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Machine Learning Meets 
Crowdsourcing  

• To Improve a machine learning model:  

– Add more training examples  

– Create more meaningful features  

– Invent more powerful learning algorithms 

 

More and more efforts, less and less gain  
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Crowdsourcing for Labeling   
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Low Cost,  but also Low Quality 

(Stanford dogs dataset) 

Norfolk Terrier Norwich Terrier 

Irish Wolfhound Scottish Deerhound 
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Workers: 𝑖 = 1, 2, ⋯ , 𝑚 
Items: 𝑗 = 1, 2, ⋯ , 𝑛 
Categories: 𝑘 = 1, 2, ⋯ , 𝑐 
 

Problem Setting and Notations 
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Response matrix 𝑍𝑚×𝑛×𝑐  

 𝑧𝑖𝑗𝑘 = 1, if worker 𝑖 labels item 𝑗 as category  𝑘  

 𝑧𝑖𝑗𝑘 = 0, if worker 𝑖 labels item  𝑗 as other (not 𝑘) 

 𝑧𝑖𝑗𝑘 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, if worker 𝑖 does not label item 𝑗 
 

Goal: Estimate the ground truth {𝑦𝑗𝑘} 



Toy Example: Binary Labeling 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Worker 5 

Problem: What are the true labels of the items?  
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A Simple Method: Majority Voting  

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Worker 5 

By majority voting, the true label of item 4  should be class 1: 
# {workers labeling it as class 1} =  3 
# {workers labeling it as class 2}  = 2 

Improve: More skillful workers should have more weight 

10 Microsoft Research Redmond 



Dawid & Skene’s Method 

• Maximum Likelihood Estimation (MLE): jointly 
estimate confusion matrices and ground truth 

• Implementation: EM algorithm 

 

• Assume that each worker is associated with a 
𝑐 × 𝑐 confusion matrix  

{𝑝𝑘𝑙
𝑖

= Prob[𝑧𝑖𝑗 = 𝑙|𝑦𝑗 = 𝑘, 𝑖]} 

• For any labeling task, the label by a worker is 
generated according to her confusion matrix 
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Probabilistic Confusion Matrices 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Worker 5 

Assume that the true labels are:  
Class 1 = {item 1, item 2, item 3} 
Class 2 = {item 4, item 5, item 6} 

Class 1 Class 2 

Class 1 1 0 

Class 2 2/3 1/3 

12 Microsoft Research Redmond 



EM in Dawid & Skene’s Method 

• Initialize the ground truth by majority vote  

• Iterate the following procedure till converge: 

o Estimate the worker confusion by using the  
estimated ground truth   

o Estimate the ground truth by using the estimated 
worker confusion 
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Simplified Dawid & Skene’s Method 

Each worker 𝑖 is associated with a single number 
𝑝𝑖 ∈ 0,1  such that  

              Prob 𝑧𝑖𝑗 = 𝑦𝑗|𝑖 = 𝑝𝑖 

     Prob 𝑧𝑖𝑗 ≠ 𝑦𝑗|𝑖 = 1 −  𝑝𝑖 
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worker coin 



2. Minimax Entropy Principle 
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Our Basic Assumption 

Observed labels 

unobserved distributions 



Our Basic Assumption 

Separated distribution per work-item! 



Our Basic Assumption 

Separated distribution per work-item! 



Maximum Entropy 

• To estimate a distribution, it is typical to  
    use the maximum entropy principle 

E. T. Jaynes 



Column and Row Matching Constraints 



Column Constraints  

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 2 

Worker 3 

Worker 4 

Worker 5 

For each item:  
Count # workers labeling it as class 1 
Count # workers labeling it as class 2 

column matching 
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Row Constraints 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 1 

Worker 3 

Worker 4 

Worker 5 

For each worker:  
Count # misclassifications from class 1 to 2 
Count # misclassifications from class 2 to 1 
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row matching 



Subject to  

(column constraint) 

(row constraint) 

Maximum Entropy 
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Justification of Minimum Entropy 

• Assume true measurement are available:  
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Subject to  

true measurements 



Justification of Minimum Entropy 

• Theorem. Minimizing the KL divergence  

 

 

     is equivalent to minimize entropy.  
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Lagrangian Dual 
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• The Lagrangian dual can be written as   

Lagrangian multipliers  
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Lagrangian Dual 

• KKT conditions lead to a closed-form:  

 

 

 

 

 

𝑍 is the normalization factor given by 

 

 

 



Worker Expertise & Task Confusability 

• Explanation of dual variables:  

 

 

 

 

 

item confusability worker expertise 
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Measurement Objectivity: Item 

• Objective item confusability. The difference of 
difficulty between labeling two items should 
be independent of the chosen workers 

• Mathematical formulation. Let  
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Then the ratio  𝑐(𝑖, 𝑗, 𝑘)/𝑐 𝑖′, 𝑗, 𝑘  should be  
Independent of the choices of 𝑖, 𝑖′ 



Measurement Objectivity: Worker 

• Objective worker expertise. The difference of 
expertise between two workers should be 
independent of the item being labeled 

• Mathematic Formulation. Let  
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Then the ratio  𝑐(𝑖, 𝑗, 𝑘)/𝑐 𝑖, 𝑗′, 𝑘  should be  
Independent of the choices of 𝑗, 𝑗′ 



The Labeling Model Is Objective 

Theorem. For deterministic labels, the labeling 
model given by  

 

 

uniquely satisfies the measurement objectivity 
principle 
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Constraint Relaxation 

Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 

1 2 1 1 1 2 

2 2 1 2 1 1 

1 1 2 1 1 2 

1 1 1 1 1 2 

1 1 1 2 2 2 

Worker 1 

Worker 1 

Worker 3 

Worker 4 

Worker 5 

For each item:  
Count # workers labeling it as class 1 
Count # workers labeling it as class 2 

column matching 
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Constraint Relaxation 
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row matching 



Relaxing moment constraints to prevent overfitting 

Constraint Relaxation 

Subject to  



Implementation 

• Convert the primal problem to its dual form 

• Coordinate descent  

– Split the variables into two blocks: 𝑦 , {𝜏, 𝜎}  

– Each subproblem is convex and smooth  

– Initialize ground truth by majority vote  
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Model Selection 

• 𝑘-fold cross validation to choose (𝛼, 𝛽) 

– Split the data matrix into 𝑘 folds 

– Each fold used as a validation set once  

– Compute average likelihood over validations 
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We don’t need ground truth for model selection! 



Experiments: Image Labeling 

• 108 bird images, 2 breeds, 39 workers  

• Each image was labeled by all workers 
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From: P. Welinder,  S. Branson, S. Belongie and P. Perona. The Multidimensional  
Wisdom of Crowds. NIPS 2010.   



Experiments: Image Labeling 

• Experimental results (accuracy, %)  
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Worker Number 10 20 30 

Minimax Entropy 85.18 92.59 93.52 

Dawid & Skene 79.63 87.04 87.96 

Dawid & Skene (S)* 45.37 57.41 75.93 

Majority Voting 67.59 83.33 76.85 

Average Worker 62.78 

* Dawid & Skene (S): simplified Dawid and Skene’s method 



Experiments: Image Labeling 

• Experimental results (accuracy, %)  
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Worker Number 10 20 30 

Minimax Entropy 85.18 92.59 93.52 

Dawid & Skene 79.63 87.04 87.96 

Dawid & Skene (S) 45.37 57.41 75.00 

Majority Voting 67.59 83.33 76.85 

Average Worker 62.78 

It is risky to model worker expertise by a single number 



Experiments: Web Search 

• 177 workers and 2665 <query, URL> pairs 

• 5 classes: perfect, excellent, good, fair and bad  

• Each pair was labeled by 6 workers  

 

 

 

Minimax Entropy 88.84 

Dawid & Skene 84.09 

Majority Voting 77.65 

Average worker 37.05 
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Comparing with More Methods 

• Other methods: Raykar et al (JMLR 2010, 
adding beta/Dirichlet prior), Welinder et al 
(NIPS 2010, matrix factorization), Karger et al 
(NIPS, 2011, BP-like iterative algorithm) 

• From the evaluation in (Liu et al. NIPS 2012) 
– None of them can outperform Dawid and Skene’s  

– Karger et al (NIPS, 2011) is even much worse than 
majority voting  
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3. Future Work and Conclusion 



Budget-Optimal Crowdsourcing 

• Assume that we have a budget to get 6 labels. Which 
one deserves another label, item 2 or 3?   

• How about having a budget of 7 labels or even more?  
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1st round 2nd round 

Item 1 1 1 

Item 2 1 -1 

Item 3 1 



Contextual Minimax Entropy 

• Contextual information of items and workers  

• (An example) Label a web page as spam or 
nonspam by a group of workers 

–  For each web page: its URL ends with .edu or not, 
popularity of its domain, creating time 

– For each worker: education degree, reputation 
history, working experience 
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Beyond Labeling  

Mobile crowdsourcing platform 
Crowdsourcing machine translation 
Crowdsourcing indoor/outdoor  navigation 
Crowdsourcing design 
Wikipedia 
… 



ICML’13 Workshop 
Machine Learning Meets Crowdsourcing 
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http://www.ics.uci.edu/~qliu1/MLcrowd_ICML
_workshop/  

http://www.ics.uci.edu/~qliu1/MLcrowd_ICML_workshop/
http://www.ics.uci.edu/~qliu1/MLcrowd_ICML_workshop/
http://www.ics.uci.edu/~qliu1/MLcrowd_ICML_workshop/


Summary 

• Proposed minimax entropy principle for 
estimating ground truth from noisy labels 

• Both task confusability and worker expertise 
are taken into account in our method  

• Measurement objectivity is implied  
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