
64 IEEE softwArE | PuBlIsHED By tHE IEEE CoMPutEr soCIEt y 074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E

CODEMINE:
Building a Software
Development Data Analytics
Platform at Microsoft

Jacek Czerwonka, Microsoft

Nachiappan Nagappan, Microsoft Research

Wolfram Schulte, Microsoft

Brendan Murphy, Microsoft Research

// The process Microsoft has gone through developing

CODEMINE—a software development data analytics

platform for collecting and analyzing engineering

process data—includes constraints, and pivotal

organizational and technical choices. //

EARLY, TRUSTWORTHY DATA avail-
able at the required frequencies lets
engineers and managers make data-
driven decisions that can enable the
success of the software development
process to deliver a high-quality, on-
time software system. At Microsoft,
several teams use data to improve pro-
cesses. Examples include

• trend monitoring and reports on de-
velopment health,1

• risk evaluation and change impact
analysis tools,2

• version control branch structure
optimization,3

• social-technical data analysis,4 and
• custom search for bugs and debug

logs, speeding up investigations of
new issues.5

When reviewing these and other
solutions from our existing portfolio
of tools, our teams realized that even

though each solution is unique in its
intended purpose and the way it im-
proves the engineering process, there
are commonalities of inputs, outputs,
and methods used among the tools. For
example, a majority of the reviewed
tools need similar input data: source
code repositories and system binaries,
defect databases, and organization
hierarchies.

In late 2009, a team at Microsoft
was established to explore and imple-
ment a common platform, CODE-
MINE, for collecting and analyzing
engineering process data from across
a diverse set of Microsoft’s product
teams. CODEMINE quickly became
pervasive and is now deployed in all
major product groups at Microsoft.
This project wasn’t done for the sake
of research or academic impact but was
actually deployed in Microsoft and has
hundreds of users. Currently, CODE-
MINE is deployed in all major Micro-
soft product groups: Windows, Win-
dows Phone, Offi ce, Exchange, Lync,
SQL, Azure, Bing, and Xbox.

This article presents the motivation,
challenges, solutions, and most impor-
tant, the lessons learned by the CODE-
MINE team to aid in replicating such
a platform in other organizations. We
hope our design rationale can help oth-
ers who are building similar analytics
platforms.

Data Sources and Schema
Figure 1 depicts a high-level schema of
the repositories and types of artifacts
mined by CODEMINE. In terms of
both volume and frequency of change,
source code repositories are the larg-
est sources of engineering data for a
company like Microsoft. They con-
tain information on a variety of source
code–related artifacts divided into data
describing its state, composition, and
high-level attributes, as well as data de-
scribing ongoing code changes. In the

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

s4nag.indd 64 6/6/13 12:01 PM

 July/August 2013 | IEEE softwArE 65

former category, the primary concepts
are source fi les and their attributes: to-
tal size, size of code versus comments,
implemented methods, and defi ned
classes or types. In the latter, concepts
of a change, a branch, and an integra-
tion characterize the team’s output
over time.

Another large and important body
of data resides in work item reposito-
ries. These typically encompass both
features and defects, both types of
which are often tightly linked to source
code changes. It’s a bidirectional rela-
tionship—features and defects are both
a trigger for as well as a cause of source
code changes.

Data on builds describes the com-
position of the fi nal software product
and also allows us to map source code
to the resulting executable. Code re-
views and tests complete the picture of

the engineering activity, taking into ac-
count the two most common software
verifi cation and validation activities.
Organization information and process
information (such as release schedules
and development milestones) are also
a part of CODEMINE. They provide
context for the engineering activity, the
code being developed, and all activities
around that.

As Figure 1 depicts, artifacts are
cross-referenced as much as possible,
allowing queries against CODEMINE
to go beyond an individual repository.

Architecture
Figure 2 describes the CODEMINE
platform’s high-level architecture.
More than one instance currently ex-
ists; all conform to the same blue-
print. We’re assuming a high degree
of commonality in the data stored in

and accessible from each instance of
the CODEMINE data platform; how-
ever, each instance might have slightly
different capabilities, in terms of both
data stored and analytics that execute
on it. Yet, client applications will be
able to run on the data platform as long
as the data they need is present, ideally
scaling their capabilities on the basis of
which data is actually present. If an ap-
plication can’t run on a particular in-
stance of the data platform, it will be
able to fail gracefully.

Data Store
The core element of the data platform is
the data store. It’s a logical concept re-
alized as a collection of data sources—
typically databases but also fi le shares
with either text or binary fi les. These
data sources don’t have to be colocated
but are likely to remain geographically

Person

Organization

Review

Code review

works
with

Feature/defect

Work item

opens resolves

Source �le

Branch

Submitted
into

Procedure/
method

Class/
type

implements

calls uses

Change

Integration

Source code Process information

Build Test

de�nes
resolves

submits

edits
requests comments on

de�nes

belongs to

moves Schedule
created on

belongs to

Product

Test job
tests

built on

ships
from

Executable

submits as

FIGURE 1. The types of data CODEMINE platform collects. Artifacts are cross-referenced as much as possible, allowing queries against

CODEMINE to go beyond an individual repository.

s4nag.indd 65 6/6/13 12:01 PM

66 IEEE softwArE | www.CoMPutEr.org/softwArE

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

close to the raw data they cache con-
sistent with individual product group
data and security policy. It’s not neces-
sary for all data platform deployments
to have the same data sources. Appli-
cations use the data catalog service to
query for presence and logical loca-
tion (such as a connection string or fi le
share name) of specifi c pieces of data.

Data Loaders
Data loaders are modules of code that
read raw data and directly put it into

the data store. They understand the
schema of the raw data source they’re
querying from. Data loaders are built
to be as independent and decoupled
from one another as possible.

The data collection workfl ow takes
care of orchestrating data collections,
enforcing any dependencies, and ensur-
ing collections happen in the correct
order. The workfl ow will be defi ned in
close cooperation with product groups
and adheres to the “pull once” model
of data collection as closely as possible.

Platform APIs (Data Model)
CODEMINE has a standard set of
interfaces that expose data from the
data platform. The interfaces target
most common entities such as code,
defects, features, tests, people, and
their attributes and relationships.
The most common usage patterns
should be realized through this data
model.

Applications that make use of the
data platform will most often follow
this pattern:

Si
ng

le
-p

ur
po

se
 a

na
ly

si
s

. . .

. . .

. . .
To

ol
s

. . .

. . .

. . .

CO
DE

M
IN

E
da

ta
 s

ou
rc

e

Flexibility in data availability

CO
DE

M
IN

E
lo

ad
er

s

Understand format of repositories
Failure-resistant loading
Remove noise from data
Save data into a common schema

CO
DE

M
IN

E
pl

at
fo

rm
 A

PI

Data model exposed for querying

Code People

Work
items Builds

Process

Pr
od

uc
t t

ea
m

’s
re

po
si

to
rie

s

CO
DE

M
IN

E
da

ta
m

ar
t s

er
vi

ce
s

Data catalog and data recovery

Data publishing and replication

Access permissions

Data archiving

Code Bugs TestsOrganizationBuilds

Small number of source schemas
Many combinations

FIGURE 2. High-level architecture of a CODEMINE data platform instance.

s4nag.indd 66 6/6/13 12:01 PM

 July/August 2013 | IEEE softwArE 67

 1. Query the data catalog to ensure
that the needed data exists. Fetch
connection strings to data sources
or URLs to needed services.

 2. Tailor functionality depend-
ing on the available data.

 3. Connect to services and query for
data through the data model.

 4. Display data.

The data model is the preferred
way to access the data stored in the
data platform. It needs to be expres-
sive enough to support the data needs
of the productized solutions. However,
for purposes of specialized queries,
one-off research tasks, or prototyping,
access to interfaces exposed by indi-
vidual data sources is also available.

Platform Services
Platform services encompass a vari-
ety of features related to data catalog-
ing, security and access permissions,
event logging, data archiving, and data
publishing.

Each part of the data platform sys-
tem needs to be able to log events to
a common place. Reasons for logging
include health monitoring and trend-
ing, data access auditing, execution
tracing, and alerting in failure cases.

Product groups need the ability to
control access to their cached data
the same way they control access to
raw data sources. The security pol-
icy module must be able to under-
stand the security configuration sys-
tems used by product groups, query
the security policies at the right
frequency, and apply them to both
stored data and interfaces accessible
from outside the data platform. Cur-
rently, data platform instances are
protected by individual and separate
security groups.

Data Platform
Usage Scenarios
In the process of creating the platform

and opening it up to both the Micro-
soft internal research community and
product groups, three distinct patterns
of data use emerged:

• As a data source for a reporting
tool or methodology that’s part of
a product team’s process. When a
product team uses the CODEMINE
platform and the client application
in production, this usage pattern re-
quires data freshness and reliability
of data acquisition and analysis as
well as operational uptime and ef-
fi ciency to get to data.

• For one-time, custom analysis fo-
cusing on answering a specifi c
question. Although the data might
not be stored in a way that’s opti-
mized for a particular query, the
fact that the data is available at all
and easy to access (compared to
accessing raw data sources for the
same data) makes CODEMINE
the go-to data source when a prod-
uct team needs to make a decision

related to their product, process,
or organization.

• To enable new research. Data
from each product team, and espe-
cially from across product teams,
is a compelling source of informa-
tion and inspiration for new lines
of research.

What follows are examples from
each of these categories.

Example 1: Mature Research
Encoded into a Tool
Change is a fundamental unit of work
for software development teams that
exists regardless of whether a prod-
uct is a traditional boxed version or
a service or whether a team uses an
agile process or a more traditional
approach.

Making postrelease changes re-
quires a thorough understanding of
not only the architecture of the soft-
ware component to be changed but also
its dependencies and interactions with

FIGURE 3. CRANE tool screenshot.

s4nag.indd 67 6/6/13 12:01 PM

68 IEEE softwArE | www.CoMPutEr.org/softwArE

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

other system components. Testing such
changes in reasonable time and at a
reasonable cost is a problem because an
infi nite number of test cases can be ex-
ecuted for any modifi cation.2 Further-
more, they’re applicable to hundreds of
millions of users; even the smallest mis-
takes can translate to very costly fail-
ures and rework.

CRANE is a failure prediction,
change risk analysis, and test prioriti-
zation system at Microsoft Corporation
that leverages existing research for the
development and maintenance of the
Windows operating system family.2

CRANE is built on top of the
CODE MINE infrastructure, as shown
in Figure 2 on the top layer, where the
tools exist leveraging the CODEMINE
platform. The CODEMINE data plat-
form constantly monitors changes
happening in the source code reposi-
tory and can cross-reference these

with features, defects, people, code
reviews, and auxiliary data such as
code coverage. CRANE is able to use
this data, and consequently, teams can
automatically receive information on
change composition, associated bugs,
similar changes, involved people, and
possible risks and recommend risk-
mitigation steps.

CRANE is able to not only surface
information about changes but also
provide interpretation via overlaying
coverage data and statistical risk mod-
els to identify the most risky and least
covered parts of a change. Figure 3
shows a snapshot of a CRANE analy-
sis, which identifi es change, coverage,
dependency, people, and prior bug in-
formation. It allows engineers and en-
gineering managers to focus their atten-
tion on the most failure-prone parts of
their work. Through use of code cov-
erage data and a maximum-coverage/

minimum-cost algorithm, CRANE is
able to recommend specifi c, high-value
tests.

The system has already been suc-
cessfully deployed in Windows, and
pilots are underway in other product
teams.

Example 2: Ad Hoc Analysis
for Decision Making
Here’s a simple but very important
question: Is code coverage effective,
and is there a code coverage percentage
at which we should stop testing?

We analyzed code coverage of mul-
tiple released versions of Microsoft
products and correlated branch and
statement coverage with postrelease
failures. There was a strong positive
correlation between coverage and fail-
ures. From discussions with the rela-
vant teams, we found out that there are
several reasons for the existence of this
inverse relationship:

• code covered doesn’t guarantee that
the code is correct;

• having 100 percent code coverage
doesn’t mean the system will have
no failures—rather, it means that
bugs could be found outside antici-
pated coverage scenarios; and

• each time a fi x is done, a test case
is written to cover the fi x (often,
changed binaries might therefore
have high code coverage simply be-
cause they have been modifi ed sev-
eral times).

This fi nding led us to a follow-up
study on the use of code coverage in
conjunction with code complexity (for
example, cyclomatic complexity and
class coupling) as a better indicator of
code quality. In addition, we were able
to benchmark our results with external
organizations such as Avaya to com-
pare and contrast our results.6 Studies
of unit testing show its increased effec-
tiveness in obtaining high-quality code

0

0

Con�ict avoidance

Single branch removal

Ve
lo

ci
ty

 c
os

t

 FIGURE 4. Velocity versus con� ict avoidance. Red dots indicate branches that aren’t useful,

green dots indicate branches that are useful, and blue dots indicate branches with mixed

utility.

s4nag.indd 68 6/6/13 12:01 PM

 July/August 2013 | IEEE softwArE 69

because it eliminates the need for tes-
ters to find the category of bugs that
could be more easily found by devel-
opers and lets them focus more on sce-
nario testing.7

Example 3: Use of Data in New Research
Many companies use branches in ver-
sion control systems to coordinate the
work of hundreds to thousands of de-
velopers building a software system or
service. Branches isolate concurrent
work, avoiding instability during de-
velopment. The downside is an increase
in time for changes to move though the
system. So, can we determine the op-
timal branch structure, guaranteeing
fast code velocity and a high degree of
isolation? Answering this question isn’t
only important to Microsoft but also to
other commercial companies and the
research community.

Toward this end, we performed
various experiments on simulating dif-
ferent branch structures.3 For exam-
ple, we replayed the check-in history
of several product groups, assuming
specific branches didn’t exist. Under
these conditions, all changes hierarchi-
cally roll up to a higher-level branch,
and we can detect conflicts by identi-
fying files getting modified together.
The resulting graph (see Figure 4) plots
the cost of a branch versus its value as
a factor, isolating parallel lines of de-
velopment. In Figure 4, red dots indi-
cate branches that aren’t useful—that
is, adding velocity and not providing
much conflict avoidance. Green dots
indicate branches that are useful, and
blue dots indicate branches with mixed
utility. Branch structures are created
in context and to suit needs of a spe-
cific product and organization; such
branch evaluation lets teams identify
the cost paid for the benefit and iden-
tify parts of the branch tree that should
be restructured.3

We also analyzed the architectural
structure of Windows (for both Vista

and Windows 7) and observed that a
branch structure that aligns with the
team’s organizational structure leads to
fewer postrelease failures than branches
aligned to the product’s architectural
layering.8

Lessons on
Replicating CODEMINE
One of our primary goals in this
article is to help other organizations
replicate the work we’re doing with
CODEMINE to build their own data

analytics platform. We’ve compiled a
list of suggestions from our experience
that would assist in replicating our
CODEMINE effort and some things
for other organizations to think
of differently when building their
platform.

Create an Independent Instance for Each
Product Team in the Data Platform
Easy partitioning, the ability to con-
strain access, and the ability to move
parts of the infrastructure greatly as-
sisted us in creating independent
instances.

Have Uniform Interfaces for Data Analysis
Even though multiple instances will ex-
ist, applications need to rely on a com-
mon set of services, APIs, or a stable
schema present in each. The data plat-
form interfaces’ evolution must be done
very carefully; preserving backward
compatibility should be of primary
concern. This also greatly helps when
you build an application once and can
redeploy it multiple times across several
data instances.

Encode Process Information
Process information, including release
schedule (milestones and dates), orga-
nization of code bases, team structure,
and so on, is very important to provide
better context—for example, why is
there a sudden spike in bugs (more us-
ers added), sudden spike in code churn
(code integration milestone), and so on?
At Microsoft, this information isn’t
present in one place or tool. It might
pop up in project tracking, a code re-
pository, and bug-tracking tools or be

configured with some level of custom-
ization to interpret this. Organizations
should make plans to embed this infor-
mation in the system to provide valu-
able metadata.

Provide Flexibility and Extensibility for
Collected Data and Deployed Analytics
Product teams have varying require-
ments and need the ability to define
which data and metadata are stored
in the data platform and how they’re
analyzed; this will allow teams to best
reflect their existing processes or en-
able new ones. For example, one team
might decide to add customer user data
to their instance of their data store. The
system should be able to fully support
such extensions.

Allow Dynamic Discovery of Data
Platform’s Capabilities by Application
Each application relying on the data
platform needs the ability to identify
capabilities of a particular data plat-
form instance and adjust its function
accordingly. For example, some prod-
uct groups collect and archive historical

Branch evaluation lets teams identify
the cost paid for the benefit

s4nag.indd 69 6/6/13 12:01 PM

70 IEEE softwArE | www.CoMPutEr.org/softwArE

FOCUS: SOFTWARE ANALYTICS: SO WHAT?

code coverage data and some choose
not to. The tools must be able to seam-
lessly scale their functionality down if
code coverage data isn’t available for a
particular product group.

Support Policies for Security,
Privacy, and Audit
The data platform must allow for set-
ting authorization, authentication, pri-
vacy, and audit policies to refl ect se-
curity requirements and policies of the
product group or the data owner. As
a general rule, information leaving the
data platform will be accessible only to
people who were granted permission to
the original raw data coming in; how-
ever, stricter rules might apply to sub-
sets of data.

Allow Ongoing Support
and Maintenance Outside of CODEMINE
In most cases, product teams eventually
take over ownership and operations
for their respective data platform in-
stances. To ensure a smooth transition,

the data platform must adhere to rules
of a well-behaved service defi ned by op-
erations teams. Resiliency to failure, re-
try logic, logging of fatal and nonfatal
errors, health monitoring, and notifi ca-
tions should be built in.

Host as a Cloud Service
Based on need, economic consider-
ations, load, and availability require-
ments, carefully evaluate the necessity
to host the service on the cloud or on
traditional servers. Overengineering al-
ways leads to wasted effort.

Know the Data Platform Might
Not Fulfi ll All Data Needs
The data platform will be scoped to
provide data that’s used by several cli-
ent applications—that is, there must
be a level of commonality of inputs for
the platform to start serving the data.
However, applications can still access
other, more specialized data sources
and federate with the data platform as
their needs dictate.

New research
in software
engineering

Solved business
problem

Collaboration
surfaces

further areas of
improvement

Solutions/tools
easily deployed

in product
groups

Additional and
clean data

available for
further research

FIGURE 5. Cycle of collaboration and data availability.

Innovate at the Right Level of the Stack
Use mature foundational technology
and existing programming skills. As
much as possible, we try to use the op-
erating system, storage, and database
platform technology that’s mature and
already part of Microsoft’s stack to
avoid spending time innovating, for
example, at the level of raw storage or
methods of distributed computation.
Instead, we focus on data availability,
accurate data acquisition, data clean-
ing, abstracting representation of the
engineering process, and data analysis.
In terms of accessing data, we need to
ensure any new programming models
used are absolutely necessary for the
task so we don’t create artifi cial barri-
ers of entry for users of our data.

W e’ve observed that once
data is easily accessible,
new usage scenarios open

up; for instance, CODEMINE is cur-
rently being used to understand on-
boarding processes, optimize individ-
ual processes (like build), and optimize
overall code fl ow.

Another signifi cant goal of the
CODE MINE platform is enabling fu-
ture research and analysis. Figure 5
explains the cycle of data availability
where new research in software en-
gineering spawns new solutions to be
deployed in product groups. These so-
lutions can be used to solve large busi-
ness problems and enable additional
research with the scaling out of the en-
gineering work. This further strength-
ens the collaboration and opens new
avenues for collaboration and again
leads to new research ideas.

As a way to propagate the ideas of
data-driven decision making, we re-
cently started a virtual community fo-
cused on sharing questions, solutions,
methods, and tools related to engineer-
ing process data analysis. It is a cross-
disciplinary group of product team

s4nag.indd 70 6/6/13 12:01 PM

 July/August 2013 | IEEE softwArE 71

JACEK CZERWONKA is a principal software architect in the Tools
for Software Engineers group at Microsoft. His research interests
include software testing and quality assurance, systems-level testing,
pairwise and model-based testing, and data-driven decision making
on software projects. Czerwonka received his MSc in Computer Sci-
ence from Technical University of Szczecin. Contact him at jacekcz@
microsoft.com.

NACHIAPPAN NAGAPPAN is a principal researcher in the Empiri-
cal Software Engineering group at Microsoft Research. His research
interests include software analytics, focusing software reliability, and
empirical software engineering processes. Nagappan received a PhD in
computer science from North Carolina State University. Contact him at
nachin@microsoft.com.

WOLFRAM SCHULTE is an engineering general manager and
principal researcher at Microsoft. His research interests include soft-
ware engineering, focusing on build, modeling, verifi cation, test, and
programming languages, ranging from language design to runtimes.
Schulte received a PhD in computer science from the Technical Univer-
sity of Berlin. Contact him at schulte@microsoft.com.

BRENDAN MURPHY is a principal researcher at Microsoft Research. His research interests
include system dependability, encompassing measurement, reliability, and availability. Contact
him at bmurphy@microsoft.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

Smembers and researchers with expe-
rience and backgrounds in empirical
software engineering, data analysis,
and data visualization. The group’s
goal is to emphasize data-driven deci-
sion making in our teams and to equip
product teams with relevant guidelines,
methods, and tools. As we realize our
goals, the CODEMINE data platform
often serves as the common denomina-
tor in our community activities.

References
 1. N. Nagappan and T. Ball, “Use of Relative

Code Churn Measures to Predict System De-
fect Density,” Proc. 27th Int’l Conf. Software
Eng. (ICSE 05), ACM, 2005, pp. 284–292.

 2. J. Czerwonka et al., “CRANE: Failure Predic-
tion, Change Analysis and Test Prioritization
in Practice—Experiences from Windows,”
Proc. 4th Int’l Conf. Software Testing, Veri-
fi cation and Validation (ICST 11), IEEE CS,
2011, pp. 357–366.

 3. C. Bird and T. Zimmermann, “Assessing the
Value of Branches with What-If Analysis,”
Proc. ACM SIGSOFT 20th Int’l Symp. Foun-
dations of Software Eng. (FSE 12), ACM,
2012, pp. 45–54.

 4. C. Bird et al., “Putting It All Together: Using
Socio-technical Networks to Predict Failures,”
Proc. 20th Int’l Symp. Software Reliability
Eng. (ISSRE 09), IEEE CS, 2009, pp. 109–119.

 5. B. Ashok et al., “DebugAdvisor: A Recom-
mender System for Debugging,” Proc. 7th
Joint Meeting European Software Eng. Conf.
and ACM SIGSSOFT Symp. Foundations of
Software Eng. (ESEC/FSE 09), ACM, 2009,
pp. 373–382.

 6. A. Mockus, N. Nagappan, and T.T. Dinh-
Trong, “Test Coverage and Post-verifi cation
Defects: A Multiple Case Study,” Proc. 3rd
Int’l Symp. Empirical Software Eng. and
Measurement (ESEM 09), IEEE CS, 2009,
pp. 291–301.

 7. L. Williams, G. Kudrjavets, and N. Nagappan,
“On the Effectiveness of Unit Test Automa-
tion at Microsoft,” Proc. 20th Int’l Symp.
Software Reliability Eng. (ISSRE 09), IEEE
CS, 2009, pp. 81–89.

 8. E. Shihab, C. Bird, and T. Zimmermann,
“The Effect of Branching Strategies on Soft-
ware Quality,” Proc. Int’l Symp. Empirical
Software Eng. and Measurement (ESEM 12),
ACM, 2012, pp. 301–310.

IEEE Software seeks practical, readable

articles that will appeal to experts and nonexperts

alike. The magazine aims to deliver reliable

information to software developers and managers

to help them stay on top of rapid technology

change. Submissions must be original and no

more than 4,700 words, including 200 words

for each table and fi gure.

Author guidelines:
www.computer.org/software/author.htm
Further details: software@computer.org

www.computer.org/software

Call Articles
 for

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s4nag.indd 71 6/6/13 12:01 PM

