IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

1605

Pushing the Envelope of Modern Methods
for Bundle Adjustment

Yekeun Jeong, Student Member, IEEE, David Nistér, Member, IEEE,
Drew Steedly, Member, IEEE, Richard Szeliski, Fellow, IEEE, and
In-So Kweon, Member, IEEE

Abstract—In this paper, we present results and experiments with several methods for bundle adjustment, producing the fastest bundle
adjuster ever published in terms of computation and convergence. From a computational perspective, the fastest methods naturally
handle the block-sparse pattern that arises in a reduced camera system. Adapting to the naturally arising block-sparsity allows the use
of BLAS3, efficient memory handling, fast variable ordering, and customized sparse solving, all simultaneously. We present two
methods; one uses exact minimum degree ordering and block-based LDL solving and the other uses block-based preconditioned
conjugate gradients. Both methods are performed on the reduced camera system. We show experimentally that the adaptation to the
natural block sparsity allows both of these methods to perform better than previous methods. Further improvements in convergence
speed are achieved by the novel use of embedded point iterations. Embedded point iterations take place inside each camera update
step, yielding a greater cost decrease from each camera update step and, consequently, a lower minimum. This is especially true for
points projecting far out on the flatter region of the robustifier. Intensive analyses from various angles demonstrate the improved

performance of the presented bundler.

Index Terms—Computer vision, bundle adjustment, structure from motion, block-based, sparse linear solving, point iterations.

1 INTRODUCTION

BUNDLE adjustment (BA) has become an essential part of
structure from motion (SfM) and 3D reconstruction has
attracted increased interest from the computer vision
community despite its extremely complex nature.
Although many reports have been presented on the subject,
bundle adjustment remains the primary bottleneck in
relevant applications and is problematic in large-scale
reconstructions.

To resolve these problems, we present several methods
that dramatically improve the performance of the bundle
adjustment (i.e., the bundler). We exploit the block-sparsity
pattern that arises in a reduced camera system (RCS) and
enhance the computational speed of the bundler with
BLAS3' operations, efficient memory handling, and fast
block-based linear solving. Furthermore, novel embedded
point iterations (EPIs) substantially improve the conver-
gence speed by yielding a high cost decrease from each
camera update step. The experimental analyses covering
various bundlers and data sets comprise another important

1. BLASS3 is a library of matrix-matrix operations.

e Y. Jeong, D. Nistér, D. Steedly, and R. Szeliski are with Microsoft
Corporation, One Microsoft Way, Redmond, WA 98052-6399.
E-mail: {yejeong, dnister, steedly, szeliskij@microsoft.com.

e [-S. Kweon is with the RCV Lab, Department of Electrical Engineering,
KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea.
E-mail: iskweon@ee.kaist.ac.kr.

Manuscript received 2 Mar. 2011; revised 9 Sept. 2011; accepted 22 Nov.
2011; published online 19 Dec. 2011.

Recommended for acceptance by Y. Sato.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2011-03-0138.

Digital Object Identifier no. 10.1109/TPAMI.2011.256.

0162-8828/12/$31.00 © 2012 IEEE

contribution of this paper. The experimental results show
the improved performance of the proposed bundler and
provide useful and detailed comparisons among various
choices when compositing a bundler. Our approach does
not require any special assumption or hardware and is
identical to conventional bundlers in terms of functionality
and usage in related applications. The fact that it is possible
to use our approach in combination with all of the other
previous approaches demonstrates the generality and the
applicability of our proposed method.

1.1 Related Works

The previous approaches can be divided into two groups.
The first focuses on making the bundle adjustment
algorithm as efficient as possible, and the second focuses
on reducing the size or frequency of the invocation of
individual bundle adjustments.

Examples of the first group include [1], [2], [3], [4], [5],
[6], [7], and [8]. Triggs et al. [1] and Lourakis and Argyros
[2] explained bundle adjustment and how to implement it.
Triggs et al. discussed more theoretical issues, including
gauge freedom, inner constraints, and the reliability of
parameter estimates [1], while Lourakis and Argyros
offered detailed explanations on the standardized bundle
adjustment procedures [2]. The Levenberg-Marquardt algo-
rithm (LM) [9] has been the most popular choice for bundle
adjustment. However, the authors of [3] questioned this
choice and showed that the dog leg algorithm (DL), which
is designed to explicitly use a concept of trust region, is a
better alternative to LM, which reflects the fitness of the
approximated linear model by checking if the cost
decreases. In [4], an out-of-core bundle adjustment was
proposed which follows a divide-and-conquer approach. In
that aspect only, that work could be classified into the other
group; however, it did make an additional contribution. By

Published by the IEEE Computer Society

1606

caching submap linearizations for the full separator system,
the authors were able to reconstruct a large-scale system if
given a good graph cut and initialization.

Within the last few years, there have been several
attempts to solve the linear system in the bundle adjustment
more efficiently. Preconditioned conjugate gradients (PCG)
replacing the Cholesky factorization that is used in the LM
algorithm are the key to these attempts. Byréd and Astrom
utilized the structural layout of variables for the better
preconditioning of conjugate gradients (CG) in bundle
problems such that the CG steps affected an explicit change
in the parameters more directly [5]. Agarwal et al.
suggested the adaptive use of a sparse direct method for
Cholesky factorization and a block diagonal PCG [6].

Recently, more developed ways to apply the conjugate
gradient to bundle adjustment with less memory require-
ments have been presented [7], [8]. In [8], the authors
suggested applying conjugate gradients for least squares
(CGLS) to bundle adjustment with a block QR precondi-
tioning. The CGLS requires the Jacobian matrix only and
does not build the Hessian matrix. In this case, a reduced
camera system is not used, but it is still advantageous when
the memory requirement becomes the main concern.
Agarwal et al. proposed using PCG with a generalized
symmetric successive over-relaxation (SSOR) precondi-
tioner for the Hessian matrix to implicitly use PCG on an
RCS without any explicit construction of the RCS [7]. These
approaches can be useful when the given problem has as
many as 10,000 cameras.

In the second category, [10], [11], [12], [13], [14], [15], [16],
and [17] proposed various approaches to apply bundle
adjustment. The authors of [10] recovered a 3D structure from
along sequence by performing bundle adjustment hierarchi-
cally from segment-wise to global and also suggested an
efficient approach that reduces the number of frames in the
global system by introducing virtual key frames. In [11], the
authors reduced the redundancies of the brute force bundling
by checking which variables were required to be optimized
after every new frame. The authors of [12] proposed a spectral
partitioning approach, which divided a large-scale bundle
problem into smaller subproblems and preserved the low
error modes of the original system.

The authors of [13], [14], [15], [16], and [17] paid
particular attention to how to efficiently apply bundle
adjustment to incremental or real-time SfM systems.
Mouragnon et al. [13] and Engels et al. [14] investigated
the proper application of local bundle adjustment, which
only considers cameras and points within a certain time
range. Mouragnon et al. [13] suggested applying local
bundle adjustment after each new keyframe was found,
whereas Engels et al. [14] suggested applying it after every
frame was added. Klein and Murray [15] presented a real-
time augmented reality system using two independent
threads for tracking and mapping. The main task of the
mapping thread is to optimize keyframes and points
locally with high priority and globally with low priority.
This strategy is effective when the camera does not explore
new scenes continuously and the expected number of total
keyframes is fairly low. Eudes and Lhuillier [17] proposed
a method that included uncertainty propagation and the
maximum likelihood estimation of the local bundle

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

adjustment given a particular noise model. In the case of
[16], a relative frame representation was introduced instead
of representing cameras and points in common global
coordinates. Those authors used the relative motions
between cameras for efficient loop closing in the incre-
mental SfM.

1.2 Overview

According to our survey of the literature, block structure
has been understood equivalently as the sparse structure of
SfM problems only and has been used mainly to form the
RCS efficiently. The use of CG, which is the key component
to reducing the cubic complexity of a bundler, has not been
investigated by any full performance analysis. No effort has
been made to understand how cameras and points move
inside bundle iterations, which may provide an important
clue to accelerating the convergence. Addressing these
issues are the key contributions of this paper.

In Section 2, we briefly explain the standard bundler and
several different implementations of the proposed bundler.
We discuss how to fully utilize the block structure by
employing the BLAS3 (Section 3) and how to efficiently
solve the reduced camera system using block-based reorder-
ings and preconditioned conjugate gradients (Section 4) in
detail, which contributes to improving the computational
efficiency of the proposed method. The novel EPIs that were
inspired by understanding the general movements of
cameras and points during bundle iterations are introduced
in Section 5. They mainly contribute to the faster conver-
gence of the bundler. We experimentally demonstrate that
our proposed methods perform substantially faster than
previous methods in Section 6. We present our conclusions
in Section 7.

The performance of the proposed method is summarily
compared with that of the conventional bundler [2] in Fig. 1.
Twenty bundle iterations are performed for both methods,
and the proposed method achieves a lower (RMS) reprojec-
tion error with a shorter processing time than the conven-
tional one. This demonstrates that the proposed method is a
more efficient way to perform the procedures of the bundler
as well as a faster way to converge. A preliminary version of
this paper appeared in [19].

2 BUNDLE ADJUSTMENT

Bundle adjustment is the problem of refining a visual
reconstruction to produce jointly optimal 3D structure and
viewing parameter [1] by minimizing the robustified
squared sum of the reprojection errors. At the outermost
layer, BA is performed using the Levenberg-Marquardt
(LM) algorithm [9], which is a damped Newton method.
The LM algorithm assumes the cost function to be locally
quadratic and dampens the Hessian matrix by controlling a
dampener A when the function is not fitted well.

In general, the computed Jacobian J is a 2Np x (kM +
3N) matrix, and the resultant Hessian H = J?J is a (kM +
3N) x (kM + 3N) matrix where M, N, Np, k are the num-
bers of cameras, points, projections, and parameters for one
camera, respectively. Solving a (kM + 3N) x (kM + 3N)-
sized linear system simply is infeasible when the problem
includes too many cameras and points. However, M is

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

Conventional. 20 iterations Proposed. 20 iterations

1607

9.4 min, 13.8 pixel

Conventional. 20 iterations

i
X
\\\

9.1 sec, 0.5 pixel

1.1 min, 7.2 pixel

Fig. 1. A brief comparison between the conventional bundler [2] and the proposed bundler with preconditioned conjugate gradient as a linear solver.
Two real data sets, korpalace (top) and sanmarco (bottom), were used. For each row, “initially perturbed cameras and points with a snapshot

” o«

captured on the web [18],

an adjusted result by the conventional method,” and “another result by the proposed method” are shown from left to right.

For each bundler, 20 iterations were completed. The timings (in min. or sec.) and the final RMS reprojection errors (in pixels) are shown with the
adjusted reconstructions. The conventional bundler for korpalace was especially compiled on an x64 platform because of its large memory

requirement.

considerably smaller than N in most cases, and the Schur
complement can be used to reduce the large system to a
smaller kM x kM-sized linear system H,., which is the so-
called reduced camera system [1], [20]. If N is much smaller
than M, computing the reduced structure system (RSS) is
more efficient. For more details on bundle adjustment, refer
to [1], [2], [14].

2.1 The Reduced Camera System

The Schur complement transforms the linear solving of H to
another linear solving of H,. and a back-substitution.
Because the size of H,. depends on the number of cameras,
the bundle adjustment does not have to suffer due to the
large number of points. Note that if this Schur complement
is computed explicitly and the sparse structure of the
Hessian matrix is not considered, many advantages may
be lost. The importance of RCS creation and its sparse
structure were already studied by Brown several decades
ago [21]. Constructing the RCS implicitly allows for faster
speed and less memory usage [14]. Methods for managing
the structure of RCS and solving RCS are explained in
Sections 3 and 4.

2.2 Implementation Details

Aside from the key contributions that we will explain in the
rest of this paper, several implementation details are
worthy of mention. Our implementation is similar in spirit
to [14], including computing the outer products, keeping
the sine values of rotation, and augmenting the scaled
diagonal of the Hessian matrix. By computing the outer
products, i.e., accumulating the point tracks directly into the
RCS, we do not form any intermediate matrices such as U,
W, and V in [2] to explicitly construct the RCS.

The Rodriguez representation is a well-known parame-
terization of rotation, and the sine values of rotation have
similar partial derivatives to those of the Rodriguez
representation. By permutating the axes and inverting the
signs of the derivatives of the sine values, the derivatives of
the Rodriguez representation can be obtained. Therefore, we
can speculate that the performances of the two parameter-
izations are equivalent. We conducted an experiment on this
assertion and found that the two parameterizations pro-
vided nearly equivalent decreases until convergence and
were better than the Euler angles. Moreover, keeping the sine
values allows us to compute an exact rotation matrix more
efficiently, even for noninfinitesimal changes.

Although the LM algorithm simply rescales the dampener
according to the decrease/increase of the cost, the fitness of
the approximation can be carefully measured by comparing
the expected decrease and the actual decrease, which is also
known as the trust region control. An example where the
trust region method was applied to BA is given in [3]. We
employ the concept of trust region control by carefully
checking the discrepancy between the predicted and actual
costs. We decrease the dampener when the cost reduction is
above a certain fraction (currently set to 70 percent of the cost
reduction predicted by the approximated model).

To further reduce computational load, we use an LM
variant that differs in how the dampener affects the Hessian
matrix. Normally, the diagonal augmentation of the LM is
given by

Haug:H+)‘I7 (1)

where H and H,,, are the Hessian and the augmented
Hessian matrices, respectively. However, we augment the

1608

Hessian in a different way that adds the diagonal of the
Hessian matrix multiplied by the dampener:

Hag = H + X diag{H}. (2)

This augmentation helps the bundler to avoid repeatedly
solving the linear system for newly increased dampeners
when the computed step fails to reduce the cost [14].

3 BLOCK STRUCTURE

The fact that a block-sparse pattern arises naturally in a
reduced camera system is very well known [1], [2], [4], [14],
[22]. A fair amount of research has already been performed
on the topic of reordering techniques for cameras and has
been designed to reduce fill-in during a direct solution.
However, linearly solving the Hessian matrix still accounts
for most of the complexity of the bundler [14]. We suggest
several ways to significantly enhance the efficiency and the
speed of the dominant processes such as building a reduced
camera system and LM optimization.

The block structure allows efficient memory handling,
variable reordering, and customized sparse solving while
maintaining the use of BLAS3, which is a library of matrix-
matrix operations. The sparsity pattern is block-based in
that every block corresponds to a pair of cameras, and a
block is either completely empty or completely filled in
depending on whether the two cameras have a point track
directly in common. The pattern persists across all the
iterations of the bundle adjustment process.

Before starting the iterations, the pattern is computed as an
upper triangular bit-mask in our implementation. Then, a
sparse block matrix is prepared. This is accessed through a
matrix of pointers with valid pointers only on the nonzero
blocks. This design is chosen for its speed of access to the
blocks during accumulation to the reduced camera matrix,
and it improves the speed of solving problems containing the
tens of thousands of cameras. When a common camera model
is employed, each block is a square with a sidelength b that is
equal to the number of the camera parameter (b =9 for an
uncalibrated camera model with two radial distortion
parameters). Each whole block is stored in consecutive
memory. The matrix is solved by a sparse block-based LDL
factorization or preconditioned conjugate gradients and
back-substitution [23]. The solver essentially spends all of
its time multiplying the b x b blocks, which is an operation
that can be completely unrolled and optimized.

However, practical applications of the SfM should deal
with various unknown cameras at the same time, such as in
[6], [18], [24]. A mixed set of cameras containing partially
known, fully known, and unknown intrinsics is an im-
portant case. The fixed parameters need to be omitted, and
the parameters shared by several cameras need to be joined.
This also breaks the homogeneous block structure. For
example, the inhomogeneous sparse structure of the RCS
shown in Fig. 2a may arise. In principle, the variable block
structure can be allowed. However, it is easier if we treat all
of the camera blocks identically because this allows a very
simple and efficient block solver to be applied to the
homogeneous block structure of the RCS.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

= mmEEE rotation and translation m focal length m m radial distortion

(b)

Fig. 2. An example of keeping the homogeneous block structure in the
RCS when an SfM problem deals with various unknown cameras at
the same time. (a) The original and (b) the reordered sparse patterns
of the RCS are compared.

To maintain the homogeneous block structure, we
choose the smallest block size that always contains free
parameters such as the block size, and place the other
variables, which are sometimes fixed, free, or joined, on the
right-hand side of the Hessian matrix. This results in an
arrow matrix with the extra free variables along the right
and bottom sides and the upper-left block consisting of
fixed-sized blocks as shown in Fig. 2b. To utilize the
simplified block structure, we also use hand-coded BLAS3
routines for small-sized matrix operations.

With the same motivation of maintaining homogeneous
block structure, the gauge is left globally free. The gauge
freedom of rotation, translation, and scale is simply handled
for each step by the dampener that is used in the
optimization. A globally free gauge is known to generally
improve convergence speed [1]. Other alternatives, such as
fixing selected cameras and baselines, have been attempted
with no discernible effect; therefore, the floating gauge is
preferred to preserve the homogeneous block structure.
However, this floating gauge could cause rank deficiency,
which is critical in the Cholesky factorization when the
dampener approaches zero. We handle this rank deficiency
in the factorization by checking whether zero is reached in
the diagonal and skipping zero divisions.

Our experiments indicate that even for dense systems
where each pair of cameras shares a track, the improved
cache-locality and the BLAS3 nature of the block-solver
produce a four times speed up.

4 SoLVING THE REDUCED CAMERA SYSTEM

As mentioned in Section 2.1, the reduced camera system is
obtained using the Schur complement trick that compacts
the dimensionality. Several methods to efficiently solve the
RCS, such as reorderings, sparse Cholesky factorization,
and preconditioned conjugate gradients, have been em-
ployed in previous works [1], [6]. An efficient accumulation
of an RCS has also been suggested [14]. In this section, we
explain how the proposed block structure and resultant
block-based computation assist in improving the perfor-
mance of the bundler. We also clarify the application of
conjugate gradients and other related topics, which are
ambiguous and have not been investigated sufficiently, to
suggest the best method for constructing the fastest

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

bundler. Finally, we introduce the block-based precondi-
tioned conjugate gradients.

4.1 Variable Ordering

The cameras are ordered to minimize the amount of blocks
that are filled in during the LDL block factorization. While
doing this completely optimally is NP-complete, several
good and efficient approximate techniques exist. Approx-
imate minimum degree (AMD?) is a popular and powerful
modern reordering technique [22], [25].

Here, we use exact minimum degree (MD) ordering. This
is a better choice than AMD because although the ordering
takes place on the block level, the core factorization performs
block operations that consist of b scalar operations, where b
is the size of one camera block. Therefore, the time taken to
find the ordering is swamped by the core factorization, and
any improvement on the fill-in repays itself b3-fold. The
situation for scalar sparse factorizations is different. In that
case, the exact MD ordering takes roughly the same amount
of time as the subsequence core factorization, whereas the
AMD can be faster (for example, in 20 percent of the time)
without sacrificing much quality in the ordering, which
results in efficiency improvements of the entire process of up
to 40 percent.

4.2 Preconditioned Conjugate Gradients

The conjugate gradients algorithm is the most widely used
iterative method for solving large sparse linear systems in
the form of Ax =b. Most of the cameras that are distant
from each other observe different scenes, which results in
zero blocks of the Hessian matrix H and the reduced
camera system H,.. A larger image set normally results in a
sparser system.

The Hessian matrix H has been a typical choice for “A”
in BA. However, the direct application of CG to H is
generally known to be inefficient because of its slow
convergence [1] even though recent research has revealed
its potential applicability to large SfM problems consisting
of tens of thousands of cameras [7], [8]. We apply CG to H,.
to replace the role of the Cholesky factorization, which
grows along with the cube of the number of cameras. The
implicit method proposed in [7] also applies CG to H,.
without explicitly constructing H,.. This method is algeb-
raically equivalent to ours, but the implicit method has a
stability issue that requires further investigation.

The use of CG could reduce the time needed to solve
sparse systems and the size of the required memory as well.
However, one important issue that remains is the condition
number of the system A, which highly affects the conver-
gence speed of CG. To reduce the condition number, a
preconditioning step is essential. This can be done by
applying preconditioned conjugate gradients in which H~!
is used. Another alternative is split preconditioner con-
jugate gradient, in which a preconditioner is split into
H~! = L~TL~! form before preconditioning [26]. In the rest
of this section, we use H for the augmented RCS for
simplicity instead of using H,. or A.

If we fully (optimally) precondition the entire system
(which means that H~! is used as the preconditioner P), CG

2. In this paper, we use reverse Cuthill-McKee ordering as an AMD in
the experiments.

1609

will converge in a single iteration, but this is the same as
solving the full LDL. Consequently, we must find a better
tradeoff between no preconditioning (P =1I) and full
preconditioning (P = H!'). The Jacobi preconditioner

P=D"', D=diag{H}, (3)
and the SSOR preconditioner

-7 -1

P:<2+L) —“ D (2+L) , (4)
w 2—-w w

where H=D+ L+ LT and 0 < w < 2, have conventionally

been used for the scalar-based CG [26].

We propose preconditioning with limited bandwidth
(truncated diagonals) as an alternative. To indicate the
limited bandwidth, let H,, be the matrix containing 1 to
nth block diagonals and zeros for the rest of the block
diagonals. When H is an Ny x Ny block matrix, Hy and
Hy, are equal to I and H. The band-limited block-based
preconditioner is notated as

P=H,' 0<n< Ny, (5)

and is implemented using our customized block operations.
Note that as with LDL factorization, the ordering of blocks
makes a difference in the amount of (within-band) fill-in.
Furthermore, the ordering also affects which out-of-band
blocks drop out and hence the efficacy of the precondi-
tioner, which then affects the convergence rate of CG. We
decide which preconditioner is suitable based on the
performance comparison shown in Fig. 5. A detailed
discussion of this is presented in Section 6.1.

The number of iterations that should be used inside each
Levenberg-Marquardt step must be determined. CG guar-
antees convergence and an exact solution as well as LDL
after Ny iterations for an Ny x Ny matrix, but Ny CG
iterations usually take as much time as the complete LDL.
However, if we force CG to stop earlier, we may lose the
accuracy of the solution for a normal equation. We solve
this problem by adopting a stopping criterion on the
relative decrease of the squared residual. The criterion is

kT k

> rr

€ —

= T 17
rltpl

(6)

where 7* is the residual after the kth iteration. For the
stopping criterion, some loose thresholds may cause no
problems. However, we set € to 1078, which is quite tight, to
guarantee that CG obtains similar steps than those of the
Cholesky factorization. This works reasonably well. In our
experiments, the accuracy loss causes a negligible effect and
does not degrade the convergence of any bundlers. As a
result, the proposed block-based preconditioned CG
achieves a remarkable improvement.

5 EMBEDDED POINT ITERATIONS

After the camera update step is computed, it is standard
practice to back-substitute for the point update. We have the
option to make that point update step, but we can also iterate
on each of the points separately p times before the entire
camera+point update step is completed and scored. In other

1610

'

Computing Jacobian «

¥

Accumulating H,.

-

Solving H.dx. =g,

Update x = x+dx

Acceptlreject step ‘dx’
Back-substitution for dx, »

Fig. 3. A summarized flow of the proposed bundler. Ellipses indicate the
EPIs that are optional, whereas boxes correspond to the standard
procedures of bundle adjustment.

words, we optionally optimize each point with newly
updated cameras using a tiny LM optimization. This is the
core Embedded Point iteration, which is one of three EPIs
that are introduced in this section. Note that this is different
from the vastly inferior procedure of alternation, in which
points and cameras are moved independently. Instead, the
camera update step is correctly computed based on allowing
both cameras and points to move together; however the point
updates, given the correct camera movements, use full
optimization rather than just a first-order prediction.

The idea behind this is that, for large, dense systems, EPIs
whose complexity is linear in the number of points are much
cheaper than the full update step. Moreover, the camera
steps are based on many point measurements and are
therefore stable, whereas the point updates, which are based
on as few as two observations, can be more erratic.
Therefore, it is sometimes worth paying the small price of
performing multiple point iterations to bring the points back
to rest and to get the most out of each camera update step.

Occasionally, the points become more stable than the
cameras in long image sequences or images that are
captured by distant cameras with a narrow field of view.
In this case, the situation can be reversed. Although we
have not examined these cases, embedded camera iterations
(ECIs) could be more efficient than EPIs, as seen in the
reduction of the Hessian matrix to an RCS or an RSS.

The EPIs are much more effective when a robustifier is
applied to the cost. The main problem with least squares is
its high sensitivity to outliers; this is due to the thin tails of
the Gaussian distribution [1]. To avoid this situation, we
apply a robustifier to the squared errors to model the heavier
tails in the error distribution [27]. However, these robusti-
fiers have flat (or near-flat) regions and points in this area
move slowly during bundle iterations. Therefore, our EPIs
are very helpful and usually save a few bundle iterations.

In practice, we apply point iterations at three different
places and call them pre, core, and postpoint iterations
(Fig. 3). These three point iterations commonly sync up the
points to the current cameras. The pre-EPI is only
performed before the first bundle iteration to ensure that
the given 3D points are optimal for the current cameras.
This step is very useful for both the robustified /nonrobus-
tified cost functions. The core-EPI reduces the cost further
after the back-substitution and affects the acceptance of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

current updates. The post-EPI is applied after each
complete bundle iteration and naturally replaces the pre-
EPI of the next bundle iteration.

Throughout the experiment, we terminate EPIs by
limiting the maximum number of iterations as well as
the minimum relative cost decrease. These stopping
criteria are chosen based on an experiment in which the
convergence curves of bundlers with various combinations
of three maximum numbers of iterations and the mini-
mum relative decrease are compared. We allow five, two,
and 10 iterations for the pre, core, and post-EPIs as the
maximum. We terminate the iterations if the relative cost
decrease becomes less than 1 percent.

6 EXPERIMENTAL RESULTS

We performed experiments using two types of data sets,
synthetic and real. For the synthetic data sets, we randomly
generated cameras and points around a sphere with a given
radius. Values of 1.0 and 0.5 were taken as the radius for the
cameras and points, respectively. Essentially, all of the
cameras were looking at the center of the sphere, and their
extrinsic parameters were randomly perturbed. Points were
distributed inside the small sphere. One hundred points
were generated for each camera and shared with 10 other
cameras chosen randomly. To generate more realistic camera
networks, five out of the 10 cameras were selected from
nearby neighbors, and the other five were selected from far
away ones. All of the synthetic data sets were processed on a
2.93 GHz quad core PC without multithreading.

The real data sets consisted of mainly 35 synths® from the
web [18] and five more data sets (Table 1), which are free to
use, because the synths from the web cannot be published.
All of the cameras and the points of the synths were
recovered in [18]. To generate randomly perturbed data
sets, random noises were added to the recovered cameras,
and all of the points were retriangulated. The image feature
tracks were used without any modification. Detailed
information, i.e., the original and noisy reconstructions
and filled-in patterns of the reordered RCS, from the five
data sets is shown in Fig. 4. To avoid biased experimental
results, we selected the synths with a varying number of
cameras. Detailed information on the real data sets is listed
in Table 1. All of the data sets were divided into six groups
according to their number of cameras for statistical analysis.
The average number of projections per point ranged from
three to seven. Each BA of the real data sets was performed
with a Xeon 2.8 GHz quad core PC without multithreading.

We classified the tested settings of the bundler into three
groups. Bundlers using the proposed block-based solvers
were marked as “B_"” and the others using scalar-based
solvers [14] were marked as “S_". Although the bundlers
marked as S_ are our own implementations, the conven-
tional bundler marked as “L_" is a public and widely used
implementation from [2]. “LDL” or “CG” were assigned
next according to the linear solver. Six different bundlers
were tested. In addition, we used “P” or “P*” for the cases
in which the proposed EPIs were applied with or without

3. The term “synth” was used for a set of cameras and points that were
reconstructed from a set of unordered images by the SfM solution in [18].

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

TABLE 1
Detailed Information of Our 40 Data Sets

[set || cameras | points [projections | variables | error

1 40 17183 51627 51829 9.81
2 41 19346 126731 58325 8.04
3 89 56413 206026 169862 17.50
4 93 17480 51604 53091 14.12
5 94 7015 23999 21703 12.52
6 100 46241 191326 139423 15.98
7 105 34829 92991 105222 15.32
8 108 26519 85921 80313 10.62
9 111 47193 134142 142356 10.70
10 133 68114 176056 205273 5.92
11 134 15836 97446 48446 17.05
12 134 44977 117103 135869 6.01
13 165 85439 443947 257472 12.42
14 170 67548 360519 203834 19.14
15 179 49976 155499 151181 7.54
16 184 85533 243763 257887 9.61
17 190 33660 96863 102310 10.04
18 215 102346 329781 308543 28.19
19 218 102718 288163 309680 9.51
20 242 161812 664348 487130 11.70
21 245 52965 198872 160610 5.95
22 264 123276 647996 371676 21.15
23 275 137097 431231 413216 717
24 279 108350 566407 327003 8.79
25 287 78746 249074 238247 48.70
26 288 144656 468541 435984 18.76
27 296 128191 436350 386645 21.19
28 298 106503 308635 321595 7.74
29 383 283343 889911 852710 5.34
30 427 188990 870721 569959 9.05
31 432 187053 529780 564183 17.73
32 442 321216 1248290 966742 9.32
33 443 220506 716678 664619 43.97
34 457 149104 669109 450511 12.73
35 500 138369 593847 418607 24.59
36 532 99579 325242 302461 15.39
37 667 122898 359851 373363 13.92
38 849 668140 2857277 2010363 | 38.04
39 1083 411913 1225846 1243320 9.15
40 1195 247500 1035611 750865 39.37

All data sets are randomly perturbed. Sets (9, 26, 29, 39, 40) are called
(afternoon, sanmarco, annecy, cliffhouse, and korpalace) in order.
The values in the error column are the RMS reprojection errors in pixels.

back-substitution, respectively. In the case of P*, we allowed
one more iteration for the core-EPI to compensate for the
absence of the back-substitution. No robustifier was used in
any bundler. The above notation for describing our tested
algorithms is used in Figs. 6,7, 8, and 9. In Fig. 5, we used a
different notation that describes the type of preconditioning
that we attempted as explained in the next section.

6.1 Experiments on Synthetic Data Sets

Prior to performing experiments that test various settings
for the bundler, it is necessary to fix an appropriate
preconditioner for each CG solver. To determine the best
preconditioner, we investigated the total time (Fig. 5a) and
the number of CG iterations (Fig. 5b) that were required to
solve the RCS in one bundle iteration. In the “(A)_(B)_(C)”
format used in Fig. 5, (A) is the block bandwidth for the
block-based preconditioner H, or a type of scalar-based
preconditioner (JACOBI or SSOR), (B) is the block or scalar
type, and (C) is the variable reordering algorithm used.

1611

According to Fig. 5, “SSOR_S” ((4), w = 1) was clearly
better than “JACOBI_S” (3) when the scalar CG was used,
but it was very difficult to determine the fastest precondi-
tioner among the tested block-based preconditioners. All of
the block-based preconditioned CGs were approximately
10 times faster than the scalar CGs, and even the simplest
one, “1_B” (P = Hy ! i.e., block-based Jacobi precondition-
ing), which preconditioned the main block diagonal only,
saved more iterations than the scalar SSOR preconditioner.
Although the number of CG iterations differed, all of the
tested block-based preconditioners showed similar overall
performance. “1_B” was a good choice for our experimental
purposes because it is independent of orderings and
provides predictable performance (showing a stably in-
creasing plot in Fig. 5). It could also be favorable for
practical implementation because of its simplicity. In all of
our experiments, “1_B” and “SSOR_S” were applied to
each block-based and scalar CG, respectively.

Fig. 6 shows how the computation times increased for six
different bundlers with an increasing number of cameras.
The partial and total times for one iteration were measured
and plotted to compare the distribution of time over four
steps. These were building the RCS, linear solving, back-
substitution, and computing costs. As shown in the left
column of Fig. 6a, the computation time of LDL quickly
dominated the total time as the number of cameras
increased. The right column in Fig. 6a shows that CG took
considerably less time than LDL. The block-based CG was
the fastest and did not dominate the total time. Fig. 6b
shows the time for the “total” of the six bundlers in Fig. 6a,
i.e., the top blue curve, which is grouped by the number of
cameras. It should be noted that the proposed “B_LDL"” and
“B_CG” were the fastest in each category, and “B_CG” took
less than 1 second, even with a highly occupied 576 x 576
block (6 x 6) matrix.

6.2 Experiments on Real Data Sets

In this section, we show that the previously mentioned
results of the block-based LDL and PCG are valid for a
number of real data sets. We also demonstrate the effect of
EPIs and their variants on the convergence of a bundler.

In practice, waiting until the bundler converges com-
pletely is unacceptable and requires too much time in a
massive experiment. Therefore, we allowed every bundler
to proceed for a fixed but sufficiently large number of
iterations. To observe where each bundler converged,
200 iterations were forced to proceed.

We also simulated the case in which a bundler is stopped
when it reaches a fairly low level of error. This type of
analysis provides useful information for the practical use of
bundlers in which the processing time is as important as the
value of the final error. Because our data sets were obtained
at different image resolutions, we rescaled every image such
that its longer side had an 800-pixel dimension and
calculated the RMS reprojection error in pixels. Considering
the final errors obtained by all bundlers, 1.0 pixel RMS
reprojection error was selected as a proper mid-point at
which the performances of all of the bundlers could be
compared and used for the comparison shown in Table 2. For
a few data sets whose minimum error found by all bundlers
were larger than 1.0 pixels, we set the satisfactory level of

1612

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

1y
9

(c) 29. annecy dataset

(e) 40. korpalace dataset

Fig. 4. Five out of 40 data sets were allowed to be published. In each row,

“original point cloud,” “perturbed points and cameras,

” 6 ”

adjusted points and

cameras,” and “filled-in Hessian patterns after the MD and AMD ordering” are depicted from left to right. While the Hessian patterns in (c) and
(d) show high sparsity and imply a dominant sequential relation between cameras, other patterns have multidimensional links between many of the

cameras. The sparsity of (e) is the lowest.

error as the minimum error with the addition of a 0.2 pixel
margin. For the rest of this section, we use “1.0 pixel error” to
represent all of the satisfactory levels of errors.

We tested approximately 40 different block-based and
scalar-based bundler variants with various linear solvers,
orderings, preconditionings, EPIs, and lambda control
strategies. Table 2 shows the set of results for eight
representative bundlers. For the data sets in Groups 5 &
6 (Table 3) including cliffhouse(39) and korpalace(40),
scalar bundlers could not be applied because of the
memory limitations of the Win32 application. The columns
{1, 4, 7, 8} should show an identical number of iterations in
each row (the values in parentheses) if a scalar or block-
based CG computes an ideal solution in the same way that
an LDL does and so should columns {2, 5} and {3, 6}.
Nevertheless, the columns with CG showed differences in
several data sets because of its inexact solution caused by
the stopping criterion. However, those differences had no

crucial effect and still provided faster convergence. As
shown in Table 3, the number of data sets for which CG-
based bundlers reached the desired error first is substan-
tially larger than that of the LDL-based bundlers. The
group-wise statistic in the table also demonstrates that
using CG is more efficient for larger data sets. However, it
is noteworthy that using a block-based LDL is still
favorable for data sets with low complexity (Groups 1 &
2) because it provides an exact solution.

The EPIs reduced the number of iterations very effec-
tively despite the use of the nonrobustified cost. This could
be caused by ill-constrained points or the points having
relatively large reprojection errors. Allowing for one more
core-EPI iteration instead of the back-substitution (“P*”)
increased the convergence speed. We did not explicitly
investigate this phenomenon, but it was probably due to
the different linearizations in which the point updates were
computed. As mentioned in Section 5, the cameras were

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

10 T30 B Rev

-#-20_B_MD
| —+-10_B_REV
——10_B_MD
[=<2 _B_REV
~+-2_B_MD
-1 B
SSOR_S
JACOBI_S

-

0.001
36 64 100 144 196 256 324 400 484 576
Number of Cameras

(@)

NONE_S |
JACOBLS |
SSOR_S
18

2.8 MD |
2_B_REV
10_B_MD
10_B_REV
20_B_MD
20_B_REV

m36 m64 mI100 m144
w196 w256 324 400
484 576

o

500 1000 1500

(b)

Fig. 5. (a) Time for CG convergence (sec) versus number of cameras.
An explanation of the “(A)_(B)_(C)” format of legend is given in the
beginning of Section 6.1. (b) The number of CG iterations needed to
converge for various CG settings. SSOR and block-based precondi-
tioners require approximately 3 times fewer iterations for convergence
than NONE and JACOBI.

better constrained and, by their nature, they settled down
quickly. The core-EPI used the linearization that was
computed with the updated cameras, whereas the back-
substitution uses the linearization computed with the
previous cameras. Therefore, we speculate that the pro-
posed EPIs performed better because it made the points
follow the recently updated cameras, which were more
reliable than the previous points and were placed better
than the previous cameras. Considering the fact that the
bundlers with EPIs rarely failed to reach 1.0 pixel error
(failures are counted and shown as the numbers in
parentheses in Table 3), EPIs are helpful not only for
saving iterations, but also for achieving better convergence.

The times required for one iteration of the five free data
sets are also compared in Fig. 7a as they were in Fig. 6b for
the synthetic data sets. Aside from the reduced number of
iterations, the EPIs had low costs, and our block-based
bundlers (both direct LDL and iterative CG) were faster
than the scalar ones even with the EPIs.

For the linear solving, the number of cameras and the
sparsity of the RCS are relevant. While the former affects the
complexity of the entire bundle process, the latter mainly
affects the linear solving. Therefore, the gap between the
scalar bundlers and the block-based bundlers increases as the
number of cameras increases, and the dense Hessian matrix
widens the gap between LDL and CG. A direct comparison
for the time for linear solving in Fig. 7b may help the reader to
understand this effect. korpalace and cliffhouse have similar
complexities, but korpalace has a denser Hessian matrix than
cliffhouse (refer to Table 1 and Fig. 4). korpalace causes a
much larger gap between the “B_LDL” and “B_CG” than
cliffhouse in Fig. 7. This difference means that the proposed

1613

—~BuildingRCS -=-Linear Solving Backsub -=Cost Function —-total
100 100 |

0.01 /_/f/ 0.01

36 64 100 144 196 256 324 400 484 576

36 64 100 144 196 256 324 400 484 576

01 1 - P 01 1 - —~ 5
0.01 / 0.01 A -
0.001 7 . —r—y 3 0001 2 —— v

36 64 100 144 196 256 324 400 484 576 36 64 100 144 196 256 324 400 483 576

1+ .-
01 /

36 64 100 144 196 256 324 400 484 576

36 64 100 144 156 256 324 400 484 576

(a)

mB_DL mS_DL ®LIDL mBCG mSCG mLCG

36 64 100 144 196 256 324 400 484 576
Number of Cameras

(b)

Fig. 6. Time (sec) of each step in one iteration for the synthetic data
sets. (a) Block-based (top), scalar-based (middle), and conventional
(bottom) bundlers with LDL (left) and CG (right) as the linear solvers.
Minimum degree ordering was used for B_LDL and S_LDL. (b) Total
time with respect to the number of cameras for six bundlers is shown.

block-based preconditioned CG becomes more crucial when
problems not only get bigger but also become denser.

Fig. 8a shows the entire version of Table 2. In this case,
lower is better, and the lines of “B_CG_P*” and “B_LDL_P*”
are obviously the two lowest ones in all of the data sets. The
actual gaps between the plotted lines are substantial (the
“z’-axis for time is in a logarithmic scale). The overall
performance differs significantly between the scalar and the
proposed approaches, and “B_CG_P*” shows the best result
over all data sets in terms of time and convergence speed.

We also show that using the exact minimum degree
ordering and block-based Jacobi preconditioner for LDL
and CG-based bundlers, respectively, is suitable. A com-
parison focused on variable ordering is depicted in Fig. 8b.
It should be noted that the four bundlers that are compared
in Fig. 8b followed one common convergence path and only
differed in time because the ordering did not affect the
result of the LDL solving. Therefore, their plotted lines
converge. Because of the increasing complexity, the
absolute gap between lines widens in the latter data sets.

1614

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

TABLE 2

Elapsed Time (Sec) and Number of Iterations (in Parentheses) to Reduce RMS Reprojection Error to a Satisfactory Level
(Mostly 1.0 Pixels)

¢ Block-based LDL (B_LDL) Block-based CG (B_CG) S_LDL S CG
5 BS only | BS&EPI (_P) | EPI only (_P¥) BS only | BS&EPI (_P) [EPI only (_P¥) BS only BS only
1 048 (17) 039 (9) 0.13 @ 053 (17) 041 (3) 014) 056 (17) 057 (17)
2 0.12 (1) 0.20 (1) 0.18 (1) 0.15 (1) 0.20 (1) 0.18 (1) 0.13 (1) 0.13 (1)
3 17.23 (131) 6.91 (36) 11.65 (65) 18.69 (143) 7.43 (39) N/A 23.49 (131) 18.65 (131)
4 2.89 (89) 0.65 (12) 0.14 () 3.4 (106) 0.64 (12) 0.15 (2) 7.82 (89) 4.49 (99)
5 0.24 (11) 0.15 (5) 0.04 (1) 0.23 (11) 0.16 (5) 0.05 (1) 0.85 (11) 0.42 (11)
6 0.17 (1) 030 (1) 0.28 (1) 0.16 (1) 030 (1) 0.28 (1) 023 (1) 0.23 (1)
7 157 (23) 1.82 (19) 0.15 (1) 133 (23) .61 (18) 0.15 (1) 3.06 (23) 1.81 (23)
8 0.32 (5) 0.13 (1) 0.13 (1) 0.30 (5) 0.14 (1) 0.13 (1) 0.73 (5) 0.51 (5)
9 2.89 (36) 0.67 (5) 0.20 (1) 2.77 (36) 0.67 (5) 0.21 (1) 6.14 (36) 3.58 (36)
10 031 (3) 0.25 (1) 0.25 (1) 0.52 (5) 026 (1) 0.26 (1) 0.81 (3) 055 (2)
11 1.53 (17) 1.18 (10) 0.41 (3) 1.53 (17) 1.16 (10) 0.4 (3) 431 (17) 2.67 (17)
12 0.16 (2) 0.18 (1) 0.18 (1) 0.16 (2) 0.18 (1) 0.18 (1) 049 (2) 032 (2)
13 1.81 (5) 121 (2) 0.69 (1) 1.78 (5) 1.20 (2) 0.69 (1) 3.19 (5) 219 (5)
14 || 46405 0.99 (2) 0.55 (1) 426 (15) 0.95 (2) 0.55 (1) 9.05 (15) || 53.38 (164)
15 || 207 (13) 1.15 (5) 0.30 (1) 1.46 (13) 0.91 (5) 0.26 (1) 6.43 (13) 2.63 (13)
16 1.74 (11) 0.62 (2) 0.38 (1) 1.56 (11) 0.59 (2) 037 (1) 621 (11) 2.86 (11)
17 || 322 42) 0.27 (2) 0.39 (3) 2.52 (42) 0.65 (6) 0.39 (3) 21.53 (42) 452 (29)
18 N/A 34.80 (10D) N/A N/A 59.67 (186) 57.80 (192) N/A N/A
19 1.48 (8) 0.48 (1) 043 (1) 1.49 (9) 0.69 (2) 0.43 (1) 6.80 (8) 2.75 (8)
20 || 14.40 (26) 5.07 (6) 1.16 (1) 13.63 (26) 429 (6) 1.01 (1) 37.46 (26) || 16.15 (26)
21 || 1176 (69) 461 (20) 0.84 (3) 9.56 (69) 4.08 (20) 0.97 (4) 7951 (69) || 1939 (69)
2 || 4475 (62) 215 (2) 227 (2) 37.63 (62) 2.86 (3) 215 (2) 107.67 (62) || 45.43 (65)
23 5.64 (8) 1.86 (2) 1.05 (1) 227 (7) 0.74 (1) 0.73 (1) 13.59 (8) 434 (8)
24 || 1119 17) 425 (5) 1.01 (1) 9.33 (17) 3.73 (5) 0.95 (1) 33.36 (17) || 1297 (17)
25 271 (3) 2.10 (2) 2.09 (2) 0.85 (3) 0.86 (2) 0.87 (2) 5.45 (3) 352 (3)
26 || 43.74 (125) 6.09 (12) 443 (8) 36.32 (126) 5.46 (12) 4.04 (8) 241.79 (125) || 64.70 (125)
27 || 26.00 (75) 3.14 (6) 0.70 (1) 20.71 (72) 2.93 (6) 0.68 (1) 155.14 (75) || 38.99 (75)
28 || 21.72 (94) 2.19 (6) 121 (3) 17.06 (94) 1.97 (6) 117 (3) 185.99 (94) || 37.44 (94)
29 || 41.67 (78) 2.86 3) 1.25 (1) 1037 (78) 595 (7) 127 (D) 32821 (78) || 66.12 (78)
30 || 1935 (6) 3.90 (1) 3.74 (1) 6.09 (3) 2.66 (1) 2.50 (1) 44.07 (6) 21.70 (12)
31 415 (6) 292 (3) 1.18 (1) 228 (6) 213 (3) 0.96 (1) 34.56 (6) 8.53 (6)
32 N/A 12.11 (7) 227 (1) N/A 9.85 (7) 1.99 (1) N/A N/A
33 N/A 44,58 (53) 28.92 (35) N/A 41.70 (60) 22.56 (33) N/A N/A
34 || 3827 (18) 37.14 (16) 2.59 (1) 12.98 (18) 9.35 (10) 147 (1) 12493 (18) || 22.52 (18)
35 N/A 115.89 (34) 454 (3) N/A 20.70 (27) 328 (3) N/T N/T
36 || 186.63 @5) | 88.90 (21) 436 (1) 2034 45) | 1278 (21) 112 (1) N/T N/T
37 N/A 25.95 (48) 31.43 (61) N/A 20.04 (57) 22.38 (67) N/T N/T
38 || 13262 (149) | 146.00 (15) 1095 (1) 34521 (149) | 50.00 (15) 181 (D N/T N/T
39 N/A 44.61 (28) 409 (2) N/A 33.18 (28) 3.72 (2) N/T N/T
40 N/A 1701.23 (94) 649.50 (36) N/A 186.96 (94) 81.67 (46) N/T N/T

Bold font indicates the minimum time for each row, and N/A stands for the case in which the desired pixel error is not achieved within 200 iterations.

N/T means “not tested.”

The block-based LDL with the exact minimum degree
ordering was clearly better than the one using reverse
Cuthill-McKee ordering (REV) and was the fastest.

Another comparison that was focused on precondition-
ing is depicted in Fig. 8c. As shown previously in Fig. 5, the
bundlers using block-based CG with various precondi-
tioners showed similar performances. This proves that
using the block-based Jacobi preconditioner is also a good
choice for real data sets.

In addition, we plotted convergence curves (time versus
cost curves) of the eight bundlers in Table 2 for all real data
sets to verify that using CG and EPIs is safe in terms of the
final convergence. The plots for the five free data sets are
shown in Fig. 9. We verified that bundlers using EPIs (“P”
and “P*”) achieved lower minima than bundlers using back-
substitution alone over all data sets. During this process, we
observed an interesting case. For a few data sets including
sanmacro and korpalace, the proposed bundlers using EPIs

TABLE 3
Group-Wise Counting of Data Sets for Which Each Bundler Is the Fastest or Fails to Get Close to the Minimum Error,
i.e., “N/A in the Table 2” (in Parentheses)

Block-based LDL (B_LDL) Block-based CG (B_CG) S_LDL S CG
group BS only [BS&EPL (P) | EPLonly (P) || BS only | BS&EPL (P) | EPLonly (P) || BS only || BS only
group 1 & 2 1(0) 20 60 2 (0) 00 6 00 00
group 3&4 || 0(3) 1 (0) 3(1) 1(3) 0 (0) 7 (0) 0 (3) 0 (3)
group 5& 6 || 0 (4) 0 (0) 0 (0) 0 (4) 1 (0) 10 (0) 0 (N/A) || 0 (N/A)
total () 300) 9 (1) 30) 1(0) 23 (D) 0 (N/A) [[0(N/A)

N/A in this table means that counting is not possible.

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

100 - 100
mB_LDL mB_LDL mB_CG
=B_LDL P s DL ®mS_CG
uB_LDL P*
10 | WB_CG =
mB_CG_P
"B CG_P*
O &1
® o
=2 E
> '_0.1
0.1
0.01
0.01 - 0.001
N o A o o
S S g o & - T T
Q}°° é@‘ Qoe’ &\o Q%'z’ @00 63,(“ é@“ R ,}'b"
£8 & & N 'b(& S ? \&«Q
(a) (b)

Fig. 7. Time (sec) for (a) one bundle iteration and (b) one linear solving
of the five free data sets. As explained, the scalar solver could not be
performed on the two data sets on the right.

10) = = = = = = AT

—B LDL
—B_LDL P i
~-B_LDL_P* |

|

” A I R A\J/‘\i ”ri
= BEANY/\ \§ 1

—B_CG_P

~+B_CG_P*
J|—s_LbL
“i—s_ca

= NOT_AVAILABLE

Tg
= T
T
€ \
=

————

—
=

2

<
=

E)
Datasets

(a)

—B_LDL_P_MD !
B_LDL_P_REV |

—B_LDL_P_NONE

""§——S_LDL_P_MD e e ‘ e ‘ // %

- — NOT_AVAILABLE| A il

N
/
{

\/

<
<

=
S
S
e

/“
<
<

<<

E)
Datasets
(b)

—B_CG_P"_1

—B_CG_P"_2_MD

~+-B_CG_P"_10_MD

wl|—B_CcG P2 REV

——B_CG_P*_10_REV

——S_CG_P*_SSOR
B_LDL P

w0 ="NOT_AVAILABLE

)
R

—
————
N
=
—
D vy R
Y "

~

E)
Datasets

(©

Fig. 8. Time to reach 1.0 pixel RMS reprojection error. The plotted lines
meet “NOT_AVAILABLE” when the corresponding setting of the bundler
cannot achieve 1.0 pixel error for the data sets or was not tested.
(a) Eight representative bundlers, (b) bundlers using LDL with different
reorderings, and (c) bundlers using CG with different preconditioners are
compared.

with back-substitution (“P”) reached a lower level of error
than bundlers using EPIs (“P*”) alone even though the
“P*”-bundlers reduced errors more rapidly during the early

1615

S

N Time(s)

(a) afternoon(9)

RMS Error (pix)

~

—B_LDL
——B_LDL |
——B_LDL P*
B_CG
—B. CG.P
——B_CG_P*
S LDL
—S_CG

RMS Error (pix)

"I'u\‘me(s)
(b) sanmarco(26)

> H ——B_LDL
——B_LDL

—e—B_LDL P*

X\\
—B_CG_P
~ ——B_CG_P*
S_LDL
—S_CG
R A { \

Time(s)

RMS Error (pix)

10°

(c) annecy(29)

- . ' —B LDL
ﬂ, —B DL P
——B LDL P*

RMS Error (pix)

Time(s)

(d) cliffhouse(39)

OO

RMS Error (pix)

10°
Time(s)

(e) korpalace(40)

Fig. 9. Convergence plots for the five free data sets. All plots show the
time and the error on the = and y-axes, respectively, using a log scale.
The final errors of bundlers with EPIs (“P” and “P*”) are normally
equivalent to each other and lower than those of other bundlers. In terms
of convergence speed, bundlers with EPIs only (“P*”) are the fastest.

iterations. This indicates that solving and updating the
cameras and points together (back-substitution) might help
to find a narrow pathway to the lower minimum. Therefore, a
hybrid use of “P*” and “P”- bundlers could be considered to
accomplish the fastest convergence speed accompanied with
the lowest error if a proper switching scheme is found. From
another perspective, the EPIs’ fast movement during the
early iterations could have led the bundler to an unpromising
minimum. In this case, greater damping of the EPIs could also
be considered to slow the movement.

1616

7 CONCLUSION AND FUTURE WORK

This paper provides three main contributions, namely,
adapting a block structure to deal with fixed and tied
variables, the resulting block-based linear solvers, and the
novel EPIs. A carefully managed block structure can
maintain the desired homogeneity and allow the use of
BLAS3 and efficient memory handling. It also supports fast
reordering and customized sparse linear solving, such as
the block-based preconditioned CG, of which the effective-
ness and the stability are proven by our experiments.
Concurrently, the EPIs successfully sync the points to the
camera updates so that the entire bundle iterations are not
wasted. Finally, the bundlers that simultaneously utilize all
the proposed contributions outperform the previous bund-
lers tested in the experiments. The block-based precondi-
tioned CG with EPIs, which is the best bundler, achieves
substantial improvement, particularly when the complexity
of a problem is high. Moreover, the proposed bundler can
be used in concert with other approaches that modify how
and when the bundler is invoked.

There are several issues that should be addressed in a
future study. First, the effect of the A control strategy has
not been fully investigated. A comparison between the
suggestion given in [3] and LMs with various strategies
would also be interesting. Another task is parallelizing the
proposed method. All of our substeps except for linear
solving can be computed in parallel in a straightforward
manner with the exception of linear solving. However, it
is easy to parallelize CG and the block Jacobi precondi-
tioner. Once parallelization has been implemented, the
computational speed should further be improved. Finally,
a method to mix the back-substitution with the core-EPI
could obtain a faster cost decrease and a lower minimum
simultaneously.

ACKNOWLEDGMENTS

This work was partially done while Yekeun Jeong was an
intern at Microsoft Research. This work was supported by
the MKE, Korea, under the Human Resources Development
Program for Convergence Robot Specialists support pro-
gram supervised by the NIPA (NIPA-2011-C7000-1001-
0007) and a National Research Foundation grant funded
by the Korean government (MEST) (No. 2011-0018250).

REFERENCES

[1] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
Adjustment—A Modern Synthesis,” Proc. Int'l Workshop Vision
Algorithms: Theory and Practice, B. Triggs, A. Zisserman, and
R. Szeliski, eds.,, pp. 298-372, 2000.

[2] M. Lourakis and A. Argyros, “The Design and Implementation of
a Generic Sparse Bundle Adjustment Software Package Based on
the Levenberg-Marquardt Algorithm,” Technical Report 340, Inst.
of Computer Science-FORTH, Heraklion, Crete, Greece, Aug.
2004.

[3] M. Lourakis and A. Argyros, “Is Levenberg-Marquardt the Most
Efficient Optimization Algorithm for Implementing Bundle
Adjustment?” Proc. IEEE Int’l Conf. Computer Vision, pp. 1526-
1531, 2005.

[4] K. Ni, D. Steedly, and F. Dellaert, “Out-of-Core Bundle Adjust-
ment for Large-Scale 3D Reconstruction,” Proc. IEEE Int’l Conf.
Computer Vision, 2007.

1]

o]

(7]

(8]

B

(10]

[11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]
[19]

[20]
(21]

(22]

(23]
(24]
[25]
[20]

(271

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

M. Byrod and K. Astrom, “Bundle Adjustment Using Conjugate
Gradients with Multiscale Preconditiong,” Proc. British Machine
Vision Conf., 2009.

S. Agarwal, N. Snavely, I. Simon, SM. Seitz, and R. Szeliski,
“Building Rome in a Day,” Proc. IEEE Int’l Conf. Computer Vision,
2009.

S. Agarwal, N. Snavely, SM. Seitz, and R. Szeliski, “Bundle
Adjustment in the Large,” Proc. European Conf. Computer Vision,
vol. 6312, pp. 29-42, 2010.

M. Byrod and K. Astrom, “Conjugate Gradient Bundle Adjust-
ment,” Proc. European Conf. Computer Vision, Part II, vol. 6312,
pp. 114-127, 2010.

K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” The Quarterly of Applied Math., vol. 2,
pp. 164-168, 1944.

H.-Y. Shum, Z. Zhang, and Q. Ke, “Efficient Bundle Adjustment
with Virtual Key Frames: A Hierarchical Approach to Multi-
Frame Structure from Motion,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, pp. 2538-2543, 1999.

D. Steedly and I.A. Essa, “Propagation of Innovative Information
in Non-Linear Least-Squares Structure from Moion,” Proc. IEEE
Int’l Conf. Computer Vision, pp. 223-229, 2001.

D. Steedly, I.A. Essa, and F. Dellaert, “Spectral Partitioning for
Structure from Motion,” Proc. IEEE Int’l Conf. Computer Vision,
pp- 996-1003, 2003.

E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Real Time Localization and 3D Reconstruction,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition, pp. 363-370, 2006.
C. Engels, H. Stewénius, and D. Nistér, “Bundle Adjustment
Rules,” Proc. Conf. Photogrammetric Computer Vision, Sept. 2006.
G. Klein and D. Murray, “Parallel Tracking and Mapping for
Small AR Workspaces,” Proc. Int'l Symp. Mixed and Augmented
Reality, 2007.

S. Holmes, G. Sibely, G. Klein, and D.W. Murray, “A Relative
Frame Representation for Fixed-Time Bundle Adjustment in SfM,”
Proc. IEEE Int’l Conf. Robotics and Automation, 2009.

A. Eudes and M. Lhuillier, “Error Propagations for Local Bundle
Adjustment,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, 2009.

“Photosynth,” http://photosynth.net, 2012.

Y. Jeong, D. Nistér, D. Steedly, R. Szeliski, and I-S. Kweon,
“Pushing the Envelope of Modern Methods for Bundle Adjust-
ment,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition,
2010.

R.I Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, second ed. Cambridge Univ. Press, 2004.

D.C. Brown, “The Bundle Adjustment—Progress and Prospects,”
Int’l Archives of Photogrammetry, vol. 21, no. 3, pp. 3-33, 1976.

F. Dellaert and M. Kaess, “Square Root Sam: Simultaneous
Location and Mapping via Square Root Information Smoothing,”
Int’l]. Robotics Research, vol. 25, pp. 1181-1203, 2006.

G. Golub and C.V. Loan, Matrix Computations, Johns Hopkins
Studies in Math. Sciences, third ed. JHU Press, 1996.

N. Snavely, S. Seitz, and R. Szeliski, “Photo Tourism: Exploring
Photo Collections in 3D,” ACM Trans. Graphics, vol. 25, no. 3,
pp. 835-846, 2006.

T. Davis, Direct Methods for Sparse Linear Systems. SIAM, 2006.
Y. Saad, Iterative Methods for Sparse Linear Systems, second ed.
SIAM, 2000.

M.J. Black and A. Rangarajan, “The Outlier Process: Unifying Line
Processes and Robust Statistics,” Proc. IEEE CS Conf. Computer
Vision and Pattern Recognition, 1994.

JEONG ET AL.: PUSHING THE ENVELOPE OF MODERN METHODS FOR BUNDLE ADJUSTMENT

Yekeun Jeong received the BS degree in
electrical engineering and computer science from
the Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 2006,
where he is currently working toward the PhD
degree in the field of computer vision and
robotics. His research interests include structure
from motion, bundle adjustment, and their appli-
cations to large-scale 3D modeling with multiple
sensors and mobile robots. He is a recipient of
the Samsung Human-tech Thesis Prize Bronze Award and the National
Research Foundation of Korea scholarship. He is a student member of
the IEEE.

David Nistér received the PhD degree in
computer vision, numerical analysis, and com-
puting science from the Royal Institute of
Technology (KTH), Stockholm, Sweden, with
the thesis “Automatic Dense Reconstruction
from Uncalibrated Video Sequences,” in 2001.
He is a principal scientist and head of the
Augmented Reality group at Bing Mobile, Micro-
soft. His research interests include computer
vision, computer graphics, structure from mo-
tion, multiple view geometry, Bayesian formulations, tracking, recogni-
tion, image and video compression. Before joining Microsoft, he was an
assistant professor at the Center for Visualization and Virtual Environ-
ments and the Computer Science Department at the University of
Kentucky. He is a recipient of the US National Science Foundation
(NSF) CAREER Award, and was a principal investigator on the US
Defense Advanced Research Projects Agency (DARPA) project
Urbanscape. He was a researcher in the Vision Technologies
Laboratory, Sarnoff Corporation, Princeton, New Jersey. He worked at
Visual Technology, Ericsson Research, Stockholm, Sweden, at Prosol-
via Clarus, Gothenburg, Sweden, specializing in virtual reality, and at
Compression Lab, Ericsson Telecom. He is a member of the IEEE and
American Mensa.

Drew Steedly received the MSc degree in
electrical engineering in 1996 and the PhD
degree in computer science in 2004, both from
the Georgia Institute of Technology. He has
worked as a scientist and software architect at
Microsoft since 2004. At Microsoft, he has
worked on multiple image stitching projects, led
the development of the 3D reconstruction soft-
ware in Photosynth, and been the photogram-
metry architect for the Bing maps aerial and
streetside mapping projects. He has published numerous papers in
computer vision, 3D reconstruction from images, and image stitching.
From 1996 to 2004, he worked at Integrated Device Technology as both
a CMOS design engineer and design automation engineer. He is a
member of the |IEEE.

1617

Richard Szeliski received the PhD degree in
computer science from Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, in 1988. He
leads the Interactive Visual Media Group at
Microsoft Research, which does research in
digital and computational photography, video
scene analysis, 3D computer vision, and image-
based rendering. He joined Microsoft Research
in 1995. Prior to Microsoft, he worked at Bell-
Northern Research, Schlumberger Palo Alto
Research, the Artificial Intelligence Center of SRI International, and
the Cambridge Research Lab of Digital Equipment Corp. He has
published more than 150 research papers in computer vision, computer
graphics, medical imaging, and neural nets, as well as the books
Computer Vision: Algorithms and Applications and Bayesian Modeling of
Uncertainty in Low-Level Vision. He was a program committee chair for
the IEEE International Conference on Computer Vision (ICCV ’01) and
the 1999 Vision Algorithms Workshop. He served as an associate editor
of the IEEE Transactions on Pattern Analysis and Machine Intelligence
and on the editorial board of the International Journal of Computer
Vision and is also a founding editor of Foundations and Trends in
Computer Graphics and Vision. He is a fellow of the ACM and the IEEE.

In-So Kweon received the BS and MS degrees
in mechanical design and production engineer-
ing from Seoul National University, Seoul,
Korea, in 1981 and 1983, respectively, and the
PhD degree in robotics from the Robotics
Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, in 1990. He worked for the
Toshiba R&D Center, Japan, and joined the
Department of Automation and Design Engi-
neering, KAIST, Seoul, Korea, in 1992, where he
is now a professor with the Department of Electrical Engineering. He is a
recipient of the best student paper runner-up award at the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’'09).
His research interests are in camera and 3D sensor fusion, color
modeling and analysis, visual tracking, and visual SLAM. He was the
program cochair for the Asian Conference on Computer Vision
(ACCV ’07) and is the general chair for ACCV ’12. He is also on the
editorial board of the International Journal of Computer Vision. He is a
member of the IEEE and the KROS.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

