Learning from the Wisdom of Crowds by Minimax Entropy

Denny Zhou, John Platt, Sumit Basu and Yi Mao Microsoft Research, Redmond, WA

Outline

- 1. Introduction
- 2. Minimax entropy principle
- 3. Future work and conclusion

1. Introduction

Machine Learning Meets Crowdsourcing

- To Improve a machine learning model:
 - Add more training examples
 - Create more meaningful features
 - Invent more powerful learning algorithms

More and more efforts, less and less gain

Machine Learning Meets Crowdsourcing

- To Improve a machine learning model:
 - Adding more training examples
 - Creating more meaningful features
 - Inventing more powerful learning algorithms

More and more efforts, less and less gain

Crowdsourcing for Labeling

Low Cost, but also Low Quality

Norfolk Terrier

Norwich Terrier

Irish Wolfhound

Scottish Deerhound

Image Labeling Average worker accuracy: 68%

amazonmechanical turk

(Stanford dogs dataset)

Problem Setting and Notations

Workers:
$$i = 1, 2, \dots, m$$

Items: $j = 1, 2, \dots, n$
Categories: $k = 1, 2, \dots, c$

Response matrix $Z_{m \times n \times c}$

- $z_{ijk} = 1$, if worker *i* labels item *j* as category *k*
- $z_{ijk} = 0$, if worker *i* labels item *j* as other (not *k*)
- *z_{ijk}* = *unknown*, if worker *i* does not label item *j*

Goal: Estimate the ground truth $\{y_{jk}\}$

Toy Example: Binary Labeling

	ltem 1	ltem 2	ltem 3	ltem 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 2	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

Problem: What are the true labels of the items?

A Simple Method: Majority Voting

	ltem 1	ltem 2	Item 3	ltem 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 2	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

By majority voting, the true label of item 4 should be class 1:

- # {workers labeling it as class 1} = 3
- # {workers labeling it as class 2} = 2

Improve: More skillful workers should have more weight

Dawid & Skene's Method

 Assume that each worker is associated with a c × c confusion matrix

$$\{p_{kl}^{(i)} = \text{Prob}[z_{ij} = l | y_j = k, i]\}$$

- For any labeling task, the label by a worker is generated according to her confusion matrix
- Maximum Likelihood Estimation (MLE): jointly estimate confusion matrices and ground truth
- Implementation: EM algorithm

Probabilistic Confusion Matrices

	ltem 1	ltem 2	ltem 3	ltem 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 2	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

Assume that the true labels are:

Class $1 = \{\text{item 1, item 2, item 3}\}$ Class $2 = \{\text{item 4, item 5, item 6}\}$

	Class 1	Class 2			
Class 1	1	0			
Class 2	2/3	1/3			

EM in Dawid & Skene's Method

- Initialize the ground truth by majority vote
- Iterate the following procedure till converge:

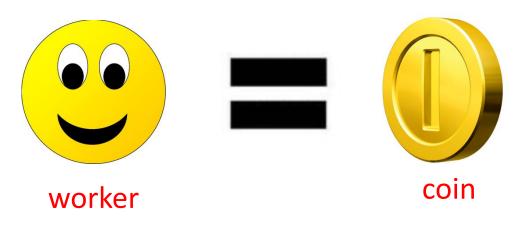
 Estimate the worker confusion by using the estimated ground truth
 - Estimate the ground truth by using the estimated worker confusion

Simplified Dawid & Skene's Method

Each worker *i* is associated with a single number $p_i \in [0,1]$ such that $Prob[z_{ij} = y_j | i] = p_i$ $Prob[z_{ij} \neq y_j | i] = 1 - p_i$

Simplified Dawid & Skene's Method

Each worker *i* is associated with a single number $p_i \in [0,1]$ such that $Prob[z_{ij} = y_j | i] = p_i$ $Prob[z_{ij} \neq y_j | i] = 1 - p_i$



2. Minimax Entropy Principle

Our Basic Assumption

	item 1	item 2		item n
worker 1	z_{11}	z_{12}	•••	z_{1n}
worker 2	z_{21}	z_{22}	•••	z_{2n}
•••	•••	•••	•••	•••
worker m	z_{m1}	z_{m2}	•••	z_{mn}

 $\overline{}$

Observed labels

	item 1	item 2	 item n
worker 1	π_{11}	π_{12}	 π_{1n}
worker 2	π_{21}	π_{22}	 π_{2n}
••••	•••	•••	 •••
worker m	π_{m1}	π_{m2}	 π_{mn}

unobserved distributions

Our Basic Assumption

	item 1	item 2	•••	item n
worker 1	z_{11}	z_{12}		z_{1n}
worker 2	z_{21}	z_{22}		z_{2n}
•••	•••	•••		•••
worker m	z_{m1}	z_{m2}		z_{mn}

	item 1	item 2	•••	item n
worker 1	π_{11}	π_{12}	•••	π_{1n}
worker 2	π_{21}	π_{22}		π_{2n}
•••	•••	•••	•••	• • •
worker m	π_{m1}	π_{m2}	•••	π_{mn}

Separated distribution per work-item!

Our Basic Assumption

	item 1	item 2		item n
worker 1	z_{11}	z_{12}	•••	z_{1n}
worker 2	z_{21}	z_{22}		z_{2n}
•••	•••		.	•••
worker m	z_{m1}	z_{m^2}		z_{mn}
	iter	item 2		item n
worker 1	11	π_{12}		π_{1n}
worker 2	π_{21}	π_{22}		π_{2n}
••••	•••	•••		
worker m	π_{m1}	π_{m2}	•••	π_{mn}

Separated distribution per work-item!

Maximum Entropy

• To estimate a distribution, it is typical to use the maximum entropy principle

$$\max_{\pi} - \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{c} \pi_{ijk} \ln \pi_{ijk}$$

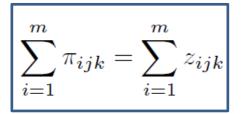
E. T. Jaynes

Column and Row Matching Constraints

	item 1	item 2	•••	item n
worker 1	z_{11}	z_{12}		z_{1n}
worker 2	z_{21}	z_{22}		z_{2n}
•••	•••	•••		•••
worker m	z_{m1}	z_{m2}	•••	z_{mn}

	item 1	item 2	 item n
worker 1	π_{11}	π_{12}	 π_{1n}
worker 2	π_{21}	π_{22}	 π_{2n}
	•••	•••	 •••
worker m	π_{m1}	π_{m2}	 π_{mn}

Column Constraints



For each item:

Count # workers labeling it as class 1 Count # workers labeling it as class 2

column matching

	ltem 1	ltem 2	Item 3	Item 4	Item 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 2	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

Row Constraints

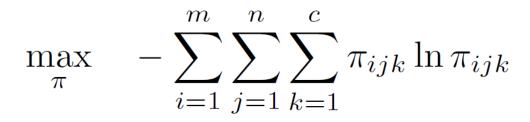
$$\sum_{j=1}^{n} y_{jl} \pi_{ijk} = \sum_{j=1}^{n} y_{jl} z_{ijk}$$

For each worker: Count # misclassifications from class 1 to 2 Count # misclassifications from class 2 to 1

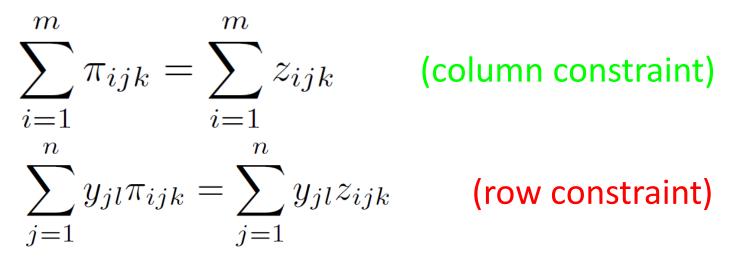
row matching

	ltem 1	ltem 2	ltem 3	ltem 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 1	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

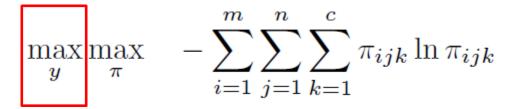
Maximum Entropy



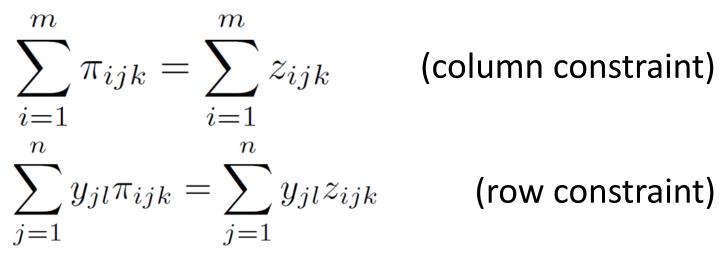
Subject to



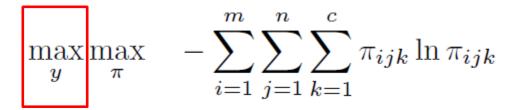
To Estimate True Labels, Can We ...



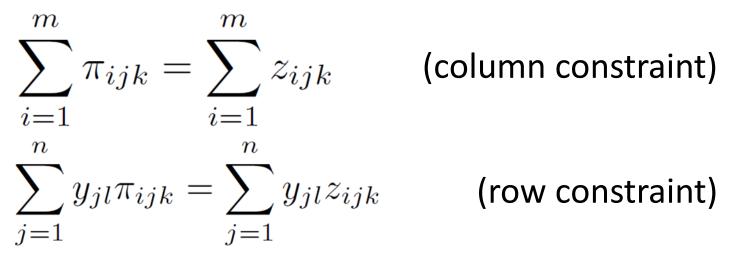
Subject to



To Estimate True Labels, Can We ...

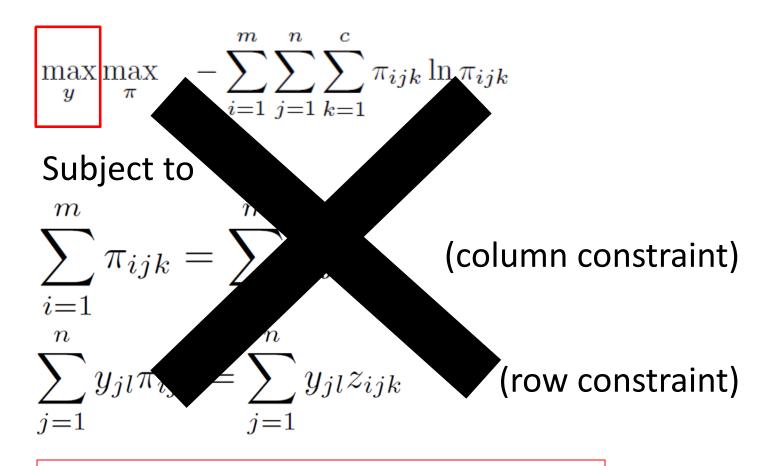


Subject to



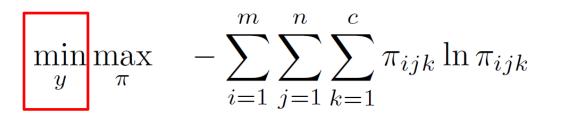
Leading to a uniform distribution for $\{y_{jl}\}$

To Estimate True Labels, Can We ...

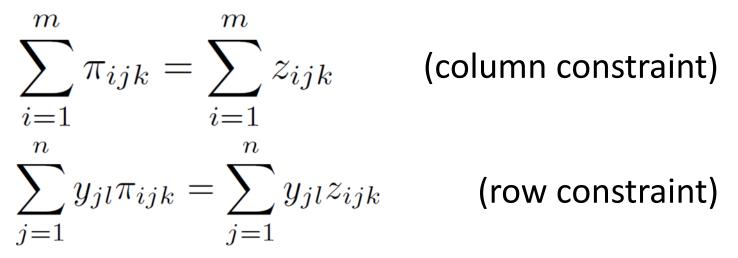


Leading to a uniform distribution for $\{y_{jl}\}$

Minimax Entropy Principle



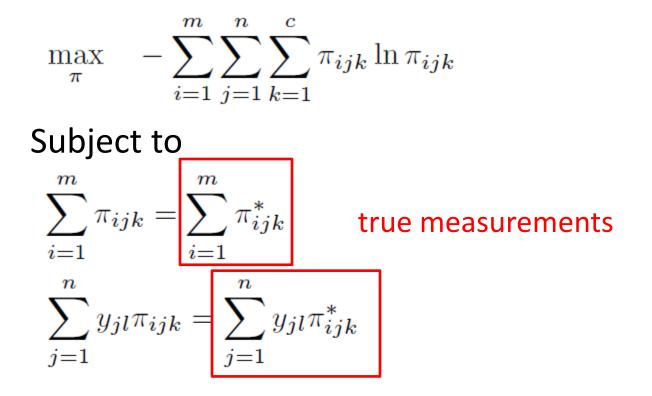
Subject to



making π_{ij} "peaky" means that z_{ij} is the least random given y_{jl} .

Justification of Minimum Entropy

Assume true measurement are available:



Justification of Minimum Entropy

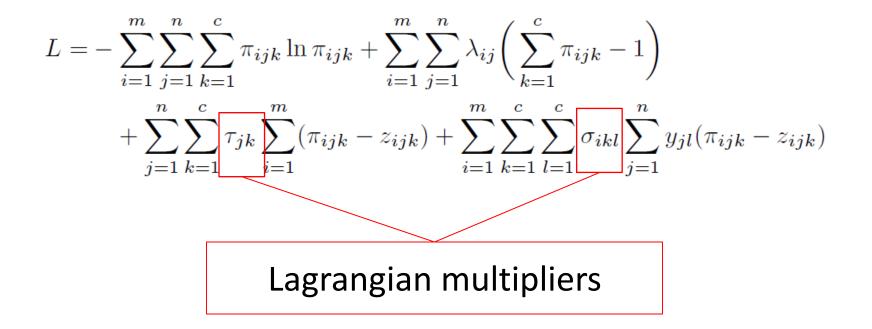
• *Theorem*. Minimizing the KL divergence

$$\ell(\pi^*, \pi) = \sum_{i=1}^{m} \sum_{j=1}^{n} D_{\mathrm{KL}}(\pi_{ij}^* \parallel \pi_{ij})$$

is equivalent to minimize entropy.

Lagrangian Dual

• The Lagrangian dual can be written as



Lagrangian Dual

• KKT conditions lead to a closed-form:

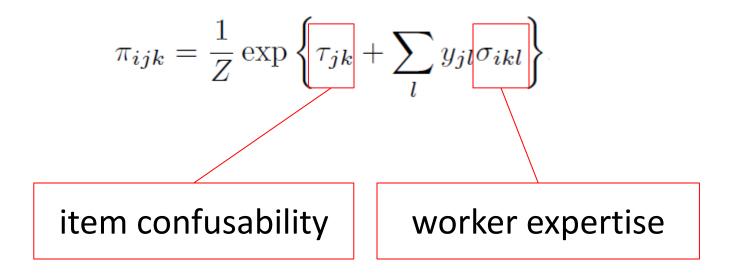
$$\pi_{ijk} = \frac{1}{Z} \exp\left\{\tau_{jk} + \sum_{l} y_{jl}\sigma_{ikl}\right\}$$

Z is the normalization factor given by

$$Z = \sum_{k} \exp\left\{\tau_{jk} + \sum_{l} y_{jl}\sigma_{ikl}\right\}$$

Worker Expertise & Task Confusability

• Explanation of dual variables:



Measurement Objectivity: Item

- Objective item confusability. The difference of difficulty between labeling two items should be independent of the chosen workers
- Mathematical formulation. Let

$$c(i,j,k) = \frac{\mathbb{P}(Z_{ij} = k | Y_j = l)}{\mathbb{P}(Z_{ij} = l | Y_j = l)}$$

Then the ratio c(i, j, k)/c(i', j, k) should be Independent of the choices of i, i'

Measurement Objectivity: Worker

- Objective worker expertise. The difference of expertise between two workers should be independent of the item being labeled
- Mathematic Formulation. Let

$$c(i,j,k) = \frac{\mathbb{P}(Z_{ij} = k | Y_j = l)}{\mathbb{P}(Z_{ij} = l | Y_j = l)}$$

Then the ratio c(i, j, k)/c(i, j', k) should be Independent of the choices of j, j'

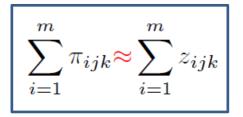
The Labeling Model Is Objective

Theorem. For deterministic labels, the labeling model given by

$$\pi_{ijk} = \frac{1}{Z} \exp\left\{\tau_{jk} + \sum_{l} y_{jl}\sigma_{ikl}\right\}$$

uniquely satisfies the measurement objectivity principle

Constraint Relaxation



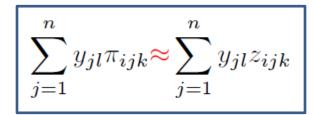
For each item:

Count # workers labeling it as class 1 Count # workers labeling it as class 2

column matching

	ltem 1	ltem 2	Item 3	Item 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 1	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

Constraint Relaxation

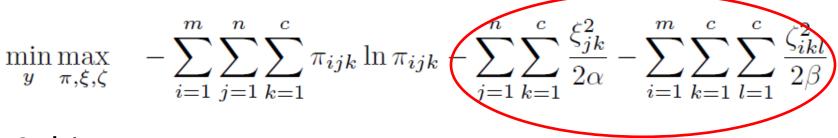


For each worker: Count # misclassifications from class 1 to 2 Count # misclassifications from class 2 to 1

row matching

	ltem 1	ltem 2	ltem 3	ltem 4	ltem 5	ltem 6
Worker 1	1	2	1	1	1	2
Worker 1	2	2	1	2	1	1
Worker 3	1	1	2	1	1	2
Worker 4	1	1	1	1	1	2
Worker 5	1	1	1	2	2	2

Constraint Relaxation



Subject to

$$\sum_{i=1}^{m} \pi_{ijk} = \sum_{i=1}^{m} z_{ijk} + \xi_{jk}$$
$$\sum_{j=1}^{n} y_{jl} \pi_{ijk} = \sum_{j=1}^{n} y_{jl} z_{ijk} + \zeta_{ikl}$$

Relaxing moment constraints to prevent overfitting

Implementation

- Convert the primal problem to its dual form
- Coordinate descent
 - Split the variables into two blocks: $\{y\}, \{\tau, \sigma\}$
 - Each subproblem is convex and smooth
 - Initialize ground truth by majority vote

Model Selection

- k-fold cross validation to choose (α, β)
 - Split the data matrix into k folds
 - Each fold used as a validation set once
 - Compute average likelihood over validations

We don't need ground truth for model selection!

Experiments: Image Labeling

- 108 bird images, 2 breeds, 39 workers
- Each image was labeled by all workers

From: P. Welinder, S. Branson, S. Belongie and P. Perona. The Multidimensional Wisdom of Crowds. NIPS 2010.

Experiments: Image Labeling

• Experimental results (accuracy, %)

Worker Number	10	20	30
Minimax Entropy	85.18	92.59	93.52
Dawid & Skene	79.63	87.04	87.96
Dawid & Skene (S)*	45.37	57.41	75.93
Majority Voting	67.59	83.33	76.85
Average Worker		62.78	

* Dawid & Skene (S): simplified Dawid and Skene's method

Experiments: Image Labeling

• Experimental results (accuracy, %)

Worker Number	10	20	30
Minimax Entropy	85.18	92.59	93.52
Dawid & Skene	79.63	87.04	87.96
Dawid & Skene (S)	45.37	57.41	75.00
Majority Voting	67.59	83.33	76.85
Average Worker	62.78		

It is risky to model worker expertise by a single number

Experiments: Web Search

- 177 workers and 2665 <query, URL> pairs
- 5 classes: perfect, excellent, good, fair and bad
- Each pair was labeled by 6 workers

Minimax Entropy	88.84
Dawid & Skene	84.09
Majority Voting	77.65
Average worker	37.05

Comparing with More Methods

- Other methods: Raykar et al (JMLR 2010, adding beta/Dirichlet prior), Welinder et al (NIPS 2010, matrix factorization), Karger et al (NIPS, 2011, BP-like iterative algorithm)
- From the evaluation in (Liu et al. NIPS 2012)
 - None of them can outperform Dawid and Skene's
 - Karger et al (NIPS, 2011) is even much worse than majority voting

3. Future Work and Conclusion

Budget-Optimal Crowdsourcing

- Assume that we have a budget to get 6 labels. Which one deserves another label, item 2 or 3?
- How about having a budget of 7 labels or even more?

	1 st round	2 nd round
ltem 1	1	1
ltem 2	1	-1
ltem 3	1	

Contextual Minimax Entropy

- Contextual information of items and workers
- (An example) Label a web page as *spam* or *nonspam* by a group of workers
 - For each web page: its URL ends with .edu or not, popularity of its domain, creating time
 - For each worker: education degree, reputation history, working experience

Beyond Labeling

H

at

52

ネ日

V

Mobile crowdsourcing platform Crowdsourcing machine translation Crowdsourcing indoor/outdoor navigation Crowdsourcing design Wikipedia

* *

ICML'13 Workshop Machine Learning Meets Crowdsourcing

ICML Atlanta

International Conference on Machine Learning

16-21 JUNE 2013 ATLANTA

http://www.ics.uci.edu/~qliu1/MLcrowd ICML workshop/

Summary

- Proposed minimax entropy principle for estimating ground truth from noisy labels
- Both task confusability and worker expertise are taken into account in our method
- Measurement objectivity is implied

Acknowledgments

- Daniel Hsu (MSR New England)
- Xi Chen (Carnegie Mellon University)
- Gabriella Kazai (MSR Cambridge)
- Chris Burges (MSR Redmond)
- Chris Meek (MSR Redmond)