How to Build a Quantum Computer (Putting Strangness to Work)

Charles Marcus

http://qdev.dk

Center for Quantum Devices Niels Bohr Institute University of Copenhagen

Microsoft Faculty Summit July 16, 2013

Quantum Strangeness I: Superposition – Measurement determines state

a quantum state:

superposition as quantum parallelism

 $|\psi|$

Quantum Strangeness II: Entanglement – nonlocal correlations

First entanglement (Bell) experiment Freedman and Clauser, 1972

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with ... a Geiger counter [and] a tiny bit of radioactive substance.

Perhaps ... one of the atoms decays; if it happens, the counter tube discharges and through a relay releases a hammer which shatters a small flask of hydrocyanic acid.

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed ... in equal parts.

- E. Schrödinger, 1935 (translated by J. Trimmer)

computer chip

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with ... a Geiger counter [and] a tiny bit of radioactive substance.

Perhaps ... one of the atoms decays; if it happens, the counter tube discharges and through a relay releases a hammer which shatters a small flask of hydrocyanic acid.

The psi-function of the entire system would express this by having in it the living and dead cat (pardon the expression) mixed ... in equal parts.

conventional qubits approaches

ion traps

Josephson devices

Electron Spins in Dots

 S_R

SL

VOLUME 57, NUMBER 1

Quantum computation with quantum dots

Daniel Loss^{1,2,*} and David P. DiVincenzo^{1,3,†}

¹Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106-4030 ²Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland ³IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (Received 9 January 1997; revised manuscript received 22 July 1997)

We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium spin dynamics are proposed. [S1050-2947(98)04501-6]

Timeline for spin qubits

Double Quantum Dot as Entanglement Generator

2 dimensions

 $|\psi_1\rangle \rightarrow |\psi_2\rangle$

New directions in the pursuit of Majorana fermions in solid state systems

Jason Alicea¹

¹Department of Physics and Astronomy, University of California, Irvine, California 92697 (Dated: February 8, 2012)

FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical potential lies within the field-induced gap at k = 0, the wire appears 'spinless'. Incorporating the pairing induced by the proximate super-conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana modes as shown in (d).

а

20

Non-Abelian statistics and topological quantum information processing in 1D wire networks

Jason Alicea^{1*}, Yuval Oreg² Gil Refael³ Felix von Onnen⁴ and Matthew P. A. Fisher^{3,5}

10 µm wires, pure wurzite structure

M.H. Madsen, P. Krogstrup, J. Nygård, Univ. of Copenhagen

Epitaxial growth of InAs nanowires

P. Krogstrup, J. Nygård, Univ. of Copenhagen

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor **Nanowire Devices**

V. Mourik,¹* K. Zuo,¹* S. M. Frolov,¹ S. R. Plissard,² E. P. A. M. Bakkers,^{1,2} L. P. Kouwenhoven¹[†]

PHYSICAL REVIEW B 87, 241401(R) (2013)

Ś

Superconductor-nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover

H. O. H. Churchill,^{1,2} V. Fatemi,² K. Grove-Rasmussen,³ M. T. Deng,⁴ P. Caroff,⁴ H. Q. Xu,^{4,5} and C. M. Marcus^{3,*}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

²Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

 $^{3}Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen Ø, Denmark$

⁴Division of Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden

⁵Department of Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China (Received 9 March 2013; published 6 June 2013)

Device #1: one-sided (N-wire-S)

Device #2: two-sided (N-wire-S-wire-N)

150 nm wide uncovered region350 nm wide superconducting contact

200 nm wide uncovered regions

250 nm wide superconducting contacts

Important check: Reproduce previously observed behavior

Epitaxial Aluminum contacts to InAs nanowires

N. L. B. Ziino¹, P. Krogstrup¹, M. H. Madsen¹, E. Johnson^{1,2}, J. Wagner³,

C. M. Marcus¹, J. Nygård¹, T. S. Jespersen^{1 *}

¹ Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark

² Department of Materials Research, Ris National Laboratory,

Technical University of Denmark, DK-4000 Roskilde, Denmark

³ Center for Electron Nanoscopy, Technical University of Denmark, Denmark,

Thick coating

Approaches benefitting from 2D top-down fabrication

Fulga, et al.

Hyart, et al.

van Heck, et al.

Proximity effect in InSb quantum well

