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Quantum Strangeness I: 
Superposition – Measurement determines state
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Quantum Strangeness II: 
Entanglement – nonlocal correlations
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Following EPR one can apply their famous reality cri-
terion, ‘‘If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to
unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this
physical quantity.’’ This would imply that to any possible
polarization measurement on any one of our photons we
can assign such an element of physical reality on the
basis of a corresponding measurement on the other pho-
ton of any given pair.

The next step then is to assume the two photons (sys-
tems) to be widely separated so that we can invoke
EPR’s locality assumption as given above. Within this
line of reasoning, whether or not we can assign an ele-
ment of reality to a specific polarization of one of the
systems must be independent of which measurement we
actually perform on the other system and even indepen-
dent of whether we care to perform any measurement at
all on that system. To put it dramatically, one experi-
ment could be performed here on earth and the other on
a planet of another star a couple of light years away. It is
this very independence of a measurement result on one
side from what may be done on the other side, as as-
sumed by EPR, which is at variance with quantum me-
chanics. Indeed, this assumption implies that certain
combinations of expectation values have definite
bounds. The mathematical expression of that bound is
called Bell’s inequality, of which many variants exist.
For example, a version given by Clauser, Horne, Shi-
mony, and Holt (1969) is

uE~a ,b!2E~a8,b!u1uE~a ,b8!1E~a8,b8!u<2, (6)

where

E~a ,b!5
1
N

@C11~a ,b!1C22~a ,b!2C12~a ,b!

2C21~a ,b!# . (7)

Here we assume that each photon is subject to a mea-
surement of linear polarization with a two-channel po-
larizer whose outputs are 1 and 2. Then, e.g.,
C11(a ,b) is the number of coincidences between the 1
output port of the polarizer measuring photon 1 along a
and the 1 output port of the polarizer measuring photon
2 along b. Maximal violation occurs for a50°, b
522.5°, a8545°, b8567.5°. Then the left-hand side of
Eq. (6) will be 2& in clear violation of the inequality.
Thus Bell discovered that the assumption of local real-
ism is in conflict with quantum physics itself and it be-
came a matter of experiment to find out which of the
two world views is correct.

Interestingly, at the time of Bell’s discovery no experi-
mental evidence existed which was able to decide be-
tween quantum physics and local realism as defined in
Bell’s derivation. An earlier experiment by Wu and
Shaknov (1950) had demonstrated the existence of spa-
tially separated entangled states, yet failed to give data
for nonorthogonal measurement directions. After the
realization that the polarization entangled state of pho-
tons emitted in atomic cascades can be used to test

Bell’s inequalities, the first experiment was performed
by Freedman and Clauser in 1972 (Fig. 6). By now, there
exists a large number of such experiments. The ones
showing the largest violation of a Bell-type inequality
have for a long time been the experiments by Aspect,
Grangier, and Roger (1981, 1982) in the early eighties.
Aside from two early experiments, all agreed with the
predictions of quantum mechanics and violated inequali-
ties derived from Bell’s original version using certain
additional assumptions. Actually, while the experimen-
tal evidence strongly favors quantum mechanics, there
remained two possible mechanisms for which a local re-
alistic view could still be maintained.

One problem in all experimental situations thus far is
due to technical insufficiencies, namely that only a small
fraction of all pairs emitted by the source is registered.
This is a standard problem in experimental work and
experimentalists take great care to ensure that it is rea-
sonable to assume that the detected pairs are a faithful
representative of all pairs emitted. Yet, at least in prin-
ciple, it is certainly thinkable that this is not the case and
that, should we once be able to detect all pairs, a viola-
tion of quantum mechanics and data in agreement with
local realism would be observed. While this is in prin-
ciple possible, I would agree with Bell’s judgment (1981)
that ‘‘although there is an escape route there, it is hard
for me to believe that quantum mechanics works so
nicely for inefficient practical set-ups, and is yet going to
fail badly when sufficient refinements are made. Of
more importance, in my opinion, is the complete ab-
sence of the vital time factor in existing experiments.
The analyzers are not rotated during the flight of the
particles. Even if one is obliged to admit some long-
range influence, it need not travel faster than light—and
so would be much less indigestible.’’ Until recently,
there has been only one experiment where the time fac-
tor played a role. In that experiment (Aspect, Dalibard,

FIG. 6. Sketch of the experimental setup used in the first ex-
periment demonstrating a violation of Bell’s inequality (Freed-
man and Clauser, 1972). The two photons emitted in an atomic
cascade in Ca are collected with lenses and, after passage
through adjustable polarizers, coincidences are registered us-
ing photomultiplier detectors and suitable discriminators and
coincidence logic. The observed coincidence counts violate an
inequality derived from Bell’s inequality under the fair sam-
pling assumption.

S293Anton Zeilinger: Experiment and quantum physics

Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999

First entanglement (Bell) experiment
Freedman and Clauser, 1972
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One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along 
with ... a Geiger counter [and] a tiny bit of radioactive substance. 

Perhaps ... one of the atoms decays; if it happens, the counter tube discharges and 
through a relay releases a hammer which shatters a small flask of hydrocyanic acid. 

The psi-function of the entire system would express this by having in it the living and 
dead cat (pardon the expression) mixed ... in equal parts.

- E. Schrödinger, 1935 (translated by J. Trimmer)
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We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum compu-

tation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the

gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed

within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic

environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium

spin dynamics are proposed. ⇥S1050-2947⇤98⌅04501-6�

PACS number⇤s⌅: 03.67.Lx, 89.70.�c, 75.10.Jm, 89.80.�h

I. INTRODUCTION

The work of the past several years has greatly clarified

both the theoretical potential and the experimental challenges

of quantum computation ⇥1�. In a quantum computer the
state of each bit is permitted to be any quantum-mechanical
state of a qubit ⇤quantum bit, or two-level quantum system⌅.
Computation proceeds by a succession of ‘‘two-qubit quan-
tum gates’’ ⇥2�, coherent interactions involving specific pairs
of qubits, by analogy to the realization of ordinary digital
computation as a succession of Boolean logic gates. It is now
understood that the time evolution of an arbitrary quantum
state is intrinsically more powerful computationally than the
evolution of a digital logic state ⇤the quantum computation
can be viewed as a coherent superposition of digital compu-
tations proceeding in parallel⌅.
Shor has shown ⇥3� how this parallelism may be exploited

to develop polynomial-time quantum algorithms for compu-
tational problems, such as prime factoring, which have pre-
viously been viewed as intractable. This has sparked inves-
tigations into the feasibility of the actual physical
implementation of quantum computation. Achieving the con-
ditions for quantum computation is extremely demanding,
requiring precision control of Hamiltonian operations on
well-defined two-level quantum systems and a very high de-
gree of quantum coherence ⇥4�. In ion-trap systems ⇥5� and
cavity quantum electrodynamic experiments ⇥6�, quantum
computation at the level of an individual two-qubit gate has
been demonstrated; however, it is unclear whether such
atomic-physics implementations could ever be scaled up to
do truly large-scale quantum computation, and some have
speculated that solid-state physics, the scientific mainstay of
digital computation, would ultimately provide a suitable
arena for quantum computation as well. The initial realiza-
tion of the model that we introduce here would correspond to
only a modest step towards the realization of quantum com-
puting, but it would at the same time be a very ambitious
advance in the study of controlled nonequilibrium spin dy-

namics of magnetic nanosystems and could point the way
towards more extensive studies to explore the large-scale
quantum dynamics envisioned for a quantum computer.

II. QUANTUM-DOT IMPLEMENTATION

OF TWO-QUBIT GATES

In this paper we develop a detailed scenario for how
quantum computation may be achieved in a coupled
quantum-dot system ⇥7�. In our model the qubit is realized as
the spin of the excess electron on a single-electron quantum
dot; see Fig. 1. We introduce here a mechanism for two-
qubit quantum-gate operation that operates by a purely elec-

*Electronic address: loss@ubaclu.unibas.ch
†Electronic address: divince@watson.ibm.com

FIG. 1. ⇤a⌅ Schematic top view of two coupled quantum dots

labeled 1 and 2, each containing one excess electron (e) with spin

1/2. The tunnel barrier between the dots can be raised or lowered by

setting a gate voltage ‘‘high’’ ⇤solid equipotential contour⌅ or
‘‘low’’ ⇤dashed equipotential contour⌅. In the low state virtual tun-
neling ⇤dotted line⌅ produces a time-dependent Heisenberg ex-
change J(t). Hopping to an auxiliary ferromagnetic dot ⇤FM⌅ pro-
vides one method of performing single-qubit operations. Tunneling

(T) to the paramagnetic dot ⇤PM⌅ can be used as a POV read out
with 75% reliability; spin-dependent tunneling ⇤through ‘‘spin

valve’’ SV⌅ into dot 3 can lead to spin measurement via an elec-
trometer E. ⇤b⌅ Proposed experimental setup for initial test of swap-
gate operation in an array of many noninteracting quantum-dot

pairs. The left column of dots is initially unpolarized, while the

right one is polarized; this state can be reversed by a swap operation

⇥see Eq. ⇤31⌅�.
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Chapter 2: Setup 12

Figure 2.1: The fridge, without vacuum cans (left). The right picture shows an overview of the
cooling stages, condensing (green) and pre-cool (red), figure taken from [7].

cools the 3He even further which allows it to condense. The condensed 3He is then mixed with 4He

in the mixing chamber, where it will separate into two phases. One phase which is almost pure 3He

and another (diluted) phase containing 4He mixed with approximately 6% 3He, see figure 2.2. The
diluted phase is connected to the still chamber where 3He is selectively removed by a weak heater
and low pressure. This selective removal allows for continuous operation of the cooling cycle. The
low pressure is produced by a turbo pump mounted on top of the fridge. To restore equilibrium in
the mixing chamber 3He has to jump through the phase boundary, this process costs energy which
is taken from the mixing chamber plate[10].

Figure 2.2: Diluton process in the mixing chamber, on the top is the 3He rich phase and in the
bottom is the diluted phase.

2.2 Heat Sinks

In order to electrically measure the sample you need wiring that runs from the sample to room
temperature. This can potentially introduce a big heat load on the sample, because the wires
apart from being good electrical conductors also are excellent thermal conductors. This is true

Chapter 2: Setup 14

Figure 2.3: The left photo shows a bobbin installed on the bottom of the still plate. The right shows
sapphire heat sinks and signal filters mounted on the mixing chamber plate.

resistance in the loop[4]. This also means that low resistance metal will give rise to a larger power
dissipation, so building a fridge with large cross sections of copper or silver, near the magnet,
would be inexpedient in respect to Eddy currents, but profitable in respect to thermalization. To
prevent large eddy currents slots are cut in the plates. These cuts reduces the effective area and
thereby the induced Eddy currents.
Because the FQHE is very temperature dependent the rate in which the magnet is swept is very
important, we have found that a sweep rate above 20 mT/min induces more heat per unit time
than the fridge can cool.

Figure 2.4: The photos shows a RC-filter (left) and a sapphire heat sink on the PCB (right).
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Double Quantum Dot as Entanglement Generator
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sum of two gaussian peaks because part of the popu-
lation initially in the (1,1) state relaxes into the (0,2)
state during the integration time ⇤M, with the relaxation
time constant T1 [8]. The normalized number of events
n(Vrf) = N(Vrf)/

�⇥
�⇥N(Vrf)dVrf is modeled as

n(Vrf) = nS(Vrf) + nT (Vrf) (1)

with the events originating from singlet states nS(Vrf)
and from triplet states nT (Vrf). These are given by

nS(Vrf) = (1� ⌅PT ⇧) e�
(Vrf�V

(S)
rf )2

2�2
1⌃
2�⇥

(2)

nT (Vrf) = e�⇥M/T1⌅PT ⇧ e�(Vrf�V (T )
rf )2/(2�2) +

⇥ ⇥

�⇥

⇤M

T1

⌅PT ⇧
�Vrf

e�
V�V

(S)
rf

�Vrf

⇥M
T1 e�

(Vrf�V )2

2�2
dV⌃
2�⇥

(3)

with the triplet probability ⌅PT ⇧, averaged over all ⇤S.
The plot of Eq. (1) in Fig. 2(b) uses ⌅PT ⇧ = 0.5, T1 =
34 µs, and peak positions V (S)

rf , V (T )
rf , determined as de-

scribed below [Fig. 2(c,e)]. The width ⇥ [23] is obtained
from the control experiment.

The parameters T1 and ⌅PT ⇧ are extracted from the
raw data Vrf(⇤), which is plotted as a function of the
time ⇤ spent at point M in Fig. 2(c). Each data point
for ⇤ = 0.5� 15 µs, is averaged over all 7000 cycles with
varying ⇤S. The signal is fitted with [8]

Vrf(⇤) = V (S)
rf + ⌅PT ⇧�Vrf e�⇥/T1 (4)

using fit parameters T1 and ⌅PT ⇧. The singlet position
V (S)

rf and the peak spacing �Vrf [23] are fixed, as ob-
tained from a fit of the model Eq. (1) to the histogram for
⇤M = 15 µs [Fig. 2(e)]. For the fit of Eq. (1) the parame-
ters T1 and ⌅PT ⇧ are self-consistently fixed to the values
extracted from the raw data Vrf(⇤) [Eq. (4), Fig. 2(c)].

Maximizing the fidelity by optimization of the inte-
gration time ⇤M is a tradeo⇥ between increasing the sig-
nal to noise ratio ⇤ ⌃

⇤M and limiting relaxation during
⇤M. The histograms of single-shot outcomes ⌅Vrf⇧⇥M in
Fig. 2(d), for integration times ⇤M = 0.25 � 15 µs show
that the two peaks can no longer be clearly resolved for
⇤M < 1 µs while the relative height of the triplet peak
reduces with increasing ⇤M. Common benchmarks for
single-shot readout [24] are the fidelities FS , FT of sin-
glet, triplet measurement:

FS = 1�
⇥ ⇥

VT

nS(V )dV, FT = 1�
⇥ VT

�⇥
nT (V )dV. (5)

The integral in the expression for FS (FT ) is the proba-
bility to assign a singlet as a triplet (a triplet as a sin-
glet). Both quantities are combined to define the visibil-
ity V = FS + FT � 1. The fidelities and the visibility for
a single-shot measurement with ⇤M = 7 µs are calculated
from the data in Fig. 2(b) and plotted in Fig. 2(f) as

(a) (b)

(c)

V
T

FIG. 3: (a) Single-shot outcomes ⇥Vrf⇤�M for 6000 cycles, puls-
ing to � = �S [Fig. 1(b)] for ⇥S, stepped by � 17 ns every 200
cycles. Points in the green (blue) region are above (below)
the threshold VT and assigned as triplet (singlet). (b) Single-
shot outcomes (gray markers) and triplet probabilities (black
circles) over ⇥S with three di�erent periods. (c) Rapid acqui-
sition of 108 PT traces at times t. PT is determined from 400
measurements per ⇥S.

a function of the threshold voltage VT. The maximum
visibility ⇥ 90% is achieved for VT slightly less than the
mean of V (T )

rf and V (S)
rf so that a triplet decaying towards

the end of ⇤M still gets counted correctly.
To determine the optimal values of ⇤M and VT the max-

imum visibility V max is calculated as a function of ⇤M

from Eq. (1) using the parameters T1, ⌅PT ⇧, determined
from Fig. 2(c), V (T )

rf and V (S)
rf , from Fig. 2(e) and ⇥(⇤M),

determined from the control experiment [23]. The thresh-
old VT for which the visibility is maximized is plotted to-
gether with V max in Fig. 2(g). The maximum visibility,
obtained for ⇤M ⇥ 6 µs, is V max � 90%.
The single-shot readout is applied to observe the evo-

lution of the singlet triplet qubit at point S [4], driven
by the di⇥erence in the hyperfine induced e⇥ective mag-
netic (Overhauser) field �Bnuc

z between the left and right
quantum dot. Single-shot outcomes ⌅Vrf⇧ are shown as a
function of ⇤S in Fig. 3(a) for a pulse sequence [Fig. 1(d)]
with ⇤S = 1� 500 ns stepped by 17 ns every 200 cycles,
for a total of 6000 consecutive cycles. Points that are
in the green (blue) region are above (below) the thresh-
old VT and are assigned as triplet (singlet) states. For
each ⇤S the triplet probability PT is the percentage of
single-shot outcomes above threshold. Probabilities PT

for the single-shot data in Fig. 3(a) are shown in the
top graph of Fig. 3(b) as a function of ⇤S. The two
graphs below show probability traces with identical pa-
rameters. Single-shot outcomes from which the proba-

S
IN

G
LE

T
TR

IP
LE

T

Fast Detection: Unexpected Oscillations

C. Barthel et al., Phys. Rev. Lett. 103, 160503 (2009).
17



Quantum Strangeness III: 
Particle Statistics and Topology

|�� � �|��
|�� � |��Fermions

Bosons |�� � |��

|�1� � |�2�

3 dimensions

2 dimensions

Bosons

Fermions

18



New directions in the pursuit of Majorana fermions in solid state systems

Jason Alicea1

1Department of Physics and Astronomy, University of California, Irvine, California 92697
(Dated: February 8, 2012)

The 1937 theoretical discovery of Majorana fermions—whose defining property is that they are their own
anti-particles—has since impacted diverse problems ranging from neutrino physics and dark matter searches to
the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation
of Majorana fermions nevertheless remains an outstanding goal. This review article highlights recent advances
in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon
bear fruit. We begin by introducing in some detail exotic ‘topological’ one- and two-dimensional superconduc-
tors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights
that arose during the past few years; namely, that it is possible to ‘engineer’ such exotic superconductors in the
laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals
of this type are discussed, based on diverse materials such as topological insulators, conventional semiconduc-
tors, ferromagnetic metals, and many others. The all-important question of how one experimentally detects
Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide
smoking-gun Majorana signatures: tunneling, Josephson effects, and interferometry. Finally, we discuss the
most remarkable properties of condensed matter Majorana fermions—the non-Abelian exchange statistics that
they generate and their associated potential for quantum computation.

I. INTRODUCTION

Three quarters of a century ago Ettore Majorana introduced
into theoretical physics what are now known as ‘Majorana
fermions’: particles that, unlike electrons and positrons, con-
stitute their own antiparticles.1 The monumental significance
of this development required many intervening decades to
fully appreciate, and despite being an ‘old’ idea Majorana
fermions remain central to diverse problems across modern
physics. In the high-energy context, Ettore’s original sugges-
tion that neutrinos may in fact be Majorana fermions endures
as a serious proposition even today.2 Supersymmetric theo-
ries further postulate that bosonic particles such as photons
have a corresponding Majorana ‘superpartner’ that may pro-
vide one of the keys to the dark matter puzzle.3 Experiments at
the large hadron collider are well-positioned to critically test
these predictions in the near future. Condensed matter physi-
cists, too, are fervently chasing Majorana’s vision in a wide
variety of solid state systems, motivated both by the pursuit
of exotic fundamental physics and quantum computing ap-
plications. While a definitive sighting of Majorana fermions
has yet to be reported in any setting, there is palpable opti-
mism in the condensed matter community that this may soon
change.3–7

Unlike the Majorana fermions sought by high-energy
physicists, those pursued in solid state systems are not fun-
damental particles—the constituents of condensed matter are,
inescapably, ordinary electrons and ions. This fact severely
constrains the likely avenues of success in this search. In con-
ventional metals, for example, electron and hole excitations
can annihilate, but since they carry opposite charge are cer-
tainly not Majorana fermions. In operator language this is
reflected by the fact that if c†� adds an electron with spin �,
then its Hermitian conjugate c� is a physically distinct oper-
ator that creates a hole. If Majorana is to surface in the solid
state it must therefore be in the form of nontrivial emergent
excitations.

Superconductors (and other systems where fermions pair
and condense) provide a natural hunting ground for such ex-
citations. Indeed, because Cooper pair condensation sponta-
neously violates charge conservation, quasiparticles in a su-
perconductor involve superpositions of electrons and holes.
Unfortunately, however, this is not a sufficient condition for
the appearance of Majorana fermions. With only exceedingly
rare exceptions superconductivity arises from s-wave-paired
electrons carrying opposite spins; quasiparticle operators then
(schematically) take the form d = uc†" + vc#, which is still
physically distinct from d† = v⇤c†# + u⇤c". Thus whereas
charge prevents Majorana from emerging in a metal, spin is
the culprit in conventional s-wave superconductors.

As the preceding discussion suggests, ‘spinless’
superconductors—i.e., paired systems with only one active
fermionic species rather than two—provide ideal platforms
for Majorana fermions. By Pauli exclusion, Cooper pairing
in a ‘spinless’ metal must occur with odd parity, resulting in
p-wave superconductivity in one dimension (1D) and, in the
most relevant case for our purposes, p+ ip superconductivity
in two dimensions (2D). These superconductors are quite
special: as Sec. II describes in detail, they realize topological
phases that support exotic excitations at their boundaries
and at topological defects.8–10 Most importantly, zero-energy
modes localize at the ends of a 1D topological p-wave
superconductor9, and bind to superconducting vortices in
the 2D p + ip case11. These zero-modes are precisely the
condensed matter realization of Majorana fermions9,10 that
are now being vigorously pursued.

Let � denote the operator corresponding to one of these
modes (the specific realization is unimportant for now). This
object is its own ‘anti-particle’ in the sense that � = �† and
�2

= 1. We caution, however, that labeling � as a particle—
emergent or otherwise—is a misnomer because unlike an ordi-
nary electronic state in a metal there is no meaning to � being
occupied or unoccupied. Rather, � should more appropriately
be viewed as a fractionalized zero-mode comprising ‘half’ of
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FIG. 2. Schematic illustration of the Hamiltonian in Eq. (16) when
(a) µ 6= 0, t = � = 0 and (b) µ = 0, t = � 6= 0. In the
former limit Majoranas ‘pair up’ at the same lattice site, resulting
in a unique ground state with a gap to all excited states. In the lat-
ter, Majoranas couple at adjacent lattice sites, leaving two ‘unpaired’
Majorana zero-modes �

A,1

and �
B,N

at the ends of the chain. Al-
though there remains a bulk energy gap in this case, these end-states
give rise to a two-fold ground state degeneracy.

The operators on the right-hand side obey the canonical Ma-
jorana fermion relations

�↵,x = �†
↵,x, {�↵,x, �↵0,x0} = 2�↵↵0�xx0 . (15)

In this basis H becomes

H = �µ

2

NX

x=1

(1 + i�B,x�A,x)

� i

4

N�1X

x=1

[(�+ t)�B,x�A,x+1

+ (�� t)�A,x�B,x+1

].(16)

Generally the parameters µ, t, and � induce relatively com-
plex couplings between these Majorana modes; however, the
problem becomes trivial in two limiting cases9.

The first corresponds to µ < 0 but t = � = 0, where the
chain resides in the topologically trivial phase. Here the sec-
ond line of Eq. (16) vanishes, leaving a coupling only between
Majorana modes �A,x and �B,x at the same lattice site as Fig.
2(a) schematically illustrates. In this case there is a unique
ground state corresponding to the vacuum of cx fermions.
Clearly the spectrum is gapped since introducing a spinless
fermion into the chain costs a finite energy |µ|. Note that this
is entirely consistent with our treatment of the chain with pe-
riodic boundary conditions; in the trivial phase the ends of the
chain have little effect. We emphasize that these conclusions
hold even away from this fine-tuned limit provided the gap
persists so that the chain remains in the same trivial phase.

The second simplifying limit corresponds to µ = 0 and
t = � 6= 0, where the topological phase appears. Here the
Hamiltonian is instead given by

H = �i
t

2

N�1X

x=1

�B,x�A,x+1

, (17)

which couples Majorana fermions only at adjacent lattice sites

as Fig. 2(b) illustrates. In terms of new ordinary fermion oper-
ators dx =

1

2

(�A,x+1

+i�B,x), the Hamiltonian can be written

H = t
N�1X

x=1

✓
d†xdx � 1

2

◆
. (18)

In this form it is apparent that a bulk gap remains here
too—consistent with our results with periodic boundary
conditions—since one must pay an energy t to add a dx
fermion. However, as Fig. 2(b) illustrates the ends of the
chain now support ‘unpaired’ zero-energy Majorana modes
�
1

⌘ �A,1 and �
2

⌘ �B,N that are explicitly absent from
the Hamiltonian in Eq. (17). These can be combined into an
ordinary—though highly non-local—fermion,

f =

1

2

(�
1

+ i�
2

), (19)

that costs zero energy and therefore produces a two-fold
ground-state degeneracy. In particular, if |0i is a ground state
satisfying f |0i = 0, then |1i ⌘ f†|0i is necessarily also a
ground state (with opposite fermion parity). Note the stark
difference from conventional gapped superconductors, where
typically there exists a unique ground state with even parity so
that all electrons can form Cooper pairs.

The appearance of localized zero-energy Majorana end-
states and the associated ground-state degeneracy arise be-
cause the chain forms a topological phase while the vacuum
bordering the chain is trivial. (It may be helpful to imag-
ine adding extra sites to the left and right of the chain, with
µ < �t for those sites so that the strong pairing phase forms
there.) These phases cannot be smoothly connected, so the
gap necessarily closes at the chain’s boundaries. Because this
conclusion has a topological origin it is very general and does
not rely on the particular fine-tuned limit considered above,
with one caveat. In the more general situation with µ 6= 0

and t 6= � (but still in the topological phase) the Majorana
zero-modes �

1

and �
2

are no longer simply given by �A,1 and
�B,N ; rather, their wavefunctions decay exponentially into the
bulk of the chain. The overlap of these wavefunctions results
in a splitting of the degeneracy between |0i and |1i by an en-
ergy that scales like e�L/⇠, where L is the length of the chain
and ⇠ is the coherence length (which diverges at the transition
to the trivial phase). Provided L � ⇠, however, this splitting
can easily be negligible compared to all relevant energy scales
in the problem; unless specified otherwise we will assume that
this is the case and simply refer to the Majorana end-states as
zero-energy modes despite this exponential splitting.

Finally we comment on the importance of the fermions be-
ing spinless in Kitaev’s toy model. This property ensures that
a single zero-energy Majorana mode resides at each end of the
chain in its topological phase. Suppose that instead spinful
fermions—initially without spin-orbit interactions—formed a
p-wave superconductor. In this case spin merely doubles the
degeneracy for every eigenstate of the Hamiltonian, so that
when |µ| < t each end supports two Majorana zero-modes,
or equivalently one ordinary fermionic zero-mode. Unless
special symmetries are present these ordinary fermionic states
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FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure
for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical
potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate super-
conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana
modes as shown in (d).
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Non-Abelian statistics and topological quantum
information processing in 1D wire networks
Jason Alicea1*, Yuval Oreg2, Gil Refael3, Felix von Oppen4 and Matthew P. A. Fisher3,5

The synthesis of a quantum computer remains an ongoing challenge in modern physics. Whereas decoherence stymies
most approaches, topological quantum computation schemes evade decoherence at the hardware level by storing quantum
information non-locally. Here we establish that a key operation—braiding of non-Abelian anyons—can be implemented using
one-dimensional semiconducting wires. Such wires can be driven into a topological phase supporting long-sought particles
known as Majorana fermions that can encode topological qubits. We show that in wire networks, Majorana fermions can be
meaningfully braided by simply adjusting gate voltages, and that they exhibit non-Abelian statistics like vortices in a p+ ip
superconductor. We propose experimental set-ups that enable probing of theMajorana fusion rules and the efficient exchange
of arbitrary numbers of Majorana fermions. This work should open a new direction in topological quantum computation that
benefits from physical transparency and experimental feasibility.

The experimental realization of a quantum computer ranks
among the foremost outstanding goals in physics and has
traditionally been hampered by decoherence. In this regard

topological quantum computing holds considerable promise, as
here one embeds quantum information in a non-local, intrinsically
decoherence-free fashion1–6. A toy model of a spinless, two-
dimensional (2D) p + ip superconductor nicely illustrates the
key ideas. Vortices in such a state bind exotic particles known
as Majorana fermions, which cost no energy and therefore
generate ground state degeneracy. Because of the Majoranas,
vortices exhibit non-Abelian braiding statistics7–11: adiabatically
exchanging vortices noncommutatively transforms the system from
one ground state to another. Quantum information encoded in this
ground state space can be controllably manipulated by braiding
operations—something the environment finds difficult to achieve.

Despite this scheme’s elegance, finding suitable ‘hardware’
poses a serious challenge. Although most effort has focused on
the quantum Hall state at filling fraction10,12 ⇧ = 5/2, numerous
realistic alternative routes to generating non-Abelian topological
phases have recently appeared13–20. Among these, two groups21,22
recognized that one-dimensional (1D) semiconducting wires
can be engineered, relatively easily, into Kitaev’s23 topological
superconducting state supporting Majorana fermions. Motivated
by this exciting possibility, we examine the prospect of exploiting
1Dwires for topological quantum computation.

The suitability of 1D wires for this purpose is far from obvious.
Manipulating, braiding, and realizing non-Abelian statistics of
Majorana fermions are all central to topological quantum computa-
tion (althoughmeasurement-only approaches sidestep the braiding
requirement5). Whereas Majorana fermions can be transported,
created, and fused by gating a wire, braiding and non-Abelian statis-
tics pose serious puzzles. Indeed, braiding statistics is ill-defined in
1D because particles inevitably ‘collide’ during an exchange. This
problem can be surmounted in wire networks, the simplest being
a T-junction formed by two perpendicular wires. Even in such
networks, however, non-Abelian statistics does not immediately

1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA, 2Department of Condensed Matter Physics, Weizmann
Institute of Science, Rehovot, 76100, Israel, 3Department of Physics, California Institute of Technology, Pasadena, California 91125, USA, 4Dahlem Center
for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany, 5Department of Physics, University of California,
Santa Barbara, California 93106, USA. *e-mail: aliceaj@uci.edu.

follow, as recognized by Wimmer and colleagues24. For example,
non-Abelian statistics in a 2D p+ ip superconductor is intimately
linked to vortices binding the Majoranas10,11. We demonstrate that,
despite the absence of vortices, Majorana fermions in semicon-
ducting wires exhibit non-Abelian statistics and transform under
exchange exactly like vortices in a p+ip superconductor.

We further propose experimental setups ranging from minimal
circuits (involving one wire and a few gates) for probing
the Majorana fusion rules, to scalable networks that permit
efficient exchange of many Majoranas. The ‘fractional Josephson
effect’13,21–23,25, along with Hassler et al.’s recent proposal26 enable
qubit readout in this setting. The relative ease with whichMajorana
fermions can be stabilized in 1D wires, combined with the physical
transparency of their manipulation, render these set-ups extremely
promising topological quantum information processing platforms.
Although braiding of Majoranas alone does not permit universal
quantum computation6,27–30, implementation of these ideas would
constitute a critical step towards this ultimate goal.

Majorana fermions in 1D wires
We begin by discussing the physics of a single wire. Valuable
intuition can be garnered from Kitaev’s toy model for a spinless,
p-wave superconductingN -site chain23:

H = �µ
N�

x=1

cx †cx �
N�1�

x=1

(t cx †cx+1 +|⌥|ei⌃cxcx+1 +h.c .) (1)

where cx is a spinless fermion operator and µ, t > 0, and |⌥|ei⌃
respectively denote the chemical potential, tunnelling strength,
and pairing potential. The bulk- and end-state structure becomes
particularly transparent in the special case23 µ = 0, t = |⌥|. Here
it is useful to express

cx = 1
2
e�i(⌃/2)(⇥B,x + i⇥A,x) (2)

with ⇥�,x = ⇥�,x
† Majorana fermion operators satisfying

{⇥�,x ,⇥�⇥,x ⇥} = 2⇤��⇥⇤xx ⇥ . These expressions expose the defining
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Figure 2 |Applying a ‘keyboard’ of individually tunable gates to the wire
allows local control of which regions are topological (dark blue) and
non-topological (light blue), and hence manipulate Majorana fermions
while maintaining the bulk gap. As a and b illustrate, sequentially applying
the leftmost gates drives the left end of the wire non-topological, thereby
transporting �1 rightward. Nucleating a topological section of the wire from
an ordinary region or vice versa creates pairs of Majorana fermions out of
the vacuum as in c. Similarly, removing a topological region entirely or
connecting two topological regions as sketched in d fuses Majorana
fermions into either the vacuum or a finite-energy quasiparticle.

length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ⇥ h̄v⇡/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ⇥⇡/Lgate.) Assuming gµB|Bz |/2 ⇥ 2|⇧| and
h̄u⇥ 0.1 eVÅ yields a velocity v ⇥ 104 m s�1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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Figure 3 |A T-junction provides the simplest wire network that enables
meaningful adiabatic exchange of Majorana fermions. Using the methods
of Fig. 2, one can braid Majoranas bridged by either a topological region
(dark blue lines) as in a–d, or a non-topological region (light blue lines) as
in e–h. The arrows along the topological regions in a–d are useful for
understanding the non-Abelian statistics, as outlined in the main text.

decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H⌅ = �⌅(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H⌅ ⇥ � i⌅
2
cos

�
⇤L �⇤R

2

⇥
� L
B,N� R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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remains. (Roughly, the gate creates a potential well that supports
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h̄u⇥ 0.1 eVÅ yields a velocity v ⇥ 104 m s�1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H⌅ = �⌅(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H⌅ ⇥ � i⌅
2
cos

�
⇤L �⇤R

2

⇥
� L
B,N� R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
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Description of Planned Research

1 Overview: controlling coherent electronics and entanglement

The focus of research in the Center will be the exploration of controlled quantum 
coherence and entanglement in solid-state systems. The Center’s research aims to 
understand the mechanisms of decoherence in various materials, how entanglement  of 
many quantum objects can be controlled, how quantum states can be interconverted, and 
how coherence and entanglement can be put to use. Experiments make use of nanoscale 
patterning of gates and contacts on semiconductor heterostructures, nanowires and 
nanotubes. Three research themes will be pursued during first phase of the Center: 
entanglement and environmental control in spin qubit  systems (Sec. 4), transfer of 
coherence in coupled nanowire and nanotubes (Sec. 5), and detection and control of 
topological quantum states (Sec. 6). Extensions beyond the first phase will be mentioned in 
Sec. 7. 

2 Enabling technologies for quantum devices

The realization of electrically controlled coherent solid-state systems relies on materials 
with low disorder, so that potentials are fully defined by external gates. Over the past 
decade, most single-electron devices have used GaAs/AlxGa1–xAs heterostructures as a 
substrate. We will use continue to use this reliable system for a number of spin-qubit 
experiments, and to probe the electron-nuclear interaction (Sec. 4), as well as for studies of 
non-abelian quasiparticles in the fractional quantum Hall effect (Sec. 6.1). GaAs wafers 
will be provided through collaborations 
with the Gossard, Palmstrøm, and 
Awschalom groups at UC Santa 
Barbara and the Pfeiffer group at 
Princeton. 

Materials growth within the Center 
will focus on III-V nanowires (Fig. 1), 
including InAs, InP, GaAs, and 
possibly InSb, as well as core-shell and 
segmented heterostructures. Carbon 
nanotubes will also be grown in the 
Center, specializing in materials with a 

6

Figure 1 Scanning and transmission electron micrographs 
of an InAs nanowire grown in the Nygård lab, showing 
perfect crystallinity.

P. Krogstrup, J. Nygård, Univ. of Copenhagen

Epitaxial growth of InAs nanowires
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All elementary particles have an antiparticle of opposite charge (for 
example, an electron and a positron); the meeting of a particle with its 
antiparticle results in the annihilation of both. A special class of parti-
cles, called Majorana fermions, are predicted to exist that are identical to 
their own antiparticle (1). They may appear naturally as elementary par-
ticles, or emerge as charge-neutral and zero-energy quasi-particles in a 
superconductor (2, 3). Particularly interesting for the realization of 
qubits in quantum computing are pairs of localized Majoranas separated 
from each other by a superconducting region in a topological phase (4–
11). 

Based on earlier semiconductor-based proposals, (6) and later (7), 
Lutchyn et al. (8) and Oreg et al. (9) have outlined the necessary ingre-
dients for engineering a nanowire device that should accommodate pairs 
of Majoranas. The starting point is a one-dimensional nanowire made of 
semiconducting material with strong spin-orbit interaction (Fig. 1A). In 
the presence of a magnetic field, B, along the axis of the nanowire (i.e., a 
Zeeman field), a gap is opened at the crossing between the two spin-orbit 
bands. If the Fermi energy, ȝ, is inside this gap, the degeneracy is two-
fold whereas outside the gap it is four-fold. The next ingredient is to 
connect the semiconducting nanowire to an ordinary s-wave supercon-
ductor (Fig. 1A). The proximity of the superconductor induces pairing in 
the nanowire between electron states of opposite momentum and oppo-
site spins and induces a gap, ǻ. Combining this two-fold degeneracy 
with an induced gap creates a topological superconductor (4–11). The 
condition for a topological phase is EZ > (ǻ2 + ȝ2)1/2, with the Zeeman 
energy, EZ = gȝBB/2 (g is the Landé g-factor; ȝB the Bohr magneton). 
Near the ends of the wire, the electron density is reduced to zero and 
subsequently ȝ will drop below the subband energies such that ȝ2 be-
comes large. At the points in space where EZ = (ǻ2 + ȝ2)1/2 Majoranas 
arise as zero-energy (i.e., mid-gap) bound states—one at each end of the 
wire (4, 8–11). 

Despite their zero charge and energy, Majoranas can be detected in 
electrical measurements. Tunneling spectroscopy from a normal conduc-
tor into the end of the wire should reveal a state at zero energy (12–14). 

Here we report the observation of such 
zero-energy peaks and show that they 
rigidly stick to zero-energy while 
changing B and gate voltages over 
large ranges. Furthermore, we show 
that this zero-bias peak is absent if we 
take out any of the necessary ingredi-
ents of the Majorana proposals, i.e., 
the rigid zero bias peak disappears for 
zero magnetic field, for a magnetic 
field parallel to the spin-orbit field, or 
when we take out the superconductivi-
ty. 

We use InSb nanowires (15), 
which are known to have strong spin-
orbit interaction and a large g-factor 
(16). From our earlier quantum dot 
experiments we extract a spin-orbit 
length lso § 200 nm corresponding to a 
Rashba parameter Į § 0.2 eV•Å (17). 
This translates to a spin-orbit energy 
scale Į2m*/(2ƫ2) § 50 ȝeV (m* = 
0.015me is the effective electron mass 
in InSb, me is the bare electron mass). 
Importantly, the g-factor in bulk InSb 
is very large, g § 50, yielding EZ/B § 
1.5 meV/T. As shown below, we find 
an induced superconducting gap ǻ § 
250 ȝeV. For ȝ = 0 we thus expect to 

enter the topological phase for B ~ 0.15 T where EZ starts to exceed ǻ. 
The energy gap of the topological superconductor is estimated to be a 
few Kelvin (17), if we assume a ballistic nanowire. The topological gap 
is significantly reduced in a disordered wire (18, 19). We have measured 
mean free paths of ~300 nm in our wires (15), implying a quasi-ballistic 
regime in micrometer long wires. With these numbers we expect 
Majorana zero-energy states to become observable below one Kelvin 
and around 0.15 T. 

A typical sample is shown in Fig. 1B. We first fabricate a pattern of 
narrow (50 nm) and wider (300 nm) gates on a silicon substrate (20). 
The gates are covered by a thin Si3N4 dielectric before we randomly 
deposit a low density of InSb nanowires. Next, we electrically contact 
those nanowires that have landed properly relative to the gates. The low-
er contact in Fig. 1B fully covers the bottom part of the nanowire. We 
have designed the upper contact to only cover half of the top part of the 
nanowire, avoiding complete screening of the underlying gates. This 
allows us to change the Fermi energy in the section of the nanowire 
(NW) with induced superconductivity. We have used either a normal (N) 
or superconducting (S) material for the lower and upper contacts, result-
ing in three sample variations: N-NW-S, N-NW-N and S-NW-S. Here 
we discuss our main results on the N-NW-S devices whereas the other 
two types, serving as control devices, are described in (20). 

To perform spectroscopy on the induced superconductor we create a 
tunnel barrier in the nanowire by applying a negative voltage to a narrow 
gate (dark green gate in Fig. 1, B and C). A bias voltage applied exter-
nally between the N and S contacts drops almost completely across the 
tunnel barrier. In this setup the differential conductance dI/dV at voltage 
V is proportional to the density of states at energy E = eV, relative to the 
zero-energy, dashed line in Fig. 1C. Figure 1D shows an example taken 
at B = 0. The two peaks at ±250 ȝeV correspond to the peaks in the qua-
si-particle density of states of the induced superconductor, providing a 
value for the induced gap, ǻ § 250 ȝeV. We generally find a finite dI/dV 
in between these gap edges. We observe pairs of resonances with ener-
gies symmetric around zero bias superimposed on non-resonant currents 
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Majorana fermions are particles identical to their own antiparticles. They have been 
theoretically predicted to exist in topological superconductors. We report electrical 
measurements on InSb nanowires contacted with one normal (Au) and one 
superconducting electrode (NbTiN). Gate voltages vary electron density and define 
a tunnel barrier between normal and superconducting contacts. In the presence of 
magnetic fields of order 100 mT we observe bound, mid-gap states at zero bias 
voltage. These bound states remain fixed to zero bias even when magnetic fields 
and gate voltages are changed over considerable ranges. Our observations support 
the hypothesis of Majorana fermions in nanowires coupled to superconductors.  o
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 ȝeV. The full-width at half-maximum at the lowest 
temperature is ~20 ȝeV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 ȝeV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around ʌ/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from –10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to –10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 ȝeV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 ȝeV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 
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covered with superconductor is much less effective due to efficient 
screening. The number of occupied subbands in this part is unknown, but 
it is most likely multi-subband. As shown in figs. S9 and S11 of (20) we 
do have to tune gate 1 and the tunnel barrier to the right regime in order 
to observe the ZBP. 

We have measured in total several hundred panels sweeping various 
gates on different devices. Our main observations (20) are (i) ZBP exists 
over a substantial voltage range for every gate starting from the barrier 
gate until gate 4, (ii) we can occasionally split the ZBP in two peaks 
located symmetrically around zero, and (iii) we can never move the peak 
away from zero to finite bias. Data sets such as those in Figs. 2 and 3 
demonstrate that the ZBP remains stuck to zero energy over considerable 
changes in B and gate voltage Vg. 

Figure 3D shows the temperature dependence of the ZBP. We find 

that the peak disappears at around ~300 mK, providing a thermal energy 
scale of kBT ~ 30 ȝeV. The full-width at half-maximum at the lowest 
temperature is ~20 ȝeV, which we believe is a consequence of thermal 
broadening as 3.5·kBT(60 mK) = 18 ȝeV. 

Next we verify explicitly that all the required ingredients in the theo-
retical Majorana proposals (Fig. 1A) are indeed essential for observing 
the ZBP. We have already verified that a nonzero B-field is needed. 
Now, we test if spin-orbit interaction is crucial for the absence or pres-
ence of the ZBP. Theory requires that the external B has a component 
perpendicular to Bso. We have measured a second device in a different 
setup containing a 3D vector magnet such that we can sweep the B field 
in arbitrary directions. In Fig. 4 we show dI/dV versus V while varying 
the angle for a constant field magnitude. In Fig. 4A the plane of rotation 
is approximately equal to the plane of the substrate. We clearly observe 
that the ZBP comes and goes with angle. The ZBP is completely absent 
around ʌ/2, which thereby we deduce as the direction of Bso. In Fig. 4B 
the plane of rotation is perpendicular to Bso. Indeed we observe that the 
ZBP is now present for all angles, because B is now always perpendicu-
lar to Bso. These observations are in full agreement with expectations for 
the spin-orbit direction in our samples (17, 31). We have further verified 
that this angle dependence is not a result of the specific magnitude of B 
or a variation in g-factor (20). 

As a last check we have fabricated and measured a device of identi-
cal design but with the superconductor replaced by a normal Au contact 
(i.e., a N-NW-N geometry). In this sample we have not found any signa-
ture of a peak that sticks to zero bias while changing both B and Vg (20). 

Fig. 3. Gate voltage dependence. (A) 2D color plot of dI/dV 
versus V and voltage on gate 2 at 175 mT and 60 mK. An-
dreev bound states cross through zero bias, for example 
near -5 V (dotted lines). The ZBP is visible from –10 to ~5 V 
(although in this color setting it is not equally visible every-
where). Split peaks are observed in the range of 7.5 to 10 V 
(20). In (B) and (C) we compare voltage sweeps on gate 4 
for 0 and 200 mT with the zero bias peak absent and pre-
sent, respectively. Temperature is 50 mK. [Note that in (C) 
the peak extends all the way to –10 V (19).] (D) Temperature 
dependence. dI/dV versus V at 150 mT. Traces have an off-
set for clarity (except for the lowest trace). Traces are taken 
at different temperatures (from bottom to top: 60, 100, 125, 
150, 175, 200, 225, 250, and 300 mK). dI/dV outside ZBP at 
V = 100 ȝeV is 0.12 ± 0.01·2e2/h for all temperatures. A full-
width at half-maximum of 20 ȝeV is measured between ar-
rows. All data in this figure are from device 1. 

Fig. 2. Magnetic field dependent spectroscopy. (A) dI/dV 
versus V at 70 mK taken at different B-fields (from 0 to 490 
mT in 10 mT steps; traces are offset for clarity, except for the 
lowest trace at B = 0). Data from device 1. (B) Color scale 
plot of dI/dV versus V and B. The zero-bias peak is highlight-
ed by a dashed oval. Dashed lines indicate the gap edges. At 
~0.6 T a non-Majorana state is crossing zero bias with a 
slope equal to ~3 meV/T (indicated by sloped dotted lines). 
Traces in (A) are extracted from (B). 
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throughout the gap region. Symmetric resonances likely originate from 
Andreev bound states (21, 22), whereas non-resonant current indicates 
that the proximity gap has not fully developed (23). 

Figure 2 summarizes our main result. Figure 2A shows a set of 
dI/dV versus V traces taken at increasing B-fields in 10 mT steps from 
zero (lowest trace) to 490 mT (top trace), offset for clarity. We again 
observe the gap edges at ±250 ȝeV. When we apply a B-field between 
~100 and ~400 mT along the nanowire axis we observe a peak at V = 0. 
The peak has an amplitude up to ~0.05·2e2/h and is clearly discernible 
from the background conductance. Above ~400 mT we observe a pair 
of peaks. The color panel in Fig. 2B provides an overview of states and 
gaps in the plane of energy and B-field from –0.5 to 1 T. The observed 
symmetry around B = 0 is typical for all our data sets, demonstrating 
reproducibility and the absence of hysteresis. We indicate the gap edges 
with horizontal dashed lines (highlighted only for B < 0). A pair of res-
onances crosses zero energy at ~0.65 T with a slope of order EZ (high-
lighted by dotted lines). We have followed these resonances up to high 
bias voltages in (20) and identified them as Andreev states bound within 
the gap of the bulk, NbTiN superconducting electrodes (~2 meV). By 
contrast, the zero-bias peak sticks to zero energy over a range of ǻB ~ 
300 mT centered around ~250 mT. Again at ~400 mT we observe two 
peaks located at symmetric, finite biases. 

In order to identify the origin of these zero-bias peaks (ZBP) we 
need to consider various options, including the Kondo effect, Andreev 
bound states, weak antilocalization and reflectionless tunneling, versus a 
conjecture of Majorana bound states. ZBPs due to the Kondo effect (24) 
or Andreev states bound to s-wave superconductors (25) can occur at 
finite B. However, when changing B these peaks then split and move to 
finite energy. A Kondo resonance moves with twice Ez (24), which is 
easy to dismiss as the origin for our zero-bias peak because of the large 
g-factor in InSb. (Note that even a Kondo effect from an impurity with g 
= 2 would be discernible.) Reflectionless tunneling is an enhancement of 
Andreev reflection by time-reversed paths in a diffusive normal region 
(26). As in the case of weak antilocalization, the resulting ZBP is maxi-
mal at B = 0 and disappears when B is increased, see also (20). We thus 
conclude that the above options for a ZBP do not provide natural expla-
nations for our observations. We are not aware of any mechanism that 

could explain our observations, besides the conjecture of a Majorana. 
To further investigate the zero-biasness of our peak, we measure 

gate voltage dependences. Figure 3A shows a color panel with voltage 
sweeps on gate 2. The main observation is the occurrence of two oppo-
site types of behavior. First, we observe peaks in the density of states 
that change with energy when changing gate voltage (e.g., highlighted 
with dotted lines), these are the same resonances as shown in Fig. 2B 
and analyzed in (20). The second observation is that the ZBP from Fig. 
2, which we take at 175 mT, remains stuck to zero bias while changing 
the gate voltage over a range of several volts. Clearly, our gates work 
since they change the Andreev bound states by ~0.2 meV per Volt on the 
gate. Panels (B) and (C) underscore this observation with voltage sweeps 
on a different gate, number 4. (B) shows that at zero magnetic field no 
ZBP is observed. At 200 mT the ZBP becomes again visible in (C). 
Comparing the effect of gates 2 and 4, we observe that neither moves the 
ZBP away from zero. 

Initially, Majorana fermions were predicted in single-subband, one-
dimensional wires (8, 9), but further work extended these predictions to 
multi-subband wires (27–30). In the nanowire section that is uncovered 
we can gate tune the number of occupied subbands from 0 to ~4 with 
subband separations of several meV. Gate tuning in the nanowire section 

Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual 
device layout with a semiconducting nanowire in proximity to an 
s-wave superconductor. An external B-field is aligned parallel to 
the wire. The Rashba spin-orbit interaction is indicated as an 
effective magnetic field, Bso, pointing perpendicular to the nan-
owire. The red stars indicate the expected locations of a 
Majorana pair. (Bottom) Energy, E, versus momentum, k, for a 
1D wire with Rashba spin-orbit interaction, which shifts the 
spin-down band (blue) to the left and spin-up band (red) to the 
right. Blue and red parabola are for B = 0. Black curves are for 
B � 0, illustrating the formation of a gap near k = 0 of size gȝBB. 
(ȝ is the Fermi energy with ȝ = 0 defined at crossing of parabo-
las at k = 0). The superconductor induces pairing between 
states of opposite momentum and opposite spin creating a gap 
of size ǻ. (B) Implemented version of theoretical proposals. 
Scanning electron microscope image of the device with normal 
(N) and superconducting (S) contacts. The S-contact only co-
vers the right part of the nanowire. The underlying gates, num-
bered 1 to 4, are covered with a dielectric. [Note that gate 1 
connects two gates and gate 4 connects four narrow gates; see 
(C).] (C) (Top) Schematic of our device. (Down) illustration of 
energy states. Green indicates the tunnel barrier separating the 
normal part of the nanowire on the left from the wire section 
with induced superconducting gap, ǻ. [In (B) the barrier gate is 
also marked green.] An external voltage, V, applied between N 
and S drops across the tunnel barrier. Red stars again indicate 
the idealized locations of the Majorana pair. Only the left 
Majorana is probed in this experiment. (D) Example of differen-
tial conductance, dI/dV, versus V at B = 0 and 65 mK, serving 
as a spectroscopic measurement on the density of states in the 
nanowire region below the superconductor. Data from device 1. 
The two large peaks, separated by 2ǻ, correspond to the quasi-
particle singularities above the induced gap. Two smaller 
subgap peaks, indicated by arrows, likely correspond to An-
dreev bound states located symmetrically around zero energy. 
Measurements are performed in dilution refrigerators using 
standard low-frequency lock-in technique (frequency 77 Hz, 
excitation 3 ȝV) in the four-terminal (devices 1 and 3) or two-
terminal (device 2) current-voltage geometry. 
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Device #1:  one-sided (N-wire-S)

                 150 nm wide uncovered region 

                 350 nm wide superconducting contact

Device #2:  two-sided (N-wire-S-wire-N) 
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Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations
and magnetoconductance crossover
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We present transport measurements in superconductor-nanowire devices with a gated constriction forming a
quantum point contact. Zero-bias features in tunneling spectroscopy appear at finite magnetic fields and oscillate
in amplitude and split away from zero bias as a function of magnetic field and gate voltage. A crossover in
magnetoconductance is observed: Magnetic fields above ∼0.5 T enhance conductance in the low-conductance
(tunneling) regime but suppress conductance in the high-conductance (multichannel) regime. We consider these
results in the context of Majorana zero modes as well as alternatives, including the Kondo effect and analogs of
0.7 structure in a disordered nanowire.

DOI: 10.1103/PhysRevB.87.241401 PACS number(s): 73.21.Hb, 73.63.Nm, 74.45.+c

Physical systems with Majorana quasiparticles, zero-
energy modes with non-Abelian exchange statistics, represent
a topological phase of matter that could form the basis of
topologically protected quantum computation.1–3 Pursuit of
such systems has been advanced by a range of proposals,
including ν = 5/2 fractional quantum Hall states,4 p-wave
superconductors,5 cold-atom systems,6,7 and hybrid systems
of s-wave superconductors with either topological insulators8

or semiconductors.9–11 An attractive implementation calls for
coupling an s-wave superconductor to a one-dimensional
semiconductor nanowire with strong spin-orbit coupling. In
a magnetic field, tuning the chemical potential of the nanowire
so that the induced superconducting gap lies well within the
Zeeman splitting permits effective p-wave superconductivity
supporting Majorana end-state zero modes.12,13

Expected signatures of a topological phase in the nanowire
system include a zero-bias conductance peak14–16 and frac-
tional Josephson effect,9 both of which have been reported as
evidence of Majorana fermions.17–20 The peak is predicted
to oscillate about zero energy as a function of magnetic
field and chemical potential.21–23 Features suggesting this
effect have been reported in Ref. 24 and considered both
in the context of Majorana zero modes and the Kondo
effect. Given the interest in realizing topological states of
matter and non-Abelian quasiparticle statistics, it is imperative
to broaden the range of experimental observations and to
consider interpretations in the context of Majorana modes
as well as alternatives such as the Kondo effect,25–27 0.7
structure,28–31 weak antilocalization,32 and disorder-induced
level crossings.33,34

Here, we report transport measurements in superconductor-
nanowire devices configured as a quantum point contact (QPC)
over a broad range of magnetic fields and conductances from
the tunneling regime to the multichannel regime. We deliber-
ately tuned the device to a regime without evidence of dotlike
charging features or even-odd structure (see Supplemental
Material35). We observed zero-bias features in tunneling
spectroscopy above ∼0.5 T that oscillated in amplitude and

bias position as a function of magnetic field and gate voltage.
We also observed that the zero-bias conductance of the QPC
was enhanced by a magnetic field near pinch-off and sup-
pressed at higher transmission, in qualitative agreement with
the trends described in Ref. 36 for the trivial-to-topological
crossover. These results are consistent with some but not all
predictions for Majorana zero modes and do not yet rule out
alternative explanations such as Kondo-enhanced conductance
in confined structures or zero-bias peaks in single-barrier
structures analogous to 0.7 structure in QPCs.

InSb nanowires with a diameter of 100 nm26,37 were con-
tacted by a superconducting lead (1/150 nm Ti/Nb0.7Ti0.3N)
and one or two normal leads covering the wire ends (5/125 nm
Ti/Au). Data from two devices are reported. Device 1 had
normal leads on both ends, and device 2 had one normal lead,
as in Fig. 1(a). The width of the superconducting lead was
300 nm for device 1 and 250 nm for device 2, and the length of
the nanowire between the superconducting and normal leads
was 150 nm for device 1 and 100 nm for device 2. The coupling
to the normal leads was tuned by local control of the electron
density in the nanowire using bottom gates that were insulated
by 30 nm of HfO2.38 Some gates were under the region of the
nanowire covered by the superconductor, and some gates were
under the uncovered region. The samples were measured in a
dilution refrigerator using standard lock-in techniques.

Control of the coupling between the superconducting and
normal sections of the device is demonstrated in Fig. 1(b) by
a measurement of the zero-bias differential conductance g as
a function of bottom-gate voltage Vg for device 1. With the
voltages on the other bottom gates set to 3 V, g varied from
7e2/h at Vg = 5 V to zero for Vg < 0 V.39 A plateau-like
shoulder at g ∼ 2e2/h is evident at B = 0 around Vg = 2.5 V.
This value of conductance is a factor of 2 smaller than expected
for the conductance of the first plateau for a QPC in perfect
contact with a superconductor.36 In a magnetic field By= 0.5 T
along the wire axis, g increased in two regions of gate voltage
[dashed vertical lines in Fig. 1(b)] and decreased at larger
conductances, Vg > 3.5 V.

241401-11098-0121/2013/87(24)/241401(6) ©2013 American Physical Society
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Epitaxial Aluminum contacts to InAs nanowires
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We report a procedure for Molecular Beam Epitaxy growth of Aluminum contacts to InAs
nanowires. The methods results in an oxide-free epitaxial interface and highly transparent Ohmic
electrical contact. The fabrication of .

Semiconducting Indium Arsenide (InAs) nanowires
(NWs) have been implemented as the active elements
in nanoscale electrical devices for a wide range of stud-
ies: Their high electron mobilities and low effective
mass provide a good basis for superior field effect
transistors[1], their surface transport channels and high
surface-to-volume ratio make them obvious candidates
for use in chemical sensors[2], and their strong spin-orbit
coupling[3, 4], large g-factors[5] and relative ease of con-
tacting to superconducting (SC) contacts has led to a
number of breakthroughs in quantum transport[6–8].
Common for any such application of nanowires is the

need for reproducible ohmic contacts and this often be-
comes a pivotal step in the fabrication scheme. In this re-
spect the surface accumulation layer of InAs prevents the
formation of a strong Shottky barrier at the metal/NW
interface and makes contacting easier than for most semi-
conductors. Nevertheless, to achieve contact, the oxide
which covers the wire surface needs to be removed prior
to metal deposition and various techniques have been
developed to tackle this problem. In the earliest work
the oxide was removed by a brief etch in hydrofluoric
acid (HF) immediately prior to metal deposition. This
process is difficult to reproduce and often entire device
batches turn out highly resistive probably due to oxide
regrowth. To circumvent this problem Suyatin et. al., de-
veloped a procedure based on (NH4)2Sx to dissolve the
oxide and passivate the surface thus protecting it against
further oxidation[9]. This procedure has been very suc-
cessful and is now widely adapted, and lately also Argon
ion milling has been used with success[10].
These approaches successfully removes the oxide, but also
potentially etches or damages the InAs nanowire crystal
surface. Such microscopic interface degradation has so-
far remained irrelevant as the techniques produce highly
transparent ohmic contacts. Lately, however, due to
a potential use in topological quantum information[11],
there has been an intense interest in inducing super-
conductivity in strong spin-orbit coupling nanowires by
virtue of the proximity effect and in order to achieve an
induced superconducting gap with a low amount of sub-
gap states (a hard gap), Ref. [12] showed that a key pa-
rameter is the quality and uniformity of the SC/NW in-

terface. Given the softness of the proximity gaps reported
so far[13, 14], alternative contacting schemes needs to
be investigated. Here we report new approach to mak-
ing electrical devices from InAs nanowires with an oxide-
free nanowire/metal epitaxial interfaces leading to repro-
ducible low-resistance electrical contacts. The method is
based on a single molecular beam epitaxy (MBE) growth
of an InAs nanowire core and a metallic Aluminum (Al)
nanowire shell. Because of the ultra-high vacuum of the
MBE reactor the Al/InAs interface remains oxide-free
and leads to good electrical contact between the metal
shell and the NW core. We demonstrate the subsequent
fabrication of devices in a field effect transistor geometry
by contacting the metallic Al shell and locally exposing
the InAs channel, and characterize their electrical perfor-
mance. We discuss the potential of this method for cre-
ating superconducting contacts to nanowires and present
electrical transport measurements below the critical tem-
perature of the Al shell. We further demonstrate MBE-
grown InAs nanowires coated by a partial shell thereby
leaving half the nanowire susseptible for gating while pre-
serving the properties of the superconducting contact in-
terface.
The InAs nanowires were grown in the (111)B crystal
direction by the Vapor-Liquid-Solid method in a solid
source MBE system [15, 16]. Without breaking the re-
actor vacuum, the substrate is subsequently cooled be-
low −15◦C and the growth is ended with an Al layer
of 50 − 100 nm. At such low temperatures the diffusion
length of Al is only a few nanometers and the Al crystals
are formed uniformly along the side facets of the InAs
nanowire. Two types of InAs/Al core/shell structures
were investigated; one where the substrate was rotated
during the Al growth resulting in a complete shell, and
one where the substrate rotation was disabled, result-
ing in wires with a half Al shell. In the following we
first discuss the full-shell structures. Figure 1(a) shows
a transmission electron microscope (TEM) image of the
resulting wires clearly revealing the InAs core and the
surrounding Aluminum shell. The crystal grains of the
Al shell have an extension of ∼ 50−70 nm and are visible
through the modulation of the TEM diffraction contrast
resulting from different crystal-grain orientations. Due to

3

tron beam lithography and evaporation of Ni or Ti. To
break through the native oxide present the Al surface
a brief Argon ion milling is performed inside the metal
evaporation chamber. This procedure reproducibly cre-
ates contact to the Al shell. To gain access to the InAs
core, a second lithography step is performed to open nar-
row windows in a resist between the contacts and the
shell is removed by a brief 2-3 sec. etch in 12% buffered
HF[18]. Finally, to enhance the performance of the back-
gate and to reduce switching noise, the device is coated in
20-30 nm of Al2O3 using atomic layer deposition. Figure
22(a) shows scanning electron micrograph of typical de-
vices prior to the final oxide deposition, with a ∼ 0.5µm
wide segment of the InAs core exposed, and the inset
to Fig. 2(b) shows the device schematic. We note, that
in order to employ the Al shell to aid electrical contacts,
the second lithography step is in principle obsolete as the
first metal layer can act as the etch mask for exposing the
InAs core; here, however, the two-step approach was used
to separate the lithography-defined contacts from the re-
gion of exposed NW to ensure that close to this region
the SC properties of the shell are intact.
Figure 2(b) shows the measured conductance as a func-
tion of the voltage Vg applied to conducting back plane
of the substrate for three different devices. As expected
for undoped InAs NWs the devices act as n-type semi-
conductors with an increased conductance for increased
Vg. The devices are pinched-off at Vg = −10V and the
peak conductance for Vg = 10V is 2.8, 5.1, and 5.8 e2/h
for Dev#1, Dev#2, and #3, respectively. These values
are comparable to the best results we have achieved for
devices of comparable lengths and diameters using stan-
dard procedures for removing the InAs oxide. Also the
temperature dependence of the G vs. Vg measurements
shown in Fig. 2(b) indicates the presence of a barrier-free
metal-semiconductor interface: At Vg

>∼ 0V the conduc-
tance increases upon cooling of the device (due to the
reduction of phonon scattering) rather than decreasing
as is often observed for imperfect contacts due to the re-
duction of thermally excited transport.
Figure 3(a) shows the four-terminal resistance as a func-
tion of temperature of an Al-coated NW before the shell
is etched. A clear superconducting transition is observed
at Tc ∼ 1.3K close to the value of bulk Al. Figure 3(b)
shows the dependence of the resistance on magnetic field
as a function of angle of the field with respect to the
wire axis. The critical field Bc peaks at 75mT for the
parallel direction and has a minimum value of 50mT in
the perpendicular orientation. These values are compa-
rable to what is obtained in conventional devices with
a similar Al thickness[7]. Figure 3(c) shows a plot of
dI/dVsd vs. Vsd and B⊥ for Dev#2 with the InAs core
exposed along a ∼ 600 nm segment. As a consequence
of the superconducting contacts, a clear conductance in-

crease is observed at low fields for |Vsd| < 2∆/e disap-
pearing when B⊥ > Bc ∼ 60mT. The absence of a
zero-bias supercurrent is attributed to inadequate filter-
ing of the electrical wiring in the cryostat. The results of
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FIG. 3: (a,b) Temperature and magnetic field dependence of
the four-terminal resistance of a wire with an intact Al shell
(in (b), T = 20mK). (c) Measurement of dI/dVsd vs. Vsd and
B⊥ at T = 50mK for Dev#2 with a ∼ 600 nm wide segment
of exposed InAs (cf. Fig. 2). A clear conductance increase
is observed for |Vsd| <∼ ±2∆/e = ±0.4meV. White line:
B = 0T trace (dI/dVsd = 1.8(3.3)e2/h for Vsd = −1(0)mV).
(d) TEM micrograph of a half-coated InAs nanowire and
schematic top view (inset).

Fig. 3 demonstrates that as a superconducting contact,
the MBE grown shell performs as well as conventional
planar contacts in the standard SC/NW/SC geometry.
In addition, however, due to the perfect uniformity and
control of the grown SC/NW interface we expect a harder
induced gap[12], better suited for studying Majorana-
related physics. To study the characteristics of density of
states in the nanowire, hybrid normal-metal/NW/S de-
vices must be realized in the tunneling regime and such
devices will be the focus of future experiments.
Finally we note, that for the purpose of creating Majo-
rana end-states in proximity-coupled strong SOI NWs, a
tuning of the chemical potential is required and therefore
part of the wire must be susceptible to electrostatic gat-
ing. For this, a fully covering shell is unsuited. Instead,
by disabling the growth-substrate rotation while deposit-
ing the Al, a half-covering contact with the same perfect
nanowire-superconductor interface can be achieved as il-
lustrated in Fig. 3(d).
In conclusion we have demonstrated a new scheme for
producing highly transparent

[1] L. Samuelson, C. Thelander, M. Björk, M. Borgstrom,
K. Deppert, K. Dick, A. Hansen, T. Martensson,

N. Panev, A. Persson, et al., Phys. E 25, 313 (2004).
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3

Figure 1. Examples of systems allowing implementation of a Kitaev chain.
(a) A chain of QDs in a 2DEG. The QDs are connected to each other, and
to superconductors (labeled SC), by means of quantum point contacts (QPCs).
The first and the last dots are also coupled to external leads. The normal state
conductance of QPCs between adjacent dots or between the end dots and the
leads is Gk, and of the QPCs linking a dot to a superconductor is G?. The
confinement energy inside each QD can be controlled by varying the potential
Vgate. (b) Realization of the same setup using a nanowire, with the difference that
each dot is coupled to two superconductors in order to control the strength of the
superconducting proximity effect without the use of QPCs.

separated by gate-controlled tunnel barriers, and all the tuning can be done by gates, except
for the coupling to a superconductor. This coupling, in turn, can be controlled by coupling two
superconductors to each dot and applying a phase difference to these superconductors. The
layout of a nanowire implementation of our proposal is shown in figure 1(b).

This geometry has the advantage of eliminating many of the problems mentioned above.
By using single-level QDs, and also quantum point contacts (QPCs) in the tunneling regime,
we solve issues related to multiple transmitting modes. Additional problems, such as accidental
closings of the induced superconducting gap due to disorder, are solved because our setup allows
us to tune the system to a point where the topological phase is most robust, as we will show.

We present a step-by-step tuning procedure which follows the behavior of the system in
parallel to that expected for the Kitaev chain. As feedback required to control every step we
use the resonant Andreev conductance, which allows us to track the evolution of the system’s
energy levels. We expect that the step-by-step structure of the tuning algorithm should eliminate
the large number of non-Majorana explanations of the zero bias peaks.

New Journal of Physics 15 (2013) 045020 (http://www.njp.org/)
Eeven or odd ¼ "=2"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð"=2Þ2 þ v2 & 2jv1v2j sinð’1=2Þ

q
;

(8)

where v2 ¼ jv1j2 þ jv2j2 and ’1 ¼ 2Argðv1=v2Þ. The
phase difference is controlled by the flux !1 and up to
constant phase shift, we can write ’1 ¼ !1=!0, with !1

being the flux in loop 1 and!0 ¼ h=2e. Note that Eq. (8) is
4! periodic in ’1 [27].

Again, consider an adiabatic process that transfers an
electron from a dot but this time to the two Majorana states
"1 and "2. Unlike the case with a single MBS, the resulting
rotation of the Majorana system is in general not indepen-
dent of the time spend in the adiabatic process, because of
the energy difference in Eq. (8), see Fig. 2(b). The degen-
eracy is restored only when the phase difference is ’1 ¼
2n! (n integer), which therefore requires tuning the mag-
netic flux!1 [Fig. 2(a)]. At this degeneracy point, v1=v2 is
real which allows the Hamiltonian to be written as

H12 ¼ "~cy~cþ vð~cy " ~cÞ"12; (9)

where a new Majorana operator is defined

"12 ¼
1

v
ðjv1j"1 þ jv2j"2Þ; (10)

and where a common phase is absorbed into the dot-
electron operator ~c ¼ c exp½iArgðv1Þ(. Thus, since the
Hamiltonian (9) has the same form as (3), a dot coupled
to two MBSs reduces (at the degeneracy point) to a dot
coupled to a single Majorana state "12. The conclusion
from above therefore also carries over: by adiabatically
changing the electron number of the dot, the following
rotation is performed

P12:jii ! "12jii: (11)

To understand the rotations that can be generated by
repeated applications of P12 (with different ratios jv1=v2j),
we use the following Pauli matrixes acting on the two level
system spanned by "1 and "2: #x ¼ "1, #y ¼ "2, and
#z ¼ "i"1"2. In this language, the operation P12 makes
a ! rotation around an axis in the x-y plane, but other
rotation angles around lines in the x-y plane cannot
be done. In contrast, when applying a pair P12P

0
12 ¼

ðu"1þv"2Þðu0"1þv0"2Þ ¼ ðuu0þvv0Þþ iðuv0"vu0Þ#z

a rotation around the z axis with tunable angle is per-
formed. A braid operation also rotates around the z axis,
but by an angle restricted to!=2. Instead, using four MBSs
and the even-parity subspace to define a qubit [20], a
universal set of single qubit rotations is in fact generated
by pairs of P operators. Again, P12P

0
12 is a rotation around

the z axis [in the basis fð00Þ; ð11Þg defined below], whereas
P23P

0
23 now gives a rotation around the x axis with a

controllable angle [28].
A special and illuminating case is when the dots couple

with equal strength to two MBSs [jv1j ¼ jv2j in Eq. (10)],
which results in operators Fi ¼ 1ffiffi

2
p ð"i þ "jþ1Þ acting

on nearest neighbors. They are related to braid operators
Bi ¼ 1ffiffi

2
p ð1þ "iþ1"iÞ [26] by Bi ¼ Fi"i ¼ "iþ1Fi. The Fi

operators fulfill F2
i ¼ 1 and

FiFj ¼ "FjFi; ji" jj> 1 (12a)

FiFiþ1Fi ¼ "Fiþ1FiFiþ1; (12b)

which differs by a minus sign from the relations defining
the braid group [1]. As a side remark, Fi form a projective
representation of the permutation group [29].
To demonstrate the non-Abelian nature of the tunnel-

braid operations, consider now an explicit example with
four Majorana states and three dots. The state of the
superconductor is initialized by tuning the dots and the
magnetic field to fuse Majorana pairs (1, 2) and (3, 4) and
letting them relax. The initial state is j00i ¼ j0iM12j0iM34,
referring to the occupation of the fermions, d1 ¼ ð"1 þ
i"2Þ=2 and d2 ¼ ð"3 þ i"4Þ=2. We will consider applica-
tions of pairs of Fi and hence restrict to the subspace
of even parity, spanned by j00i and j11i ¼ dy2d

y
1 j00i. The

possible unitary transformations are given by

ðF1F2Þeven ¼ ½ðF2F3Þeven(T ¼ 1ffiffiffi
2

p
"
1 "i
1 i

#
; (13)

FIG. 2 (color online). (a) A one-dimensional array of
Majorana states (M1; . . . ;Mn) coupled to quantum dots (D1,
D2,. . .) in the Coulomb blockade regime. Each dot is tunnel
coupled to two Majorana states with tunnel barriers [controlled
by the gates adjacent to the plunger gates (G1, G2,. . .)].
Changing the occupancy of the dots by one electron creates
the unitary rotations Pij. (b) The ground-state energy of one dot
coupled to two Majorana bound states, with jv1j ¼ jv2j for even
(red) and odd (blue) total parity of a dot and its two connecting
MBSs. Even and odd cases are degenerated for ’1 ¼ 2n!,
which makes the Pij operations partially protected. The full
and dashed lines are for "=jv1j ¼ 0 and 2, respectively.
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Figure 2. Panel a): Minimal circuit for flux-controlled demonstration of non-Abelian Majorana statistics. Two large supercon-
ducting plates form a Cooper pair box in a transmission line resonator, i.e. a transmon qubit. Three smaller superconducting
islands are embedded between the two transmon plates. Each superconducting island contains a nanowire supporting two
Majorana bound states. At low energies, the three overlapping Majorana bound states at a T-junction form a single zero mode
so that e↵ectively the system hosts six Majorana bound states, labeled �

A

, �
B

, �
C

, �
D

, �
E

, and �
F

. The Coulomb couplings
between the Majorana fermions can be controlled with magnetic fluxes �

k

. This hybrid device can measure the result of the
braiding operation as a shift in the microwave resonance frequency when the fermion parity i�

A

�
B

switches between even and
odd. Panel b): Sequence of variation of fluxes during the initialization (steps 0–2), braiding (steps 3–8) and measurement (step
9). Panel c): Illustration of the steps required for initialization, braiding and measurement. To unambiguously demonstrate the
non-Abelian nature of Majoranas, one needs to collect statistics of measurement outcomes when the adiabatic cycle describing
the braiding operation (steps 3–8) is repeated n times between initialization and measurement. The probabilities of observing
changes in the cavity’s resonance frequency, p

flip

, for di↵erent values of n should obey the predictions summarized in the table.
The sequence of probabilities shown in the table repeats itself periodically for larger values of n.

a universal set of quantum gates and allows measurement
of any product of Pauli matrices belonging to a selection
of topological qubits. Multi-qubit parity measurements
are a powerful resource in quantum information process-
ing, allowing for the e�cient creation of long-range entan-
glement and direct measurement of stabilizer operators
(thus removing the overhead of ancilla qubits in quan-
tum error correction schemes). Because the data stored
in the register can be accessed in any random order, it
truly represents a Random Access Majorana Memory.

The structure of the paper is as follows. In Sec. I we
present the circuit that can demonstrate the non-Abelian
Majorana statistics. In Sec. II we take a longer-term
perspective and describe the Random Access Majorana
Memory, whose potential for quantum computation is
discussed in Sec. III. Finally, we conclude in Sec. IV.

For the benefit of the reader, we include more detailed
derivations and discussions in the Appendices.

I. MINIMAL CIRCUIT FOR THE
DEMONSTRATION OF NON-ABELIAN

STATISTICS

To demonstrate non-Abelian Majorana statistics one
needs to read out the parity of two Majoranas, �

A

and
�
B

, and braid one of these Majoranas �
B

with another
one, �

C

. We seek a transmon circuit that can combine
these operations in a fully flux-controlled way, by acting
on the Coulomb coupling of the Majoranas. Since �

B

must be coupled first to one Majorana (for the braiding)
and then to another (for the readout), it must be able

5

that the dependence of the Coulomb coupling on the flux
is governed by macroscopic electrical properties (capaci-
tance of the island, resistance of the Josephson junction).
Tunnel couplings, in contrast, require microscopic input
(separation of the Majorana fermions on the scale of the
Fermi wave length), so they tend to be more di�cult to
control.

Both Ref. [18] and the present proposal share the fea-
ture that the gap of the topological superconductor is not
closed during the braiding operation. (The measurement-
based approach to braiding also falls in this category
[25].) Two other proposals [17, 19] braid the Majorana’s
by inducing a topological phase transition (either by elec-
trical or by magnetic means) in parts of the system. Since
the excitation gap closes at the phase transition, this may
be problematic for the required adiabaticity of the oper-
ation.

The braiding operation is called topologically pro-
tected, because it depends on the o↵/on sequence of
the Coulomb couplings, and not on details of the tim-
ing of the sequence. As in any physical realization of a
mathematical concept, there are sources of error. Non-
adiabaticity of the operation is one source of error, stud-
ied in Ref. [26]. Low-lying sub-gap excitations in the
superconducting island break the adiabatic evolution by
transitions which change the fermion parity of the Majo-
rana’s.

Another source of error, studied in Appendix B, is gov-
erned by the o↵/on ratio U

min

/U
max

of the Coulomb
coupling. This ratio depends exponentially on the ra-
tio of the charging energy EC and the Josephson en-
ergy EJ of the junction to the bulk superconductor. A
value EJ/EC ' 50 is not unrealistic [7], corresponding
to U

min

/U
max

' 10�5.

The sign of the Coulomb coupling in the on state
can be arbitrary, as long as it does not change during
the braiding operation. Since U

max

/ cos(⇡q
ind

/e), any
change in the induced charge by ±e will spoil the opera-
tion. The time scale for this quasiparticle poisoning can
be milliseconds [27], so this does not seem to present a
serious obstacle.

A universal quantum computation using Majorana
fermions requires, in addition to braiding, the capabil-
ities for single-qubit rotation and read-out of up to four
Majorana’s [1]. The combination of Ref. [8] with the
present proposal provides a scheme for all three opera-
tions, based on the interface of a topological qubit and
a superconducting charge qubit. This is not a topolog-
ical quantum computer, since single-qubit rotations of
Majorana fermions lack topological protection. But by
including the topologically protected braiding operations
one can improve the tolerance for errors of the entire
computation by orders of magnitude (error rates as large
as 10% are permitted [9]).

A sketch of a complete device is shown in Fig. 5.

FIG. 5: Josephson junction array containing Majorana
fermions. The magnetic flux through a split Josephson junc-
tion controls the Coulomb coupling on each superconducting
island. This device allows one to perform the three types of
operations on topological qubits needed for a universal quan-
tum computer: read-out, rotation, and braiding. All opera-
tions are controlled magnetically, no gate voltages are needed.
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Appendix A: Derivation of the Majorana-Coulomb
Hamiltonian

1. Single island

Considering first a single island, we start from the
Cooper pair box Hamiltonian (2) with the parity con-
straint (5) on the eigenstates. Following Ref. [21], it is
convenient to remove the constraint by the unitary trans-
formation

H̃ = ⌦†H⌦, ⌦ = exp[i(1� P)�/4]. (A1)

The transformed wave function  ̃(�) = ⌦† (�) is then
2⇡-periodic, without any constraint. The parity operator
P appears in the transformed Hamiltonian,

H̃ =
1

2C

�
Q+ 1

2

e(1� P) + q
ind

�
2 � EJ cos�. (A2)

For a single junction the parity is conserved, so eigen-
states of H are also eigenstates of P and we may treat
the operator P as a number. Eq. (A2) is therefore the
Hamiltonian of a Cooper pair box with e↵ective induced
charge q

e↵

= q
ind

+ e(1 � P)/2. The expression for the
ground state energy in the Josephson regime EJ � EC

van Heck, et al.
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