Interoperability in Science Data: Stories from the Trenches

Karen Stocks University of California San Diego

Open Data for Open Science – Data Interoperability Microsoft eScience Workshop 2012

Interoperability Case Studies

- Ocean Observatories Initiative
- Rolling Deck to Repository
 - internal operations
 - external interactions

Earth Cube Cross-Domain Interoperability Framework

Data available in compatible semantics: ontologies, controlled vocabularies

Data available via standard service interfaces (e.g. OGC WFS, SOS) but different information models

Applications Standard Services Vocabularies Metadata catalogs Data archives Community data models

Find and retrieve domain resources: files and file collections, services, documents - by thematic category, type, location

Compatibility at the level of domain information models and databases

Interop Framework - shorthand

- Vocabularies
- Metadata
- Data Access
- Data Models

The Ocean Observatories Initiative (OOI): Instrumenting the Oceans

Long-term, in-situ instrumentation

Cyberinfrastructure: linking the marine infrastructure to science and user

OOI will have~50 instrument types

The Instrument Operator on shore should not have to know how to task 50 different instruments; there needs to be a single set of basic commands (power on, take a reading, start autosampling, etc.)

 The heterogeneous data must flow into a common data model

Solution: write drivers and agents for each instrument class/model, and Data Processing algorithms for data ingestion

Assessment

- Effective: instrument can be tasked and data ingested
- Scalable: new (different) instruments require new effort
- Interoperability: no gains outside of OOI

A better (partial) solution: Partner with instrument manufacturers to further develop and adopt a framework for describing sensor data provenance, building off of Open Geospatial Consortium SensorML, to allow standards-based, machine-harvestable encodings (Janet Fredericks, WHOI)

Rolling Deck to Repository (R2R) Managing underway data from research vessels

Academic Fleet

Oct. 2008

Langseth (Healy) Kilo Moana Melville Revelle

2009 Thompson

> Sharp Atlantis

Knorr

Oceanus (Ka'imikai)

Barnes

Walton Smith

Point Sur

Wecoma (Cramer)

(Seamans)

Endeavor

New Horizon

Sproul

(Polar Sea)

Pelican

Savannah

Explorer

Hatteras Blue Heron

Cruise Catalog

Attentic Explaner VI

Atlantin of

Endaaver 2

Maurice Ewing 2

1000's of datasets/year

cruises/year

30+ vessels

in active or

100's of

recent service

Joined R2R

2010

Oct. 2010

R2R Goals

For the U.S. Academic Oceanographic Research Fleet:

- Migrate all routine "underway" data to long-term repositories
- Create catalog of cruises and standard products
- Assess data quality and provide timely feedback to vessels

R2R Challenges 1. Metadata

Problem: R2R collects critical discovery and access metadata about a "new" level of granularity: a cruise

R2R Challenges 1. Metadata

Solution: Work with the National Geophysical Data Center to create a new ISO-19115 compliant cruise-level metadata standard.

```
Identification information:
 MD DataIdentification:
    Citation:
      CI Citation:
        Title:
           Character string:
           HLY0805 from Barrow, Alaska to Barrow, Alaska on the Healy in the
Arctic between 2008-08-14 and 2008-09-05
        Date:
           CI Date:
             Date:
             2010-08-24
             Date type:
               CI DateTypeCode:
                                                               (Text View)
               creation
          Identifier:
 ...etc.
```

R2R Challenges 1. Metadata

Assessment:

- ✓ Effective: substantial increase in discoverability and usability of data
- Scalable: after initial time investment, now auto-generated for new cruises
- ✓ Interoperability: builds off of existing generic ISO standard, creates new framework for others

R2R Challenges

2. Data Format

Problem: large heterogeneity in formats for data coming from independent ship operators...even when the same instrument is being used.

Solution: parser for each data format variant; transformation to standard format for certain data types

R2R Challenges 2. Data Format

Assessment

- Effective: allows data to be accessed
- Scalable: every new format requires same level of new effort.
- Interoperability: approach creates no interoperability gains beyond reformatting done by R2R

R2R Challenges

2. Data Format

A better solution: community adoption of format standards

BUT...for some data types, these already exist, and are simply not being used, mainly because of cost of initial change

→ This needs a human/resource solution, not a technology solution

R2R Challenges, 3

Oceanographic Vessel Data are global...and should be globally accessible. Emerging Ocean Data Interoperability Platform is addressing

R2R Challenges 3. Vocabulary

Problem: similar concepts, such as countries, vessels, instruments, and datasets, are used by many oceanographic information systems.

R2R Challenges 3. Vocabulary

Solution 1: Use existing controlled vocabularies where available

- Country (ISO)
- Cruise Type (UNOLS)
- Gazetteer Exclusive Economic Zone (VLIZ)
- Gazetteer Sea Area (IHO)
- Gazetteer Undersea Feature Name (IHO)
- Language (ISO)
- Organization (IANA)
- Port (UNOLS)
- Processing Level (CODMAC)
- Sample Type (USGS)
- State (FIPS)
- Vessel (ICES)

R2R Challenges 3. Vocabulary

Solution 2: R2R and partner organizations are adopting a linked data approach to make catalog content broadly and easily accessible.

- RDF & URIs
- SPARQL endpoints
- D2RQ
- DOIs

Outside R2R Challenges Vocabulary

Assessment:

- ? Effective: Too soon to assess use
- Scalable: Efficient re-use of vocabularies
- ✓ Interoperability: at vocabulary and Link level

A Question for Future Cross-Domain Interoperability

To what degree should we mandate global standards or allow local domain-specific protocols?

Some success in these projects with a global framework, and a local extension

- e.g. R2R Cruise metadata standard, from ISO 19115
- Instrument self-reporting provenance, built on OGC SensorML

Is this extensible? Are there better approaches?

