruth scale of
Ci. For each algorithm, if it can detect edgeCi, there will be
an estimated scale sdi , which is called the detected scale. For
each image, a fixed number of edge pixels, which were both
labeled by subjects and detected by an algorithm5, were ran-
domly sampled to compose the testing set.

Since we only know the non-quantitative relationship be-
tween the groundtruth scales, we need to evaluate whether
the relationship between the detected scales for a pair of
edge pixels is consistent with that between the groundtruth
scales, and the qualified pairs are called concordant pairs.
Thus, for each testing image I , the scale detection accu-
racies Accuracy(I) and Accuracyordered(I) are used as
the measurements, in which Accuracy(I) denotes the ratio
of the number of concordant pairs to that of testing pairs,
and Accuracyordered(I) only considers the pairs with dif-
ferent groundtruth scales to avoid trivial solutions. In im-

4For the five resolutions, the length of the longer side of each image is
40, 80, 160, 320, and 640, respectively.

5As in the evaluation in boundary detection [14], if the distance be-
tween a detected point and the nearest groundtruth point smaller than a
constant, i.e., 3 pixels, it will be considered as a correct detection.

plementation, 800 edge pixels were randomly sampled in
each testing image, resulting 800 ∗ 799/2 edge point pairs.
We repeat this sampling process for 10 times to stabilize
the evaluation, and the average performance Accuracy and
Accuracyordered (Accu andAccuordered for short) over all
testing images are used as the evaluation measures.

5.1.3 Results and Comparisons

Fig. 5 (a) shows the comparison results of four algorithms:
3D-Harris, 3D-Harris with Scale Propagation / Edge Seg-
ment Scale Selection (SegPropagation/SegSelection for
short), and Lindeberg’s method [10]. We can see that, all
our methods greatly outperform Lindeberg’s method under
both measurements. To be noticed, Lindeberg’s method
performs rather bad when measured by Accuracyordered.
This is because it wrongly assigned most pixels at differ-
ent groundtruth scales to the same scales, and thus is less
discriminative to the scale of edges.

More detailed comparisons are visualized in Fig. 5 (b-
d). As shown in Fig. 5 (b), the scales calculated by 3D-
Harris are able to reveal the structure of edges: the scale of
the boundary of the pyramid is larger than the scales of the
camel’s contour and shadow, which are further larger than
the scales of the textures and the details inside the camel.
On the other hand, we cannot see such a clear structure
of edges in Lindeberg’s method, as shown in Fig. 5 (c).
Fig. 5 (d) shows the scales detected by Lindeberg’s method
in a more direct way. The size of red circles indicate the
detected scales: larger circles correspond to the points of
larger scales. Actually, the scale of Lindeberg’s method [10]
measures the diffusion degree of a step edge, which can be
viewed as the size of “shadow” region instead.

We can also see that, although the measurements are
designed for evaluating pixel-wise scales, after adding the
structure-consistent assumption, the performance of 3D-
Harris is still slightly improved.

5.2. Application: Boundary Detection

Most of mainstream approaches for boundary detection
such as [4, 13, 14, 16] are PB-based methods, abbr. Proba-
bility of Boundary, all of which learn a score for each pixel
to indicate its probability to be a boundary point. The ba-
sic features used in these methods (named as PB-based fea-



Table 1. Comparison of different boundary detection algorithms.
Single Feature Multiple Features
Method F Method F

CG 0.57 PB [14] 0.65
BG 0.59 Boosted [4] 0.66
TG 0.59 Multi-Scale PB [16] 0.68
RS 0.61 Scale-Specific PB 0.66

tures) include the Brightness Gradient (BG), Texture Gradi-
ent (TG), and Color Gradient (CG) [13, 14, 16].

In this section, we illustrate the effectiveness of the edge
cube in boundary detection. First, a novel low-level fea-
ture derived from the edge cube is introduced (“RS” feature,
short for “Response at a specific Scale”). Then, a modified
PB [14] algorithm which naturally encodes the scale infor-
mation is presented (“Scale-Specific PB”).

5.2.1 The RS Feature

Since the edge cube presents different levels of edge details
at different scales, we simply project the edge cube verti-
cally to a certain scale, and obtain a response map. The
edge response R for each pixel is considered as the RS fea-
ture of this pixel. The RS feature is used in boundary detec-
tion in a similar way as existing low-level PB features [14].
The boundary detection results of different low-level fea-
tures on the BSD300 dataset are shown in Table 1, in which
the F-Score (2×precision×recall/(precision+recall))
is used as the measurement. We can see that, the RS fea-
ture achieves a performance of F-Score = 0.61, which is
higher than all other low-level features, such as TG (0.59),
BG (0.59), and CG (0.57).

Besides the superior detection performance, the RS fea-
ture also has better localization accuracy in the detec-
tion task. When evaluating boundary detection algorithms
[4, 13, 14, 16], a threshold dt is used to tolerate the location
shift. That is, if the distance between a detected point and
its nearest groundtruth point is smaller than dt, it will be
considered as a correct detection. To compare the localiza-
tion accuracy, we decrease dt to make a stricter comparison.
As shown in Table 2, the superiority of RS becomes more
obvious as dt becomes smaller.

5.2.2 Scale-Specific PB

In this part, we further investigate how the detected scales
of edges benefit PB-based methods in boundary detection.
Although previous work [16, 17] revealed the advantages
of considering multiple scales in boundary detection, the
relation between the scale and the existence of boundaries
is not studied and how to use the scales is still unclear.

Different from existing work which extracts features for
each pixel in a uniform scale [14] or simultaneously uses
multiple scales [16], we propose to extract PB-based fea-
tures at their corresponding detected scales resulted from
the proposed scale estimation algorithm.

Table 2. Performance comparison of different features with thresh-
old dt decreasing. As dt decreases, the superiority of RS over
other features becomes more obvious, which shows the effective-
ness of RS in edge localization.

PPPPPPPFeature
dt 0.0075 (default) 0.0025

CG 0.57 0.34
TG 0.59 (+3.5%) 0.31 (-7.6%)
BG 0.59 (+3.5%) 0.41 (+20.7%)
RS 0.61 (+7.4%) 0.45 (+30.7%)

P1: Scale 1 

P2: Scale 2 

P3: Scale 3 

P1 

P2 

P3 

Figure 6. Scale-Specific PB: the features of each pixel is only ex-
tracted at the detected scale. In this example, three pixels of dif-
ferent scales are shown.

Given a testing image, we first detect the scales of all
edge pixels, and then an image dilation operation is adopted
to make scale detection more stable. For pixels of large
scales, their PB-based features will be calculated within the
disks of a large size, and vice verse. An example is shown in
Fig. 6, in which the features of pixels at three different scale
levels are extracted based on their corresponding scales (in-
dicated by the disks with different sizes). More specifically,
we uniformly divide the edge scales into 4 octaves, which
correspond to the disk radiuses (

√
2)−1, 1, (

√
2)1, (

√
2)2

of the default value in [14]. For each pixel, we only extract
its features on its corresponding scale. In the training stage,
logistic-regression models are trained on every octave, and
each model is only used to classify the pixels of the corre-
sponding scale.

Comparison results of different algorithms are shown in
Table 1. We can see that, the proposed Scale-Specific PB
outperforms PB [14], but does not exceed Ren’s Multi-Scale
PB [16], in which all the 6 octaves were used. However, the
Multi-Scale PB is computationally expensive: the time cost
will increase exponentially with the disk size. Instead, in
our algorithm, only the right scale is used to reduce the com-
putation cost. The Boosted Edge Learning [4] achieved the
same performance as ours, which leveraged about 50,000
features for each pixel; whereas only four features and a
linear classifier were adopted in the proposed algorithm.

This experiment is mainly to illustrate the rationality
of the detected scale of edges, and its effectiveness in
the boundary detection task, rather than design a complete
boundary detection algorithm. There might be other smart
ways to leverage the scale information to design a better
boundary detection algorithm.
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Figure 7. (a) The detected edges as the scale decreases. (b) An
example of hierarchical edge parsing.

5.3. Application: Hierarchical Edge Parsing
As aforementioned, the edge segments of large scales are

usually object boundaries, and as the scale decreases, more
details will appear. This is further illustrated in Fig. 7 (a).
The edge images were obtained by projecting the edge cube
vertically to the planes of different scales. We can see that,
in relatively large scales, the outer boundaries of the build-
ing and the boat are detected; as the scale decreases, more
details include the windows of the building and the inside
structures of the boat come out.

This shows the potential application of hierarchical edge
parsing, with an example shown in Fig. 7 (b). The edges
with the largest scales can be first clustered into objects,
based on the observation that most boundaries have large
scales and different objects are separated. By defining the
spatial relationships including “containing”, “continuous”
and “adjacent”, edge details with smaller scales can grad-
ually appear to enrich each object. This process is demon-
strated in Fig. 7 (b). We believe the technology of edge
parsing will benefit edge-based image indexing and sketch-
based image retrieval [3]. Object parsing is out of the scope
of this paper, and more complex factors should be consid-
ered to design a practical algorithm. Thus, we only show
the potential of the scale of edges in solving this problem.

6. Conclusions
In this paper, we have studied the scale of edges, a very

fundamental problem in computer vision. Based on human
perception and physical interpretation, a quantitative defini-

tion for the scale of edges was provided, based on which a
scale detection algorithm was proposed. The Multi-Scale
Edge Dataset was collected to evaluate the rationality of
the detected scales. Moreover, we also illustrated the ef-
fectiveness of identifying the scale of edges in potential ap-
plications such as boundary detection and hierarchical edge
parsing. We hope this work can inspire more studies on
edge-related work such as feature detection, representation,
and matching.
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