Open Decision Support

eScience: Open Data for Open Science

(Spatial) Decision Support

Using best available science to support decisions that will change the landscape. http://www.spatial.redlands.edu/sds

Steinitz Process/Workflow

Planning Support Venn view

Planning Venn/Steinitz

How does SDS synthesize w. eScience?

- Can't work without eScience describing the processes and state of the socio-ecology**
- Very focused on decisions about intentional actions (but has to accommodate external actions)
- Change models/representation must be integratable with socio-ecology system models
- Both need to be validated & uncertainty estimated
- Computation is key

How does SDS differ from eScience?

- Governance (Cultural) Models explicit: Evaluation and Action Decision models
- Type II errors often less acceptable than Type
 I errors the need to act while still time
- SDS even more likely to be X-discipline
- Can be more directly experimental >> adaptive management, but...
- Can require even longer timescales to validate
- Decision Efforts are often episodic

II. Examples of SDSs

1: Non-native Invasive Species Management

Data: Curated from Installation datasets

- Model = Threat & Vulnerability & Importance
 - Geo processing of standard weed models
 - Expert Assessment of Resource Vulnerability
 - Operational Expert Evaluation of Resource Importance Key Features
 - Weed propagation forecasting
 - Dashboard like rendering
 - (Snatial) Drill down

2: Desert Tortoise Recovery Action Prioritization

- Data Curated from multiple sources, published to web as web services
- Model: Risk to DT Recovery = Pop Change Risk x Population Density
 - Threat > Stress > Demographic weights > Pop Chang
 - Threats can also drive other threats calculated
- Recovery Actions suppress (Threats > Stresses) links
 - Reduction of threat effects > Reduction in Pop Change Risk
- Key Features
 - Recovery Actions explicitly target Threat– Stress mechanisms
 - Sensitivity Analysis + Uncertainty in Data and Expert Opinion > Error Bars

2: Desert Tortoise Recovery Action Prioritization

Characterization of Uncertainty

Variation in expert estimates of

2: Desert Tortoise Recovery Action Prioritization WEMO TCA: Ord Rodman - RAs

Ord Rodman (CHU) in West Mojave Workgroups contribution to overall risk - for Recovery

Region: Ord Rodman (CHU) in West Mojave Workgroup - for how many runs does each

2.5: Desert Tortoise Solar Project Offsets

3: National Infrastructure Investment

- Data: Internal to Corps
- Asset Value to Nation
 - Processes > Performance metrics > Value
- Action Delta Value to Nation
 - How access changes processes
 - Changed processes > Changed Value
- Key Features
 - Actions impact processes of Assets

3: National Infrastructure Investment

Summary of Examples

- All are examples of planning workflow
- All have very different End User Interfaces
- User Types: Analysts, Decision Makers, Stakeholders
- All had underlying process, change and governance models – each created in its own authoring application
- All should have had
 - Drill down
 - Parameter editing
 - Sensitivity & Uncertainty handling
 - Provenance

III: Ecological Management Decision Support (EMDS)

- Open modeling system
- Spatial System Evaluation
- Fixed Workflow:
 - 1. Spatial Identity data representation
 - 2. Set Study Area
 - 3. Run authored fuzzy logic models
 - 4. Generate map outputs state of system
 - 5. Run prioritization models
 - 6. Generate map outputs evaluation of state

EMDS "Classic"

http://www.spatial.redlands.edu/emds/

- 1. Fixed Workflow for landscape evaluation
- 2. Desktop
- 3. Single Thread
- 4. Data ESRI geodatabase
- 5. Max ~ 1,000,000 features

GOOD:

- 1. Freely available
- 2. User Community
- 3. No-CODE Process/governance models
 - 1. Spatial (ESRI)
 - 2. Fuzzy Logic (Net Weaver)
 - 3. MCDA (Criterium DecisionPlus)

Applications

- 1. Carbon sequestration^[8]
- 2. Conservation[9][10][11][12]
- Design and siting of ecological reserves^{[13][14]}
- 4. Ecosystem sustainability^{[15][16][17][18]}
- 5. Land classification[19][20][21]
- 6. Landscape restoration[22][23][24]
- 7. Soil impacts^[25]
- 8. Urban growth and development^{[26][27]}
- 9. Watershed analysis^{[28][29][30][31][32][33][34]}
- 10. Wetlands management[35]
- 11. Wildlife habitat management[36][37][38][39][40]
- 12. Wildland fire danger[41][42][43][44]

Citations

[edit]

[edit]

IV: EMDS 5 - Open DecisionSupport

- Data: Catalog Search & Publishing
- Ontology: Connect to SDS Ontology via Domain Ontologies (e.g Salfasky's Species Recovery lexicon)
- Re-architect EMDS into:
 - EMDS Back-end Web Services
 - Infrastructure for wrapping 3rd party engines
 - · Adding inference, optimization, geoprocessing, ...
 - Workflow Architecture
 - Windows Workflow
 - Trident Workbench: Workflow Composer, provenance, ...
 - Analysis GUI: Specific data and modeling visualization
 - Decision Manger GUI (decision visualization)??

What Does EMDS get from Trident?

- Work flow composer
- Workflow orchestration
- Fault Tolerance
- HPC
- Utilizes Windows Platform

EMDS5 and SDS Ontology

- Populate Analytic models from domain Ontologies
- Augment Workflow Composition using SDS Ontology
 - Workflows, steps, tools, methods

SDS ontology as integration framework

SDS for Tortoise Recovery - Conceptual Model

Conceptual Models

The DTRO worked threat-by-threat to identify:

Which *Recovery Actions* can be introduced to abate the threat

The *threats* caused by each threat

The *stresses* caused by each threat

Which factors each stress causes to overall population

SDS for Tortoise Recovery > Conceptual Model

SDS ontology as Composer support

SDS ontology as a bridging framework

SDS ontology as a bridging framework

Ontology-driven SDS workflow orchestration

Work for us

- Have EMDS back end running on Windows Workflow
- Have Persistence Layer in place
- Have wrapped 3 engine**
- Starting design for Trident integration
- Extending SDS Ontology to Species Recovery domain ontology

Questions (for you)

- How far to go with auto-composed GUI for Decision Makers?
- What Modeling standards will work well for mapping process/change/governance engines?
- How to implement sensitivity and uncertainty analysis along the analysis workflow?
- How to practically achieve Conceptual Interoperability?
- How to handle Activity Scales in Trident?
- How to test our emerging system on Interop Testbed?

Thank You

Redlands THE REDIANDS INSTITUTE	The Redlands Institute	University of Redlands	PENN <u>STATE</u>	Krzysztof Janowicz	Pennsylvania State University
	Stephen Bathgate & Duncan Ray	Forest Research		Karen Kemp	The Kohala Center
UNIVERSITY OF TWENTE.	Luc Boerboom	University of Twente	What if?, Inc.	Richard E. Klosterman	What if?, Inc.
The University of Georgia	Susan Crow	University of Georgia	Place Matters	Jason Lally & Ken Snyder	PlaceMatters
U.S. Fish & Wildlife Service	Catherine Darst	US Fish & Wildlife Services	MICHIGAN STATE UNIVERSITY	Arika Ligmann- Zielinska	Michigan State University
₩ INDIANA UNIVERSITY BLOOMINGTON	Hamid Ekbia	Indiana University	Western	Jacek Malczewski	University of Western Ontario
SLU	Ljusk Ola Eriksson	Swedish University of Agricultural Sciences		Andrew Miller	Ecological Applications
HARVARD UNIVERSITY	Stephen M Ervin	Harvard Graduate School of Design	infoharvest Spatial Decisions Division GIS Solutions & Applications	Philip Murphy	InfoHarvest, Inc.
Decision Technologies For Land Planning	Brenda Faber	Fore Site Consulting, Inc.	WASHINGTON	Timothy L. Nyerges	University of Washington
Massachusetts Institute of Technology	Max Flaxman	MIT	JPL	Rob Raskin	NASA / Jet Propulsion Laboratory
Universiteit Utrecht Faculty of Geosciences	Stan Geertman	Utrecht University	PNW	Keith Reynolds	USDA Forest Service
UCSB	Michael Goodchild	University of California, Santa Barbara	HARVARD UNIVERSITY	Carl Steinitz	Harvard University
INTERFOREST LLC	Sean Gordon	Interforest LLC		Mingzhen Wei	USGS
OTAGO Te Whare Wanangu o Otago N N N W Z R A L A N D	Brent Hall	University of Otago	OSU Oregon State University	Dawn J. Wright	Oregon State University
UNIVERSITY OF WYOMING	Jeffrey D. Hamerlinck	University of Wyoming	Center for Regional Development BGSU	Xinyue Ye	Bowling Green State University
SAN DIEGO STATE University	Piotr Jankowski	San Diego State University	UF FLORIDA	Paul Zwick	University of Florida