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Abstract. Typical malware classification methods analyze unknown files
in isolation. However, this ignores valuable relationships between mal-
ware files, such as containment in a zip archive, dropping, or download-
ing. We present a new malware classification system based on a graph
induced by file relationships, and, as a proof of concept, analyze contain-
ment relationships, for which we have much available data. However our
methodology is general, relying only on an initial estimate for some of the
files in our data and on propagating information along the edges of the
graph. It can thus be applied to other types of file relationships. We show
that since malicious files are often included in multiple malware contain-
ers, the system’s detection accuracy can be significantly improved, par-
ticularly at low false positive rates which are the main operating points
for automated malware classifiers. For example at a false positive rate
of 0.2%, the false negative rate decreases from 42.1% to 15.2%. Finally,
the new system is highly scalable; our basic implementation can learn
good classifiers from a large, bipartite graph including over 719 thousand
containers and 3.4 million files in a total of 16 minutes.
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1 Introduction

Symantec recently observed over 903 million files installed on a sample of 47
million computers [3]. While many of these single instance files are benign, a sig-
nificant percentage are malicious. Malicious single instance files have two sources,
polymorphic and metamorphic malware which installs a unique instance of the
attack on each new computer, while legitimate software sometimes creates a
unique file for each installation. Given the shear volume, human analysts can-
not investigate each new file detected in the wild, and the anti-malware (AM)
companies cannot solve the problem by hiring more analysts. Since malware
authors often rely on automation to avoid detection, commercial anti-malware
companies also need to use automation to detect new malware. Ideally, the most
automatic and effective way to solve the problem would be to have secure systems
that would not allow the execution of malicious code. However this paradigm is
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currently far from realistic while malware proliferation is already a sad reality.
Since malware is such a significant problem, researchers and industry have de-
voted much effort towards automated detection [9]. The main issue with these
systems is that the false positive (FP) rates (i.e. when a benign file is predicted
as malicious) are too high for widespread deployment. An acceptable FP rate for
completely automated malware detection would be no more than 0.01%. For AM
systems, FPs are much worse than false negatives (FNs) since cleaning (i.e. re-
moving) FPs can prevent a legitimate application, or even the operating system,
from running. Given this risk, most AM companies seek first to do no harm.

Current techniques for building malware classifiers lead to prohibitively high
FN rates (e.g. > 99%) when operating at an FP rate of 0.01%. To truly combat
today’s malware, we need to look from new sources of information. For example, a
system that uses both the static structure of a file as well as information about its
runtime behavior is likely to perform much better than systems that use only one
of these sources. In this paper we use a different source of information, namely
file relationships, and demonstrate that even a very simple way of incorporating
this source into the classifier is very effective.

Typical approaches [12, 20] focus on classifying files in isolation. Recently,
researchers have proposed using a file’s reputation [3] in relationship to the rep-
utations of all computers which report the file to improve the detection rate.
Other authors [22] rely on co-occurrences of files on a set of client machines to
establish threats such as trojan downloaders. In this work, we take a different ap-
proach to improving a malware classifier by learning a file’s reputation based on
its relationships with other files as we determine them through Microsoft’s sub-
mission service. We empirically show improved classification accuracy at very low
FP rates. Furthermore, we sidestep privacy issues that affect other approaches.

File relationships should contain useful information. Clearly it is enough to
show this for a special case. In this paper we only consider containment relation-
ships, the most prevalent type in our data. However, our algorithm is quite gen-
eral and could be applied to other types of file relationships. Containment arises
when malware is distributed in containers such as .zip or .rar files. We also ignore
containment relationships among containers (archives containing archives) and
only form a bipartite graph of files and containers. After these restrictions, our
database has more than four million containers with more than one executable
file inside them and exploiting this information may substantially improve over
a classifier that ignores it.

Our method starts by training a baseline classifier to individually predict
the probability that a file is malicious. This classifier is trained with over 2.6
million labeled files using logistic regression. This classifier, though simple, uses
some very strong features coming from an actual execution of the file in a vir-
tual machine, and is very fast during training and prediction. Our method then
propagates this baseline prediction and other information from files to contain-
ers using the file relationship graph. It then trains a container classifier which
assigns a probability to each archive. Here we investigate three ways of integrat-
ing information from the neighboring vertices. Finally, we significantly improve
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the classification accuracy on individual files by training a relationship classifier,
again using logistic regression, which considers the malware probabilities associ-
ated with all archives containing the file in addition to the file’s baseline score.
Experiments on a large collection of over 719 thousand archives including more
than 3.4 million malicious and benign files show that the relationship classifier
significantly outperforms the baseline classifier particularly at very low FP rates.
For example, at an FP rate of 0.2%, the FN rate decreases from 42.1% to 15.2%.

In Section 2, we provide some background on using machine learning for
malware classification. Our new container classifier and file relationship classifier
are described in detail in Section 3. An overview of the system is presented in
Section 4, and experimental results are given in Section 5. In Section 6, we discuss
the assumptions of our method, and the related work is outlined in Section 7.
Finally, we conclude the paper in Section 8. Our main contributions include:

– A large-scale system to classify unknown files based on file relationships.
– A comparison of three methods to classify file containers.
– A new algorithm for significantly improving a file’s baseline prediction.
– An evaluation of our system on a large collection of over 719 thousand con-

tainers and 3.4 million files, where we demonstrate that it is highly scalable.
– A convincing empirical comparison based on performance at small FP rates.

2 Background and Notation

Most modern anti-malware software follows a rule-based method to detect mal-
ware usually referred to as “signatures”. Recently, researchers [9] have proposed
using machine learning classifiers to detect malware. Classifiers built from a
set of labeled malicious and benign programs can generalize well to previously
unseen but similar programs. Here we focus on linear logistic classifiers because:

– They allow our experimental results to be directly interpretable when the
classifier is employed in the real world. In the real world we do not know
the proportion of actual malware files. Remarkably, as we show later in the
paper, the conclusions we draw from logistic regression remain valid.

– Our system builds on top of a baseline classifier that works on individual
files. This classifier is itself based on logistic regression and we exploit this
fact to provide an initial hint to our system.

– Finally a logistic classifier can make predictions very fast, which is highly
desirable for the scalability of our system.

For each file xi we would like to classify, we construct a vector of real numbers
Φ(xi) ∈ Rd that contains measurements, also known as features, regarding the
file xi. Described in Section 4.2, one of the features we use for our baseline
classifier consists of tri-grams of system calls. In general we assume that the
mapping Φ(·), that takes an executable and returns a vector in Rd, is given to
us. In typical cases, to get a descriptive enough representation of xi, d is on
the order of hundreds of thousands but for each individual xi, Φ(xi) is sparse,
meaning that only few (on the order of a hundreds or a few thousand) of the
entries in this vector are non-zero.
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2.1 Classification with Logistic Regression

Logistic regression assumes that for each file xi we can assign a score s(xi) that
is a linear combination of the feature values for xi, or more formally s(xi) =∑d

j=0 wj · Φj(xi) = w⊤Φ(xi) for some, yet to be determined, weights w where

Φ0(xi) = 1, w0 is the bias term, and a⊤b denotes the inner product between
vectors a and b. This score is converted into a probability using the logistic link
function g(t) = et

1+et . Letting yi be a random variable that is 1 if the file xi is
malware, and 0 otherwise, logistic regression assumes

p(yi = 1|xi) = g(s(xi)) =
ew

⊤Φ(xi)

1 + ew⊤Φ(xi)
. (1)

Solving (1) for the score s(xi) we find that

s(xi) = w⊤Φ(xi) = log
p(yi = 1|xi)

1− p(yi = 1|xi)
= log

p(yi = 1|xi)

p(yi = 0|xi)
.

The right hand side is commonly referred to as the log odds of xi being malware.
We will return to this relation in Sections 3.5 and 3.6. Finally, finding the opti-
mal weight vector w from a training set of files for which human analysts have
provided determinations (i.e. whether the file is truly malware or not), is a well
studied convex optimization problem for which extremely fast algorithms exist.

3 Beyond Individual Prediction

In this section, we develop new methods whose goal is to improve malware
classification particularly at low FP rates. We begin by discussing two problems
associated with typical classification algorithms and then propose using a file’s
relationships to overcome these issues. After considering an ideal, but impractical
solution, we propose a new set of algorithms to achieve a similar effect.

3.1 Some Problems of the Standard Approach

First we argue that current approaches to malware classification have a lot of
room for improvement if we consider how an analyst would go about determin-
ing whether a file is malware or not. Malicious files do not exist in a vacuum.
Malware is often distributed in an archive and this reflects a relationship among
these files. The exact meaning of the relationship varies from archive to archive.
Some typical examples include an executable file and its dependencies (such as
dynamically linked libraries), files created by the same author, or components of
a large project. In any case, this is precious information that is not captured in
the framework of individually predicting on each file, but is routinely leveraged
by malware analysts. That is, approaches based on individual prediction ignore
the relationships of the file under consideration to other related files and their
determinations. This is not just a matter of extending the feature mapping Φ(·)
to include features from the related files. A related file itself may not reveal
anything alarming but it may do so if one considers its own related files. Later
in Section 5.1, we motivate this idea based on two particular examples.
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3.2 Taking Context into Account

We propose to overcome the shortcomings of individual malware classification
with a two step procedure which we describe in Sections 3.5 and 3.6. Before that,
we introduce some terminology, and describe an ideal but impractical approach.
We represent the file relationships with a graph in which the vertices correspond
to files and the edges correspond to containment relationships. Even though con-
tainers can contain other containers, here we ignore this and focus on a bipartite
graph between containers and regular files. We have an additional determination
“malware container” which is given to containers that contain at least one file
determined to be “malware”. Of course, not all vertices have a determination of
“malware” or “benign”, and we would like to propagate information along the
graph so that we can assign each vertex its own probability that it is malicious.

We immediately point out that such context information cannot be easily
made available to anti-malware software running on a client, and facilitating
this functionality to a client is beyond the scope of this paper. Our focus is to
demonstrate the empirical gains we observe when this information is available
and utilized on the backend with an approach that is relatively easy to imple-
ment and highly scalable. The method we advocate however, is inspired by an
impractical solution. We nevertheless detail this impractical solution in the next
section to explicate the ideas that lead to our scalable algorithm.

3.3 An Impractical Solution

To assign a malware probability to every file we assume we have a baseline mal-
ware classifier that employs the approach of Section 2 to assign a score w⊤Φ(xi),
and hence a probability via the logistic link function, to each executable file in
our data. For the files already determined to be malware or benign we can de-
fine the maliciousness level to be the score from the baseline malware classifier.
For all other files for which we have no determination we can formulate a set
of consistency equations according to a very simple principle: we can obtain the
maliciousness level of a file by averaging the maliciousness levels, of its related
files, which of course are its neighbors in the graph. This definition treats mali-
ciousness as a fixed point. Formally, letting si denote the maliciousness level for
file i and N(i) the set of neighbors of i in the graph we have

si =

{
w⊤Φ(xi) if i is determined

1
|N(i)|

∑
j∈N(i) sj otherwise

For m files, this defines an m×m system of linear equations. Typically m is huge;
in our case m is greater than 250 million and is growing by two every second.
This immediately precludes methods such as Gauss elimination [7] which scale
as O(m3). Furthermore, the graph, and hence each equation, is also evolving
because each submission to our service can induce new relationships. Hence the
solution of the above linear system is largely of theoretical interest even if one
seeks an approximate solution using iterative methods [7].
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3.4 A Scalable Solution

The main problem with the previous solution is that it strives to be globally
consistent and enforcing this is too time-consuming. Instead we relax the re-
quirement for consistency and, to compensate for this, we make our aggregation
rule more flexible. Instead of a simple average, we compute features of the im-
mediate neighborhood of each file and find an optimal way to combine them.
Specifically, our solution involves the following steps:

– compute a “malware probability” for each container by aggregating infor-
mation from all the files it contains and the probabilities assigned to them
by our baseline malware classifier.

– compute an improved estimate of the probability of a file being malware by
aggregating malware probabilities from the archives that contain it as well
as the baseline malware classifier.

3.5 Computing Container Probabilities

A malware analyst does not have to look at the whole graph to get a rough
idea about how likely the file is to be malicious; the local neighborhood provides
most of the information. Furthermore, we observe that in order for a container
to be malicious it suffices that one of its contained files is malware. Conversely, a
container has a low malware probability only when all the contained files are not
malicious. Based on this observation we propose three “container classifier” al-
gorithms for assigning a malware probability to each container: Max neighbor,
Union bound, and Biased logistic regression.

The Max neighbor algorithm estimates the probability that an archive
is a “malware container” by the maximum of the probabilities (as given by
the baseline classifier) of any of the contained files being malware. The Union
bound makes a simple assumption: each file is independently providing evidence
about the maliciousness of the container. Hence, the probability of the container
to be benign is the product over all contained files of their probabilities of being
benign. For example, if an archive contains two files, one for which the baseline
estimate that it is malware is 0.6 and another whose estimate is 0.5 then we assign
a probability of 1− (1− 0.6)(1− 0.5) = 0.8 to the container being malware.

Biased logistic regression employs a logistic regression classifier with
an additional offset motivated by the importance of the file with the maximum
baseline probability contained in the archive:

log
pc(yi = 1|N(i))

pc(yi = 0|N(i))
= v⊤Ψ(N(i)) + v′ log

pb,max

1− pb,max
(2)

where N(i) is the set of files contained in archive i, v (vector) and v′ are the
model weights, pb,max is the maximum of the probabilities assigned to all the
files in N(i) by the baseline malware classifier, and Ψ(N(i)) is a vector of fea-
tures calculated from the files contained in archive i. This model is biasing its
prediction based on the most malicious file among i’s files, in accordance to our
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observation that a container is malicious if at least one of the contained files
is malicious. Furthermore we adjust this prior belief by a linear combination of
features, v⊤Ψ(N(i)), computed from the neighborhood of i which captures the
maliciousness levels of all of the files in the container. Most of these features
come from three simple histograms of the baseline probability estimates of the
files included in the container. The histograms are separately computed for files
which are predicted to be malicious or benign by the baseline classifier. A third
histogram is included for files for which the baseline classifier returned a proba-
bility but a label of inconclusive. For each type, we split the interval [0, 1] into
20 equally sized bins and create a histogram of the probabilities of the contained
files. Then the values of features Ψ2j and Ψ2j+1 are respectively the fraction
and the logarithm of the number of contained files whose baseline probability
estimates fall in the j-th bin. We chose these features to capture both abso-
lute and relative numbers that may affect our decision. These transformations
are relatively insensitive to manipulation of the raw numbers from adversaries.
We also include three additional features for the container classifier. The first
is the biasing feature which is the inverse of the logistic link function. Since
the baseline malware classifier is itself based on logistic regression, the biasing
feature is log(pb,max/(1 − pb,max)) where pb,max is the contained file with the
highest probability. As (pb,max) approaches 1, the biasing term becomes large
and hence overshadows any effect from v⊤Ψ(N(i)). When pb,max approaches 0,
the biasing term becomes very negative and again overshadows the effect of
v⊤Ψ(N(i)). Finally when the max probability is 0.5 the biasing term is 0. The
second additional feature is the log of the number of files in the container and
the third is the product of the first two additional features. The third additional
feature captures interactions between the number of files and the maximum file
probability in the container. The last two features were important for reducing
the number of false negatives for the container classifier. The entire container
classifier procedure is summarized in the top part of Table 1.

The main benefit of this approach is that it is extremely fast to make a
prediction for a new container. We only need to look at its contained files, and
retrieve their probabilities from our database. If a file has not been seen before,
we need to obtain its probability from the baseline malware classifier, compute
123 features from three histogram (3*20 bins and two features from each bin plus
the three additional features), and take a linear combination with the learned
vector v.

3.6 Improving a File’s Probability

Our end goal is to improve upon a system that classifies executable files indi-
vidually. In this sense, the probabilities we obtain from the container classifier is
just auxiliary information that summarizes the neighborhood of a file. Therefore
we introduce a second step where we aggregate information across the containers
in which a given file participates. Our final “relationship-based” classifier uses
a similar set of features as the container-based classifier as well as a biasing
term. However this time our prior belief reflected in the biasing term is that the
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baseline classifier is doing well most of the time, and we only want to use the
neighborhood information to learn a correction. Formally, we model the log odds
of file i being malware (yi = 1) as

log
pr(yi = 1|N(i))

pr(yi = 0|N(i))
= u⊤Ψ(N(i)) + u′ log

pb(yi = 1|xi)

pb(yi = 0|xi)
(3)

where pr is the probability according to the relationship-based classifier, pb is
the probability according to the baseline classifier, Ψ is a vector of features we
compute from the neighborhood of the file and u is a vector of weights that
optimally combines the features according to the maximum likelihood principle
and u′ is a weight for biasing term. The term u⊤Ψ(N(i)) captures the malicious-
ness level of all of the containers which include the file under consideration. This
time we derive the mapping to features Ψ by binning the probability estimates
from the container classifier into two histograms (malware, benign) for each of
the neighboring containers. If a neighbor is a new container and has not been
classified yet we simply ignore it. This is fine since, as before, the neighborhood
features will come to the rescue mostly when the baseline classifier’s prediction
is close to 0.5 and will be overshadowed by the biasing term as the baseline

classifier becomes very confident. An additional feature of log pb(yi=1|xi)
pb(yi=0|xi)

helps

to bias the model to the baseline probability. The whole procedure is shown in
Table 1. Our non-optimized implementation executes it in 16 minutes processing
719 thousand containers and 3.4 million files.

One could argue at this point that we could go back and, based on the im-
proved probability estimates from the relationship classifier, compute new prob-
abilities for archives. We could in fact iterate this procedure until it converges to
a fixed point. However it is doubtful that such a fixed point will lead to substan-
tially better generalization than our procedure. First, the fixed point integrates
information from many potentially unrelated files which are simply too far from
the file under consideration. Second, it is well known among machine learning
practitioners that treating the output of one classifier as an input to another
(aka cascading) is an extremely delicate procedure. Hence it is usually observed
that, as a function of the length of the cascade, the generalization performance
of the final output rapidly deteriorates.

4 System

This section discusses the system aspects related to training the relationship mal-
ware classifier illustrated in Figure 1. The data analyzed in this paper consists
of a very large subsample of containers and files used by Microsoft to investigate
and create signatures for a number of our commercial anti-virus products includ-
ing Microsoft Security Essentials and Forefront Endpoint Protection. Microsoft
collects suspicious files using a variety of sources including the end user, product
support, security organizations (e.g. CERT), and vendor exchange. After sub-
mission, each unknown file is automatically scanned by our AM products. Some
files are detected by the scanners, and a small subset of the undetected files
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Algorithm 1

Notation: g(z) = ez

1+ez
, t(w, ϕ, q) = w⊤ϕ+ log q

1−q .

Let C be the set of labeled containers
Collect Container Data: Let Sc = {(Ψ(N(i)), pi, yi)|i ∈ C}

where N(i) is the set of executables in a container i,
and Ψ(·) is computed from pb(yj = 1|xj), j ∈ N(i)
pi = maxj∈N(i) pb(yj = 1|xj).

Train Container Classifier:
Find the vector v∗ that maximizes
Lc(v) =

∏
(ψ,p,y)∈Sc

g(t(v, ψ, p))yi(1− g(t(v, ψ, p)))1−yi

Assign Container Probabilities:
For each container i: pc(yi = 1|xi) = g(t(v∗, Ψ(N(i)), pi))

Let F be the set of labeled files.
Collect File Data: Let Sf = {(Ψ(N(i)), pb(yi = 1|xi), yi)|i ∈ F}

where N(i) is the set of containers containing i and
and Ψ(·) is computed from pc(yj = 1|xj), j ∈ N(i).

Train Relationship Classifier:
Find the vector u∗ that maximizes
Lr(u) =

∏
(ψ,p,y)∈Sf

g(t(u, ψ, p))yi(1− g(t(u, ψ, p))1−yi

Improve File Probabilities:
For each file i: pr(yi = 1|xi) = g(t(u∗, Ψ(N(i)), pb(yi = 1|xi))).

Table 1. Algorithm for Improving File Malware Probabilities.

are investigated manually by analysts for additional signature creation. In addi-
tion, we have a large collection of programs known to be legitimate (i.e. clean);
many of these programs include one or more containers. Labels (i.e. “malware
container”, “benign container”, “malware”, “benign”) are assigned to the con-
tainers and individual files depending on the source. Some of these labeled files
are then used to train the baseline malware classifier. As part of the scanning
process, container files (e.g. .zip, .rar) are uncompressed, and the individual files
are extracted. A graph is constructed based on the relationships observed in the
containers, and in parallel, the trained baseline classifier is used to predict the
probability that each individual file is malicious. In another part of the scanning
process, a file is run and any files which are dropped (i.e. written to the disk
drive) are detected. These “dropped” relationships could also be used in our
system. The datasets used to train the baseline and relationship classifiers differ
because while all of the individual files used to train the baseline classifier have
previously been labeled, most of the files in the containers have not. In the last
step, the relationship malware classifier is trained using the baseline file predic-
tions and the relationships from the graph. In the remainder of this section, we
further investigate the container details and describe the baseline classifier.
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Fig. 1. System Diagram for Training the Relationship Classifier.

4.1 Container Description

To train the classifier, we first obtain labels for the containers by assigning the
label “malware container” to containers which were either previously determined
as malicious by an analyst, one or more contained files were labeled as malware
by an analyst, or an anti-virus engine automatically detected at least one file
as malware in the container. Similarly, benign archives are labeled as “benign
container” and defined as those previously determined as benign by an analyst,
contain no files that were labeled as malware by an analyst or other automated
system, and an anti-virus engine did not automatically detect any of its contained
files as malware. Next, we constructed a labeled graph containing 4,160,807 nodes
and 23,993,309 edges where each node is either an archive or individual file and
an edge indicates that an archive contains a file. This graph includes 719,359
total archives including 604,658 malicious and 114,701 benign containers. There
are 3,441,448 individual files with 492,443 labeled as malicious and 2,949,005
labeled as benign. Among the individual files, 67,705 of them existed both in
malware and in benign containers.

Figures 2 and 3 present the distributions of the number of files included in
the malware and clean containers, respectively. The approximately linear rela-
tionship of the files in the malware containers on a log-log scale indicates that
the number of files in the malware containers roughly follows a power law. On
the other hand, many of the benign containers are distinct versions of commer-
cially available software products including multiple versions of the same product
written in many different languages. These programs often contain similar, but
distinctly different, numbers of files leading to multiple archives with approxi-
mately the same number of files. This behavior is also noted for multiple versions
of the same program (e.g. Adobe Acrobat Reader versions 7.0 and 7.1).

In Figures 4 and 5 we show the distribution of the number of archives that
include each malware and clean file respectively. Again we observe a power law
behavior for the malware, with most malware files appearing in very few con-
tainers and only a handful of malware files appearing in many containers. On
the other hand for the benign files the power law behavior does not span as
many orders of magnitude and instead we observe that there are several benign
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Fig. 2. Distribution of Files in the Mal-
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nign Containers.
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Fig. 4. Distribution of Archives which
Contain Malware Files.
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Fig. 5. Distribution of Archives which
Contain Benign Files.

files that are contained in many archives. The reason for this discrepancy is that
benign software is made with the intent to be reused while malware is created
for more opportunistic purposes.

4.2 Baseline Classifier

In this section, we briefly describe the baseline malware classifier which provides
the original probability that an unknown file is malicious or benign. We first col-
lected over 2.6 million samples consisting of 1,843,359 malware files and 817,485
samples of files known to be benign. Each of the malicious files was also assigned
to a particular malware family. We selected a set of 134 malware families deter-
mined by analysts to be important to identify. All malware samples belonging to
malware families not in the set were included in a generic malware class, and all
samples of legitimate software were assigned to a benign class. Next, we modi-
fied the production anti-malware engine used in Microsoft’s commercial security
products (e.g. Microsoft Security Essentials, Forefront Endpoint Protection) as
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well as Windows (i.e. Windows Defender) to produce a set of log files for further
analysis. As part of the overall analysis, this AM engine runs each unknown file
in a lightweight virtual machine. We then record each system call and its corre-
sponding input parameters. We also extracted the process memory and searched
for null-terminated patterns. This collection of patterns often includes strings
but sometimes include snippets of code. From these logs, we created four sets
of potential features for the baseline classifier. First, we identified each distinct
combination of a system call and its parameter values. For example, if the un-
known executable calls CreateThread() with a stack size of 1 megabyte, this
API/parameter combination would then serve as one potential feature. Next,
we constructed tri-grams of the system call sequence. We also included each
of the process memory patterns in the pool of potential features. Finally, we
included 164 low-fidelity features from analysis of the file such as: is it 64-bit
software?, is it an .EXE file?, is it a .DLL file?, and so on. In practice, this last
set of features was overwhelmed by the other feature sets and only improved the
model’s accuracy by 0.01%. It should be noted that our features are constrained
by the limitations of the production anti-malware engine. As a result, we cannot
use features which require significant time to compute such as the system call
graph using dynamic taint analysis. Processing the logs produced a set of over
50 million potential features which needs to be significantly reduced to avoid
overfitting. Based on mutual information [13], we then used feature selection
of the potential feature set to determine 179,288 features for the classifier. Fi-
nally with these selected features, we constructed a labeled training set to train
a multi-class classifier with logistic regression using stochastic gradient descent
(SGD) to predict if an unknown file belongs to one of the malware families un-
der consideration or to the generic malware or benign class. We chose to train a
logistic regression model with SGD because of the large scale nature of our data
in terms of both the number of samples and features. Due to our implementa-
tion in C# and a .NET memory constraint related to the number of elements
in a list, we used SGD to efficiently train the baseline classifier in mini-batches
of roughly 450 thousand examples. Training the multi-class classifier produced
a false positive of 1.3% and a false negative rate of 0.7% on a separate (i.e.
hold-out) test set of over 443 thousand files. Even though the features used in
this classifier are relatively simple, training with over 2.6 million files produces
a good error rate. Furthermore, malware classification research has produced
a number of independent algorithmic improvements to increase malware clas-
sification accuracies [18, 17, 15, 2, 11, 16, 6]. As we argue in Section 8, since the
baseline classifier and container relationship structure are independent, applying
one or more of these algorithmic improvements or additional feature sets to the
baseline classifier will help to improve the overall system response.

5 Experimental Results

In this section, we conduct a series of experiments to evaluate the performance
of the container and improved relationship malware classifiers.
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Name Determination # Scanner # Submissions
Detections

. . . Norton Antivirus . . . 2007 .rar Malware Container 15 2

. . . ba52.bin Malware Container 15 4

. . . z0ffzvk .rar.part Malware Container 14 2

. . . dc11.rar Malware Container 14 2

. . . regcure 1.0.0.43.1.3a1400.efw Malware Container 14 2

. . . Registry Mechanic . . . .rar Malware Container 14 2

. . . CyberLink PowerDVD 7.0.rar Malware Container 15 2

. . . adobe photoshop cs2 .rar Malware Container 15 2

Table 2. An Example of the File Containers which Include 2.exe.

5.1 Examples

We first motivate the relationship classifier idea by examining how it affects
the baseline probability of two individual files. Upon manual examination of
the first file 2.exe, we found this file to be a variant of a Trojan in the Vundo
family. Table 2 indicates the file was included in 8 containers, which were labeled
“Malware Container”. This table includes the names of the containers, their
determinations, the number of scanners which detect them, and the number of
submissions. The third column indicates all containers were detected by at least
14 scanners. For this example, the baseline malware classifier failed to correctly
identify the file as malicious. The relationship classifier raised the probability of
this file from a baseline of 33% to 98.37% which is more indicative of malware.
This shows that the malware relationship classifier can help to correctly identify
malicious files even when the baseline classifier misclassifies them.

The second example involves a file named calleng.dll. The file was manu-
ally determined to be benign by an analyst, and the baseline malware classifier
assigns a probability of nearly 0% that this file is malware. We scanned it with
a set of anti-malware scanners and no scanners detected the file. This file was
originally distributed as part of the legitimate PalTalk social networking soft-
ware. Table 3 provides the container relationships. We believe that (RarSfx)

on row 4 with no detections is the legitimate PalTalk. We also have evidence
from the scanner detection column that the remainder of the containers in Ta-
ble 3 are indeed suspicious. In fact, we believe that these are malicious versions
of the original PalTalk application. While calleng.dll itself is not malicious,
it clearly appears to be commonly used by malware authors in some manner.
In other words, a previously unseen archive containing this file is likely to be
malware. After running the malware relationship classifier on calleng.dll the
malware probability increased to 44.9%. While this is certainly more indicative
of being malicious, it is not sufficient to be classified as malware. This shows
that even when the new probability estimates of a benign file are increased, this
is usually not enough to cause a false positive. This is confirmed by the overall
improved results in Figure 7.
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Name Determination # Scanner Detections # Submissions

0d. . . bc.rar No Determination 13 2
d3. . . 39.rar No Determination 9 2
ec. . . da No Determination 3 2
(RarSfx) No Determination 0 2
(RarSfx) No Determination 7 4
(RarSfx) No Determination 9 4

Table 3. An Example of the File Containers which Include calleng.dll.
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Fig. 6. DET Curves for the Container
Classifier Algorithms.
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Fig. 7. DET Curves for the Baseline
and Relationship File Classifiers.

5.2 Performance Analysis

Detection Error Tradeoff (DET) curves for the three container classification al-
gorithms proposed in Section 3.5 are plotted in Figure 6. To obtain probabilities
for all containers with the container classifier in a fair way we used 5-fold cross
validation. If the DET curve of a rule is always below the DET curve of another
rule then we say that the former dominates the latter. It means that for all pos-
sible FP rates one classifier is always achieving better FN rates than another; a
very strong statement. For malware detection, we care about the region of small
FP rates, and in the figures we are zooming in a range of up to 2% FP rate. In
this range, the Biased logistic regression algorithm completely dominates
the simple approaches of the Max neighbor and Union bound algorithms.
In fact, the Union bound method is dominated by the Max neighbor rule
which demonstrates the inappropriateness of its assumptions. This leads us to
believe that the files in the containers are correlated and reinforces our belief
that aggregating information across the files in the container is not trivial. We
mention that the Biased logistic regression method dominates the other
two rules across all the FP rates, not just across the range shown in Figure 6.

In Figure 7 we present DET curves for individual files. We compare the
existing baseline classifier with the relationship classifier of Section 3.6, and we
again employ 5-fold cross-validation. As before, for malware classification we are
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FP Rate Label pb ≤ tb pb > tb pb ≤ tb pb > tb
pr ≤ tr pr ≤ tr pr > tr pr > tr

1.0% Malware 6269 161 32170 480548
Benign 2909583 15561 14590 14959

0.1% Malware 183454 15406 109043 211245
Benign 2950180 1556 1546 1411

Table 4. Comparison of Baseline and File Relationship Classifier Statistics for FP
Rate = 1% and 0.1%.

interested in small FP rates and therefore plot the curves for FP rates up to 2%.
We observe that the relationship classifier convincingly dominates our baseline
system: At an FP rate of 0.3%, there is a 77.3% decrease in FN rate (from 37.5%
to 8.5%). At our target FP rate of 0.01%, the decrease in the FN rate from 87%
to 85% is marginal; there is still more work to be done to achieve widespread
detection at these extremely low FP rates. In the rest of the FP range (not
shown), the baseline system remains dominated until approximately an FP rate
of 60%, when it becomes marginally advantageous to use the baseline system.
However, these operating points are uninteresting even for perimeter-based anti-
malware systems. Our conclusion is that our approach not only improves upon
the baseline system, but it does so for error tradeoffs that are important for
our application. In Section 5.3 we explain why (and this is true only for logistic
regression) the results of Figures 6 and 7 are invariant to the proportion of
malware files we used in the experiments.

In Table 4 we next compare example counts for the baseline and relationship
classifiers for different threshold values corresponding to FP rates of 1% and
0.1% . For the row labeled malware in Table 4 with a FP rate of 1%, the sixth
(pb > tr, pr > tr) and third (pb ≤ tb, pr ≤ tr) columns indicate that both
classifiers correctly identify 480,548 malicious files but fail to detect 6,269 files.
The fourth column indicates that 161 files were incorrectly mispredicted by the
relationship classifier as benign (FN) but correctly predicted by the baseline
system. The fifth column shows the improvement of the relationship classifier
for 32,170 files which were mispredicted by the baseline classifier. For the second
row with benign files at 1% FP rate, 15,561 files were correctly predicted to
be benign by the relationship classifier but missed by the baseline classifier.
Likewise at an FP rate of 1%, the relationship classifier had 14,590 false positives.
Similar statistics are noted for a 0.1% FP rate. Note that the baseline classifier
threshold (tb) and relationship classifier threshold (tr) differ in order to set the
operating point to the desired FP rate. Also, the number of FPs for the baseline
classifier (pb > tr, pr ≤ tr) and for the relationship classifier (pb ≤ tb, pr > tr)
are approximately equal, but differ slightly due to multiple examples having
identical predicted probabilities.

In Figures 8 and 9, we further investigate the 14,590 FPs generated by the
relationship classifier at a FP rate of 1%. Figure 8 shows a histogram of the FPs
that are found in more than 10 containers. This figure accounts for approximately
two thirds of our FPs. The FPs have been binned according to the fraction of
associated containers that are malware containers. We see that a large number of
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our FPs are associated with containers most of which contain malware. In fact,
31.5% of our FPs are files found in containers in which the majority of files are
malware. Figure 9 shows a heatmap for the rest of the FPs, i.e. those found in
10 or less containers. Here we see that the overwhelming majority are associated
with only one container which contains no malware.
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Fig. 8. FPs Binned by the Fraction
of Malware Containers Out of All
Archives Containing Each.
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Fig. 9. Heatmap of Containers Associ-
ated with False Positives.

5.3 Validity of Results Under Biased Sampling

Can the conclusions drawn from Figures 6 and 7 reflect the real world behavior
of our classifier where the proportion of malware files will be different than
the one we used for training? As we explain, this is true for logistic regression.
First, notice that among each of the two classes, malware and benign, sampling
was random. So we can say that by selecting many malware files we have just
uniformly increased the probability of malware by a factor c1 > 1 and have
uniformly decreased the probability of benign by a factor c0 < 1:

p(yi = 1|xi, selection) = c1p(yi = 1|xi)

p(yi = 0|xi, selection) = c0p(yi = 0|xi).

Our logistic classifiers model the log odds so we get

log
p(yi = 1|xi, selection)

p(yi = 0|xi, selection)
= log

c1
c0

+ log
p(yi = 1|xi)

p(yi = 0|xi)
.

In other words, the log odds we compute are indeed inflated by log c1
c0
. However

the effect of log c1
c0

is constant across all files. On the other hand the DET curves
of Figures 6 and 7 only depend on the order of the files, according to their
probabilities. This order is not affected by adding to each file the constant log c1

c0
.

Hence we would have obtained the same figures even if we had trained our logistic
classifier with a sample that contained the correct proportion of malware.
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6 Discussions

In this section we discuss the assumptions of our system, the constraints under
which it needs to work, and investigate some issues related to the notion of
suspicious but not necessarily malicious files and containers. Our work is based
on two main assumptions. First the relationships we manage to extract from
the files contain useful information that is not already captured by our current
baseline classifier. The second assumption is that we can extract some of this
information with our current representation. To avoid being detected by our
approach, a piece of malicious software has to first score low or moderately
when scanned with the individual classifier and then has to be associated only
with containers that themselves are not suspicious. Assuming that the malicious
file bypasses the individual classifier, the best strategies to avoid detection by
the relationship classifier is to submit the file by itself or with another previously
unseen file that is undoubtedly benign. Currently, our relationship classifier will
not do anything to files it cannot directly relate to previously seen files. For such
a file we could first find an approximate match (using, say, locality sensitive
hashes [1]) and use its relationships. Though such an approach would further
reduce opportunities for code reuse and “malware libraries” for malware authors,
it is beyond the scope of this paper. Our focus is to demonstrate that even a
simple approach has immediate benefits.

A very limiting constraint with respect to the solutions we could employ
for our task is the requirement for our system to be highly scalable. We have
therefore only considered linear models simply because we cannot afford to train
(or even run) more complicated models on the millions of executables in our
database. Among the linear models we only presented results for logistic regres-
sion, but other methods like SVMs should perform similarly.

Even though the results in Section 5 demonstrate large improvements, our
model is not perfect. Table 4 and Figures 8 and 9 indicate our model is still
susceptible to FPs which are particularly worrisome to analysts. However while
statistical models are subject to false positives in general, we believe that the
definition of a false positive is not correct in a portion of these cases. Typically,
analysts assign a “benign” label to files which cannot infect a computer. We
argue that even if a file cannot be infectious it can still be suspicious if, say, we
have only seen it co-occurring (i.e. being part of the same container) with files
that have been determined to be malware. To handle this case, we believe that
the model can be further improved by adding a third label, “malware related”,
to any file which cannot infect a computer by itself, has been found in some
relationship with malware (contained, dropped), and has never been observed in
any files encountered during the installation of a legitimate software package.

Finally, the algorithm we proposed in Table 1 can be thought of as one
iteration of a more complicated scheme. Though we already argued that iterating
this algorithm is tricky, it could provide useful information that is currently not
captured by our model. For example, two iterations of our algorithm would
capture information about co-occurence patterns of files in the same archives
and would start building archive reputations.
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7 Related Work

Malware classification has been a rich area for research, and Idika et al. provide
a recent survey of the literature [9]. Early efforts on malware classification such
as those of Schultz et al. [20] and Kolter et al. [12] focused on static analysis
of the executable files. Features based on n-grams of byte sequences have been
used in [18, 19]. In [21] the authors perform sequence analysis of system calls
and Christodorescu et al. propose detecting malware based on the semantics of
the unknown file [5]. Results show improved detection of obfuscated malware
compared to commercial anti-virus products. Chouchane et al. [4] develop static
classifiers for metamorphic malware, by computing probability distributions over
metamorphic variants and using them to train a classifier. Perdisci et al. [17]
proposed using boosting to classify malware.

Recently, a number of authors have proposed behavior-based malware de-
tection systems. For example in [15] the system executes malware in a virtual
machine allowing the execution of arbitrary programs at each control flow de-
cision point. This allows the tool to explore, record, and report the complete
behavior space of a program. Instead of using a simulated virtual machine for
monitoring program behavior, Bayer et al. [2] developed a tool where a com-
plete operating system is run in software thereby allowing the identification of
malware that terminates after detecting that it is running in a virtual machine
environment. Mehdi et al. [14] have previously used N-grams of system calls for
a malware classification system.

Few papers have explored using graph-based methods for detecting malware.
For example, [6, 8, 10] classify or cluster the call-graphs of malware and benign
programs. Recently, Chau et al. [3] explored building file reputation based on
a bipartite graph of applications and machines. Finally, Ye et al. [22] built and
deployed a system that combines individual predictions with a different defini-
tion of file relationships. They consider two files related if they co-occur on a set
of client machines. In contrast, we define our file relationships at the time a file
is submitted to our service. Besides avoiding thorny privacy issues, the relation-
ships we use are much more localized and reflect pieces of information that the
human analysts actually seek when analyzing an unknown sample. In accordance
to our experimental results, they also observe a large benefit by moving beyond
individual file classification.

8 Conclusions

Automated malware detection is critical given the explosion of new malware in
recent years. In this paper we investigate a novel way of improving malware
classifiers by going beyond individually classifying a given file. Instead, we take
advantage of the information that exists in the relationships between the files
submitted to our service; information that is already being leveraged by human
analysts in their job. Starting from a baseline individual file classifier we proposed
three ways to propagate information from files to containers (Max neighbor,
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Union bound and Biased logistic regression) and a relationship classifier
which uses this propagated information to improve the baseline probabilities.

Our experiments show that on one hand simple approaches like the Union
bound fail completely, and hence propagating and aggregating the relationship
information is not a trivial task. On the other hand our proposed Biased logis-
tic regression classifier completely dominates Max neighbor. Furthermore,
using the container probabilities from Biased logistic regression the rela-
tionship classifier substantially reduces the FN rate at small FP rates.

In spite of these encouraging results, more algorithmic improvements are re-
quired to rely solely on automated malware classification to block or detect new
malware. Improving the baseline classifier, which is relatively simple, can further
improve the relationship classifier. In fact we have presented some evidence that
large fractions of what appear to be false positives a) cannot be fixed by the
relationship classifier and might be due to the baseline system and b) are not
exactly false positives because they are files mostly found in malware containers.
In any case, we believe that our modular approach of learning a correction to
the baseline system nicely decouples the problem in two orthogonal components:
one that looks at the file individually and one that looks at the file’s relation-
ships. This way, progress in either of these fronts can further improve the overall
performance of our system.
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