
MinuteSort with Flat Datacenter Storage

Johnson Apacible, Rich Draves, Jeremy Elson, Jinliang Fan,

Owen Hofmann, Jon Howell, Ed Nightingale, Reuben Olinsky, Yutaka Suzue

Microsoft Research

May 15, 2012

1 Overview

We have built a new high-performance distributed

blob storage system, called Flat Datacenter Storage

(FDS). Our MinuteSort entry is a relatively simple

Daytona-class sort application that uses FDS for storage.

We also have an Indy mode that is identical to the Day-

tona version except that input sampling is disabled and a

uniform key distribution is assumed.

• In Indy mode, FDS sorted 1,470 GB1 in 59.4 s.2,3

• In Daytona mode, FDS sorted 1,401 GB in 59.0 s.

The sorts were accomplished using a heterogeneous

cluster consisting of 256 computers and 1,033 disks, di-

vided broadly into two classes: storage nodes and com-

pute nodes. Notably, no compute node in our system

uses local storage for data; we believe FDS is the first

system with competitive sort performance that uses re-

mote storage. Because files are all remote, our 1,470 GB

runs actually transmitted 4.4 TB over the network in un-

der a minute. No strong assumptions are made around

key or record lengths; keys and records of other lengths

can be handled with only a performance-neutral config-

uration change.4

Our cluster’s computers are a mix of HP and Dell sys-

tems with a range of RAM (24GB to 96GB) and CPUs

(2 to 12 cores). The compute nodes had a single local

disk, used only for operating system files. Storage nodes

had one operating system disk plus between 5 and 16

FDS data disks used for sort data. These disks had a

range of capabilities: primarily (78%) 10K RPM dual-

port SAS disks, but with some (22%) 7,200 RPM SATA

disks. Each computer is networked using 10G (10 giga-

bit/sec) Ethernet connected in a full-bisection-bandwidth

CLOS network [5]. The interconnect is 22 × Blade

1As is standard for MinuteSort, 1 GB = 10
9 bytes.

2FDS includes a job control service that copies binaries out to the

cluster and executes processes. In conformance with the sort bench-

mark rules, our reported times were measured by this service, not by

the sort process itself.
3Times reported are the median of 15 executions; details in Sec-

tion 4.
4Variable length keys and records are also easily supported, though

we have not implemented such support.

G8264 switches, each of which has 64×10G Ethernet

ports. Most computers had a dual-port 10G NIC (an In-

tel X520 or HP NC522SFP), though some of the storage

nodes used only a single port. All computers run Win-

dows Server 2008 R2 SP1.

The entire input file for each sort was stored in FDS as

a single logical blob. The output was partitioned across

256 blobs. In Daytona mode, bucket boundaries were

computed dynamically by scanning approximately 1.5

million keys from 256 locations selected uniformly at

random across the input file.

Our results are the median of 15 runs. Each run con-

sisted of a setup phase, during which gensort was

used to create an appropriately-sized blob; the sort phase;

and a validation phase, in which valsort checked the

sorted results. Since gensort and valsort were not

widely parallelized, the 15-run experiment took several

hours. (Our system met the Daytona requirement that

the system run for more than one hour without failure.)

In the remainder of this paper, we will describe FDS

(Section 2), the network it runs on (Section 2.3), the sort

application built on top of it (Section 3), and more de-

tails of our cluster’s hardware configuration (Section 4).

FDS itself has no sort-specific optimizations in it. Our

sort application uses the same simple API into FDS that

any other application might use; other applications can

be expected to achieve similar performance.

2 Flat Datacenter Storage

Flat Datacenter Storage (FDS) is a new blob storage

system developed at Microsoft Research with perfor-

mance and scalability as its primary goals. In FDS, all

storage is remote. That is, data is stored on dedicated

storage nodes, called tractservers. Logically, a tract-

server is a network front-end to a single disk; machines

with multiple disks have one tractserver running per disk.

User code does not run on tractservers; applications can

only retrieve data from or write data to tractservers over

the network. In FDS, there is no such thing as a local file

(other than each system’s operating system disk). This

organization is in sharp contrast to existing systems such

as MapReduce [3], Hadoop [1], and Cosmos [2], all of

1



which are built from first principles to do processing on

data stored locally—sending the computation to the data

as a way to avoid sending the data over the network. FDS

always sends data over the network.

FDS mitigates the cost of data transport in two ways.

First, we give each storage node network bandwidth that

matches its storage bandwidth. SAS disks have read

performance of about 120MByte/sec, or about 1 giga-

bit/sec, so in our FDS cluster a storage node is always

provisioned with at least as many gigabits of network

bandwidth as it has disks. Second, we connect the stor-

age nodes to compute nodes using a full bisection band-

width network—specifically, a CLOS network topology,

as used in projects such as Monsoon [5].

The combination of these two factors produces an un-

congested path from remote disks to CPUs, giving the

system an aggregate I/O bandwidth essentially equiva-

lent to a system such as MapReduce that uses local stor-

age. There is, of course, a latency cost. However, FDS

by its nature allows any compute node to access any data

with equal throughput. MapReduce, in contrast, places a

significant burden on developers, forcing them to reason

about locality, and imposing a high cost for off-rack data

transport. Sorting inherently breaks data parallelism; no

initial data placement obviates the need for data move-

ment. This makes it a poor match for MapReduce-

and Hadoop-class systems and explains the large effi-

ciency gap between FDS MinuteSort performance and

that of the current Daytona MinuteSort record-holder:

Yahoo!’s Hadoop system sorted 500GB in 59 seconds,

and 1,000GB in 62 seconds, using 1,406 machines and

5,624 disks.

FDS supports data replication for failure recovery.

However, to expose maximum disk bandwidth for the

sort benchmark, we used an unreplicated cluster: both

the original input and final output were single-replicated.

2.1 The FDS API

In FDS, data is logically stored in blobs. A blob is a

byte sequence named with a 128-bit GUID. The GUID

can either be selected by the application or assigned ran-

domly by the system. Blobs can be any length, limited in

size only by the system’s storage capacity. Reads from

and writes to a blob are done in units called tracts. Each

tract within a blob is numbered sequentially starting from

0. Tracts in FDS are 8MB (223 bytes). This size was se-

lected, in part, because it amortizes the cost of disk seek

over enough data to make the seek cost negligible. With

disks we tested, reading and writing 8MB units in ran-

dom locations on the disk achieved similar performance

to sequential read and write performance in the same ar-

eas of the disk. (Regardless of access pattern, outer disk

tracks exhibit better performance than inner tracks due to

the greater linear speed of the disk platter past the head.)

The FDS API is relatively narrow and straightforward.

It primarily consists of:

• CreateBlob(UINT128 blobGuid) (returns

a blob handle)

• OpenBlob(UINT128 blobGuid) (returns a

blob handle)

• CloseBlob(UINT128 blobGuid)

• DeleteBlob(UINT128 blobGuid)

Blob handles have the following members:

• GetBlobSize()

• ExtendBlobSize(UINT64

numberOfTracts)5

• WriteTract(UINT64 tractNumber,

BYTE *buf, UINT32 length)

• ReadTract(UINT64 tractNumber, BYTE

*buf, UINT32 length)

• GetSimultaneousLimit()

These are simplified versions of the actual function

prototypes; parameters and return values related to er-

ror handling have been elided. In addition, each func-

tion takes a callback function (and associated context

pointer). All calls in FDS, including ReadTract and

WriteTract, are non-blocking. The FDS client-side

library invokes the application’s callback when the op-

eration completes. The callback functions are required

to be re-entrant, as each call is performed on its own

thread and callback calls may overlap—that is, Tract 2

may arrive before the user’s callback has finished pro-

cessing Tract 1. Tracts reads are not guaranteed to arrive

in order of issue.

Such a non-blocking API is required to achieve good

performance. A hypothetical blocking version of Read-

Tract would encourage applications to issue requests se-

rially, leaving a node’s link mostly idle. By spread-

ing a blob’s tracts over many tractservers (as described

in Section 2.2) and issuing many requests in parallel,

many tractservers can begin reading data off disk and

transferring it back to a processing node in parallel.

In addition, deep read-ahead allows a tract to be read

off disk into the tractserver’s cache while the previous

one is being transferred over the network. The FDS

API GetSimultaneousLimit() tells the applica-

tion how many reads and writes it should have out-

standing at once. Typical FDS applications initialize a

5Blob metadata specifies precise file length in byte increments.

2



semaphore with this value, down the semaphore before

issuing each read (e.g., in a loop over every tract in a

blob), and up it in the read completion callback.

2.2 Data Placement

A key issue in parallel storage systems is data place-

ment and rendezvous, that is: how does a writer decide

which server to use when writing data? How does a

reader find data that has been previously written by a

writer?

Many existing systems solve this problem centrally

using a metadata server. Writers contact the metadata

server to find out where to write a new block; the meta-

data server picks a data server, durably stores that de-

cision and returns it to the writer. Readers contact the

metadata server to find out which servers store the extent

to be read. This method has the advantage of allowing

maximum flexibility of data placement and visibility into

the system’s state. However, it has drawbacks: the meta-

data server is on the critical path for all reads and writes,

making it a centralized bottleneck. Since it is also central

point of failure, such metadata servers are typically im-

plemented using a replicated state machine using a con-

sensus protocol.

In FDS, we took a different approach. While we do

have a metadata server, its role during normal operations

is simple and limited: collect a list of the system’s ac-

tive tractservers and distribute information about them to

clients.6 We call this list the tract locator table, or TLT.

For clarity of explanation, assume for now that the TLT

is simply a list of the tractservers in the system. The or-

der is random, but consistent; that is, the metadata server

randomizes the server list once at cluster initialization,

then gives out identical lists to every client.

When a client starts, it first retrieves the TLT from the

metadata server. When it wants to read or write a tract,

it first computes a tract locator. The simplest tract lo-

cator is the sum of the 128-bit blob GUID to be read

and the 64-bit tract number to be read, modulo the num-

ber of entries in the TLT. Indexing the tract locator into

the TLT yields the tractserver to which that tract read or

write should be issued. The read and write requests con-

tain the full blob GUID and tract number and (in the case

of writes) the data payload. Readers can find the data

written by earlier writers because the process of finding a

tractserver is deterministic: as long as they have the same

TLT as the writer when it wrote the tract, a reader’s TLT

lookup will point to the same tractserver as the writer’s

did.

6The FDS metadata server is also involved in failure recovery

when a tractserver fails. Replication and failure recovery in FDS are

beyond the scope of this paper.

Note that the TLT does not contain complete infor-

mation about the location of individual tracts in the

system. It only contains information about classes of

tracts. Since it changes only in response to cluster

reconfiguration—not individual reads and writes—it can

be cached by clients for a long time.7 Its size (in the

simple implementation described so far) is proportional

to the number of tractservers in the system (hundreds, or

thousands), not the number of tracts stored (millions or

billions). In addition, because the tractservers remember

their position in the table, the metadata stores no durable

state; in case of a metadata server failure, the TLT is re-

constructed by contacting each tractserver.8 The TLT is

not modified by reads and writes; the only way to deter-

mine if a tract exists is to contact the tractserver respon-

sible for it.

Per-blob metadata, such as blob length and permis-

sions, are stored in a special tract (“tract -1”) of each

blob. Clients find a blob’s metadata using the same

method for finding data, using the TLT. Thus per-

blob metadata management is as distributed as blob

data storage. Distributed metadata is a particular ad-

vantage for atomic blob operations that require seri-

alization to avoid inconsistency (e.g. CreateBlob,

ExtendBlobSize). Even if thousands of clients are

requesting atomic operations on blobs simultaneously,

operations that can be parallelized (by virtue of referring

to different blobs) are likely to be serviced in parallel by

independent tractservers.

2.2.1 Avoiding client convoys

One disadvantage of the simple scheme as described

is that there are likely to be unwanted correlations intro-

duced when multiple clients are running in parallel. For

example, consider 100 clients, each of which begins a

long series of sequential writes to a blob whose GUID is

simply the node’s ID (from 0 to 99). The FDS simultane-

ous read limit might be 50. In this case, even if the FDS

cluster has thousands of tractservers, the 100 clients will

end up using only 150 of those servers in lockstep, de-

spite running on a system that has sufficient capacity for

dozens of tractservers to be serving each client. For this

reason, the actual tract locator we use is the tract number

plus the SHA-1 hash of the blob’s GUID. Hashing the

GUID has the effect of deterministically “randomizing”

each blob’s starting point in the table, ensuring clients

better exploit the available parallelism.

While a TLT could be a simple permutation of the

server list, the actual algorithm we use in FDS is slightly

7In the event of disk failure, the cache is invalidated; details are

beyond the scope of this paper.
8Details of FDS’ method for recovering from metadata server fail-

ure are beyond the scope of this paper.

3



more complex. A simple permutation would still cause

unwanted correlations, e.g., every client would write to

tractserver 54 only after writing to tractserver 191. If

one tractserver falls behind, readers will bunch up in its

queue and become synchronized. To prevent this, our

TLT is actually a concatenation of 20 independent per-

mutations of the server list. It is important to concatenate

independent permutations rather than shuffle 20 copies

of the list to ensure that a writer that stops writing mid-

way through the list will use each tractserver for the same

number of tract writes. Uniform utilization is a key strat-

egy to prevent stragglers in applications that do long se-

quential reads and writes.

In the case of non-uniform disk speeds, the TLT is

weighted so that different tractservers appear in propor-

tion to the measured speed of the disk.

Bringing all these optimizations together, our meta-

data scheme has a number of nice properties:

• The metadata server is only in the critical path

when a client process starts. This is the key fac-

tor that allows us to practically keep tract sizes as

low as 8MB. (Systems such as GFS [4] require

larger extents partially to reduce load on the meta-

data server.)

• The TLT can be cached long-term since it only

changes on cluster configuration, not each read and

write, eliminating all traffic to the metadata server

in a running system under normal conditions.

• The metadata server stores only metadata about the

hardware configuration, not about files. Since it is

not used heavily, the metadata server can be both

lightweight and simple.

• Since TLT contains random permutations of the list

of tractservers, sequential reads and writes by inde-

pendent clients are highly likely to utilize all tract-

servers uniformly.

• The TLTs independent permutations prevent clients

from organizing into synchronized convoys.

2.3 Network

Each computer is networked using two 10 Gbps Ether-

net ports interconnected with a full bisection bandwidth

CLOS network [5].

The network has two layers, “spine” routers and

“TORs” (Top-Of-Rack routers), each of which is a

64×10Gbps Blade G8264 switch.

Our network has eight spines and fourteen TORs.

Each TOR has a 40Gbps connection to each spine, giv-

ing it 320 Gbps total bandwidth to the spine. The other

320 Gbps of TOR bandwidth attach to NICs.

The TORs load-balance traffic to the spine using

ECMP (equal-cost multipath routing), selecting a spine

route for each TCP flow based on the hash of the TCP

destination. This gives the network a full bisection band-

width without the need for global scheduling, but the

guarantee is only stochastic across multiple flows. FDS

nodes, by design, send a large number of short flows to

a broad set of destinations; this satisfies the stochastic

requirement, balancing traffic from a TOR to the spine

across the eight spine switches. The switches are running

the manufacturer’s OS (BladeOS v6.8.4); FDS’ only re-

quirement is topology.

The NICs are configured with large-send offload,

receive-side scaling, and 9K (jumbo) Ethernet frames.

The host OS is configured with a reduced MinRTO [6]

to quickly recover from loss.

By design, at peak load, all the FDS nodes send at the

same time. Because the flows are short and bursty, TCP’s

bandwidth allocation algorithms perform poorly. The re-

sult is collisions, high packet loss, and a devastating ef-

fect on performance. Because the network has full bisec-

tion bandwidth, however, these collisions mostly occur

at the receiver, giving the FDS software an opportunity

to prevent them.

FDS does so with a hybrid request-to-send/clear-to-

send (RTS/CTS) flow-scheduling system. Large mes-

sages are queued at the sender, and the receiver is notified

with an RTS. The receiver limits the number of CTSs it

allows outstanding, thus limiting the number of senders

competing for its receive bandwidth. Small messages,

such as control messages and RTS/CTS, are delivered

over a different TCP flow from the large messages, re-

ducing latency by enabling them to bypass long queues.

FDS network message sizes are bimodal: large messages

are almost all about 8 MB, and most other messages are

1 KB or smaller.

With each node reading 20 Gbps, a zero-copy archi-

tecture is mandatory. FDS’ data interfaces pass the zero-

copy model all the way to the application. (For clarity,

Section 2.1 showed conventional one-copy versions of

WriteTract and ReadTract interfaces; but our ap-

plications use the preferred zero-copy versions.)

The standard Windows C runtime library’s malloc

services large memory allocations by passing

them through to the operating system’s underlying

VirtualAlloc(). FDS does frequent large memory

allocations so the default general-purpose behavior

incurs substantial page fault costs. Thus for large

mallocs, FDS exclusively uses application buffer pools.

3 Sort algorithm

The sort application consists of one distinguished head

process and n worker processes. The input is given in a

4



Figure 1: Read phase. In its reader role, each sort pro-

cess (a) streams tracts, gathered by FDS from many tract-

servers, from its part of the input file. It bins the records,

and (b) transmits the bins to other sort processes acting

the the bucket-receiver role.

Figure 2: Write phase. After completing its sort, each

bucket-receiver streams tracts to its output file; these

tracts are scattered by FDS across the tractservers.

single FDS blob (file), from which each worker reads a

separate subset of tracts. Figures 1a, 1b, and 2 show a

coarse overview of the sort algorithm.

In the first read phase, each sort process performs two

tasks simultaneously. First (Figure 1a), each sort pro-

cess reads tracts from its assigned region of the input

file. Simultaneously (Figure 1b), as each tract arrives

(in arbitrary order), the sort process shuffles the tract’s

records into output bins according to the bucketing table.

As each bin fills, the process sends the bin to the appro-

priate “bucket-receiver”, some destination sort process.

The buckets form an ordered partition of the keyspace.

During the read phase, each process acts in both roles

(reader-binner and bucket-receiver) simultaneously.

Each bin is 8MB, the same size as an FDS tract, to

make network scheduling more consistent across the ag-

gregate system. We have not determined whether perfor-

mance is sensitive to this value.

In the second phase, the write phase (Figure 2), each

sort process sorts its bucket and writes it to a separate

output blob (file). The sorted result is distributed among

n files.

3.1 Setup

When the sort processes start, each one fetches the

FDS TLT from the central metadata server. Each pro-

cess opens the blob and learns its length. Proceeding

simultaneously, each process deterministically computes

a global partitioning of the blob extent, into:

• one initial assignment for each sort process: the first

k tracts are an initial work assignment for process 0;

the next k for process 1, and so on.

• dynamic work queue: all remaining tracts comprise

the dynamic work queue

Each process computes the same sets. Every process

notes its own initial assignment; the head process also

records the dynamic work queue, which it will dole out

later to the other processes.

The head process’ first task is to read 1.5 million

records: 6000 records from each of 256 tracts selected

uniformly at random from the input blob. From the sam-

ples it computes the key distribution and hence the as-

signment of key ranges to buckets. The assignment is

weighted to account for statically-observed imbalances

in hardware nodes’ write speeds, to avoid stragglers in

the write phase. When the head process has measured

the entire sampling set, it unicasts the computed distri-

bution to all the other sort processes.

To maximize utilization, the head process’ sampling

task commences simultaneously with the bulk reading

work of the other processes (Section 3.2). Until the

bucket distribution becomes available, the other pro-

cesses buffer the data they have started reading.

3.2 Read phase

At system start, every sort process immediately begins

issuing reads for tracts in its assignment (the head pro-

cess continues reading its assignment after it completes

reading its sampling set). Every tract read is buffered

in the sort process’ memory until the process learns the

bucket partitioning from the head process. At that point,

the process creates one bin for each remote bucket, and

begins binning the read tract data into those bins. As each

bin fills, it is sent to the remote sort process responsible

for the bucket, and a fresh bin begun.

3.2.1 Disk stragglers

One potential source of stragglers in the read phase is

slow disks. The sort application typically does not see

the effect of slow disks because FDS biases the distribu-

tion of tracts to tractservers according to disk speed (see

Section 2.2).

5



3.2.2 Reader-binner network stragglers

Another source of stragglers are slow read processes.

A read process may be slow because it is running on a

machine with poor network read performance, although

in our record run we chose to avoid this cause by choice

of process-to-machine assignments. Read processes may

also be slow due to being unlucky in disk read queues,

unlucky in network queues, or a process may be so un-

lucky as to need to send a disproportionately large num-

ber of bins to a single bucket, and hence unable to exploit

network cross-section bandwidth. In theory, with large

n, these sources of unluckiness regress to the mean; in

practice, we saw as much as 15 seconds of straggle from

unexplained sources.

Fortunately, all sources of straggle in the read phase,

regardless of source, are addressed by a single mecha-

nism, dynamic work allocation. As each sort process

nears completion of its read assignments, the process

queries the head process for additional assignments; the

head process doles out assignments from the dynamic

work queue. The dynamic work-assignment scheme

maximizes use of sort processes of varying performance

while preventing stragglers. Unlike sort systems that

read from local disks, FDS’ system organization makes it

possible to dynamically allocate binning work: any sort

process can read any tract from the input file, without

locality constraints.

The choice of size of work allocation affects perfor-

mance. Small assignments are beneficial because they

reduce the impact of stragglers: a slow machine given a

small assignment introduces only a small amount of de-

lay before the read phase ends. On the other hand, hand-

ing out many small assignments increases the burden on

the head process. Our system uses a “Zeno allocator”:

the allocation size is the amount of remaining work di-

vided by the number of sort processes, constrained by

maximum and minimum bounds. During the early part

of the read phase, maximum-size allocations are handed

out. As the phase nears its end, as the remaining work

queue drains, smaller and smaller shares are handed out,

until the tail of the queue is drained with minimum-size

allocations. The maximum bound presents very little

load on the head process, but prevents giving out all the

work up front; that is, it keeps allocation dynamic. The

minimum bound is chosen to avoid overwhelming the

head process at the tail of the phase.

3.2.3 Bucket-receiver network stragglers

Sort processes acting the bucket-receiver role can gen-

erate stragglers for the same reasons as in the reader-

binner role. Stable causes (machines that consistently

receive slowly) could be addressed by static bucket dis-

tribution bias; instead, we simply did not run sort pro-

cesses on slow machines. Even unluckiness is addressed

to some extent by the dynamic work allocation: buck-

eters using the network heavily use more of the NIC read

bandwidth, and hence starve the reader-binner role, but

that starvation is made mostly harmless by dynamic work

allocation.

3.2.4 Read phase termination

At the end of the first phase, the head sort process

hands out the last track assignment. As each sort pro-

cess returns for additional assignments, it learns that the

dynamic work queue is empty. From that point, the pro-

cess completes its remaining read assignments, binning

records and transmitting bins to remote buckets. When a

process finishes binning its last tract, it sends a “last-bin”

message to every other bucket.

3.2.5 Saturating network read bandwidth

Note that during the read phase, every sort process is

reading from the network twice as much data as it writes:

one read from disk and a second read of bins incoming

to its bucket, versus one write for outgoing buckets.

Therefore, it is important to maximally utilize all

reader processes’ NIC read bandwidth. The startup phase

is designed to maximize read bandwidth utilization: each

process begins reading data immediately, even before it

knows where the data should go. This strategy imme-

diately saturates the available read bandwidth with FDS

file read activity. As the phase progresses, bin transfers

come to occupy about half of the read bandwidth. At the

tail of the phase, as the file reads end, buffered bins can

absorb the remaining read bandwidth.

It may seem surprising that we initially create big

backlogs of buffered data at the beginning of the phase.

However, the network write bandwidth required to drain

those buffers is abundant, and while the read bandwidth

required to absorb them into buckets is indeed the scarce

resource, that resource is being well-utilized throughout

the phase.

3.3 Write phase

The “last-bin” messages form a barrier. Once each

sort process receivesn last-bin messages, one from every

other sort process, it knows that no further records are

destined for its bucket; it may begin writing the sorted

data in its bucket back to disk (Figure 2).

3.3.1 Overlapped sort

A naı̈ve writer implementation would wait for the bar-

rier, quicksort all of the data in its bucket, then stream

the sorted bucket to its place on disk. Quicksorting the

6



Figure 3: Incoming bins pour into the bucket. As each

subbucket is filled, an asynchronous thread quicksorts it

while the bucket continues to fill.

data sequentially (after read and before write) introduces

an unacceptable delay: 16 seconds out of our 60-second

budget. Therefore, it is vital to overlap partial sorts with

the read phase.

Our first attempt to introduce overlap was to maintain

buckets as a heap, heap-inserting each record as bins ar-

rive. This strategy proved to introduce such a high CPU

cost during the read phase that CPU became the bottle-

neck resource. We conjecture that this is because the

heap traversals wreaked havoc on the CPU’s memory

cache, but we did not verify that hypothesis.

Figure 3 illustrates our approach. During the read

phase at one process, incoming bins “pour” records into

the bucket. The bucket is divided into “subbuckets” of

250MB (thin horizontal lines). As each subbucket fills,

an asynchronous thread (grey arrows) quicksorts the sub-

bucket.

Once the last subbucket is quicksorted, records from

all of the subbuckets are merged into buffers that are is-

sued as write requests to the output file for the bucket.

Figure 4 illustrates the merge process: one pointer per

subbucket tracks the next record in the subbucket. Out-

put buffers are filled sequentially, one record at a time, by

selecting the minimum record under one of the pointers.

This algorithm minimizes the latency between the

phase barrier (when the last “last-bin” message arrives)

and the point at which the process can issue its first out-

put tract write to FDS storage. Small subbuckets are bet-

ter for reducing the latency, as they reduce the size of the

final quicksort, the only one on the critical path.

On the other hand, small subbuckets mean more sub-

buckets, increasing the amount of work performed for

every record while merging subbuckets to write. At

some threshold, subbuckets are so numerous that CPU

time traversing the merge pointers becomes a write bot-

Figure 4: A merge pass repeatedly selects the lowest-

valued record from among all subbuckets, creating tract-

sized output buffers to write to the file system.

tleneck.9 The choice of 250MB subbuckets reflects an

informal empirical sensitivity analysis that prevents sort

process CPU from becoming a bottleneck during the

write phase. At this size, we see about 700–1500ms la-

tency due to quicksorting the last subbucket.10

3.3.2 Disk stragglers

As in the read phase, variations in tractserver disk per-

formance may lead to stragglers. And as in the read

phase, this problem is solved transparently in FDS by

biasing the tract distribution using nominal disk speed.

3.4 Handling input larger than memory

The algorithm described above, like many algorithms

used for MinuteSort, assumes that the entire input fits

into the aggregate main memory of the sort nodes. A

straightforward extension to a two-pass sort allows sort-

ing of datasets of arbitrary size (up to the cluster’s total

disk capacity).

The main change required is an increase in the number

of buckets so that the size of any single bucket does not

exceed the memory on a compute node. After the input

size is determined, the number of buckets is computed as

the larger of the following two quantities:

9Our parameters give about 24 pointers per bucket, so we examine

them linearly; perhaps CPU time could be reduced by maintaining the

pointers in a heap. We did not evaluate this alternative.
10Perhaps dynamically reducing the subbucket size during the sort,

analogous to the Zeno work allocation scheme above, could reduce

the size of the last subbucket while keeping the number of subbuckets

small. We did not evaluate this alternative.

7



• A number of buckets that ensures the size of any

single bucket is smaller than a compute node’s main

memory (with high probability); and

• The number of sort processes. (Having fewer buck-

ets than sort processes gives up parallelism.)

An intermediate blob is created for each bucket. Dur-

ing the first pass through the input, each sort node

streams data in from its portion of the total input blob

and writes each record to the appropriate intermediate

blob. The memory used by each sort node in this step is

the number of output buckets times the size of the per-

bucket output buffer used to batch records into tracts be-

fore writing.

After this pass is complete, each bucket is sorted seri-

ally: a bucket’s contents are read from a blob into a sin-

gle sort node’s memory, sorted, and written to an output

blob. The hybrid qsort and mergesort algorithm shown

in Figure 3 is still useful for this step. Bucket sorting is

done in parallel by a large number of sort nodes. Dy-

namic allocation of buckets to sort nodes prevents strag-

glers.

As with MinuteSort, the bucket boundaries can either

be assumed uniform (for Indy) or based on input sam-

pling (for Daytona). The amount of input sampling re-

quired for even buckets goes up as the number of buck-

ets goes up; our algorithm selects a number of samples

proportional to input size. As with our MinuteSort al-

gorithm, a safety margin is desirable between expected

bucket size and maximum possible bucket size to avoid

overflow due to nonuniformity in the input.

4 System configuration

This section provides specific details of our system

configuration for the reported result.

4.1 Computational hardware

During our record runs, the FDS cluster employed

computational hardware as enumerated in Table 1.

There’s nothing profound or deliberate about our selec-

tion of hardware; we bodged it together from our own

budget (bought), surplus machines (begged), and other

groups’ hardware pressed into service temporarily (bor-

rowed). As we introduced a class of machines to the clus-

ter, we characterized its performance, and assigned it a

role to maximize benefit to the sort. Because FDS elim-

inates disk locality considerations, new machines can be

without concern for intra-node resource balance.

The NICs consist of 205 Intel X520 dual-port 10Gbps

Ethernet NIC cards and 50 HP NC522SFP dual-port

10Gbps Ethernet NIC cards. (When we say “NIC” in this

paper, we are referring to one of the two ports on a dual-

port NIC card.) Some machines can not do enough useful

work to saturate both NICs, so the table only reports the

number of “connected” NIC ports, those occupying ports

in the TORs (Section 4.2).

4.2 Networking hardware

As described in Section 2.3, the compute hardware

is interconnected by a CLOS-topology full-bandwidth

interconnect. Twenty-two Blade Rackswitch G8264

64×10 Gbps Ethernet switches serve as eight spine

switches and 14 TORs.

The computers are all also connected by a 1 Gbps

management link, but no application or filesystem data

traverses that link.

4.3 Formal report

Table 2 records the formal benchmark output of our

test runs.

5 Summary

FDS is a general-purpose scalable parallel blob store

that exploits a full-bandwidth interconnect to expose the

entire cluster’s disk bandwidth to remote clients. The

sort performance results in this paper demonstrate the

power of the architecture: in both Daytona and Indy

sorts, the system reads the data remotely to the sort ma-

chines, sorts the data across the network, and writes it

remotely back to storage.

Performant remote file access imparts a flexibility ab-

sent in contemporary distributed storage systems. Be-

yond sort, FDS supports a broad variety of scalable large-

data applications. It does so without demanding that

cluster nodes balance compute and disk performance;

more importantly, it does so without demanding that ap-

plications observe locality constraints.

References

[1] APACHE. Hadoop, 2008. http://hadoop.apache.org/.

[2] CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAMSEY, B.,

SHAKIB, D., WEAVER, S., AND ZHOU, J. Scope: easy and effi-

cient parallel processing of massive data sets. Proc. VLDB Endow.

1, 2 (Aug. 2008), 1265–1276.

[3] DEAN, J., AND GHEMAWAT, S. Mapreduce: simplified data pro-

cessing on large clusters. In Proceedings of the 6th conference

on Symposium on Opearting Systems Design & Implementation -

Volume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX Asso-

ciation, pp. 10–10.

[4] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google

file system. In Proceedings of the nineteenth ACM symposium on

Operating systems principles (New York, NY, USA, 2003), SOSP

’03, ACM, pp. 29–43.

8



quantity Machine class connected data disks disk type RAM cores source

10 Gbps NICs GB

metadata server

1 HP DL 360 1 24 2 begged

tractservers

21 HP DL 326 2 16 10K RPM SAS 48 8 bought, begged

10 HP DL 326 2 11 7,200 RPM SATA 12 4 bought

3 HP DL 326 2 10 7,200 RPM SATA 12 4 bought

1 HP DL 326 2 9 7,200 RPM SATA 12 4 bought

76 HP DL 360 1 5 10K RPM SAS 24 2 begged

24 HP DL 380 2 7 10K RPM SAS 24 4 begged

sort application

14 Dell PowerEdge 2 24 8 bought

27 HP DL 316 2 48 8 borrowed

61 HP DL 326 2 48 8 borrowed

18 Silicon Mechanics 2 96 12 borrowed

Table 1: Enumeration of hardware resources

Indy Daytona

Data size 1470 GB 1401 GB

median 59392 ms 59045 ms

runs 15 15

min 57957 ms 57353 ms

max 66892 ms 63110 ms

checksum 1b617e245d3d92c55 1a187b1de8697149e

duplicate keys 0 0

Table 2: Formal benchmark data

[5] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,

KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-

GUPTA, S. Vl2: a scalable and flexible data center network. In Pro-

ceedings of the ACM SIGCOMM 2009 conference on Data com-

munication (New York, NY, USA, 2009), SIGCOMM ’09, ACM,

pp. 51–62.

[6] MICROSOFT. MinRTO Hotfix. http://support.

microsoft.com/kb/2472264.

9


