
Making verifiable computation a

systems problem

Michael Walfish

The University of Texas at Austin

From a systems perspective, it is an exciting

time for this area!

 When we started …

 … there were no implementations

 … my colleagues thought I was a lunatic

 Today …

 … there is a rich design space

 … the work can be called “systems” with a straight face

applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
CMT, TRMP
[ITCS,Hotcloud12]

low
Allspice
[Oakland13]

medium
Pepper
[NDSS12]

Ginger
[Security12]

Zaatar
[Eurosys13]

Pantry
[SOSP13]

high
Pinocchio
[Oakland13]

Pantry
[SOSP13]

A key trade-off is performance versus expressiveness.

(Includes only implemented systems.)

more expressive

lower cost,

less crypto

(1)

(2)

ship with compilers
better crypto properties:

ZK, non-interactive, etc.

 What are the verifiers’ variable (verification, per-instance)

costs, and how do they compare to native execution?

 What are the verifiers’ fixed (per-computation or per-

batch setup) costs, and how do they amortize?

 What are the workers’ overheads?

We investigate:

 A system is included iff it has published experimental results.

 Data are from our re-implementations and match or exceed

published results.

 All experiments are run on the same machines (2.7Ghz, 32GB

RAM). Average 3 runs (experimental variation is minor).

 For a few systems, we extrapolate from detailed microbenchmarks

 Measured systems:

 General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio

 Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice

 Benchmarks: 150×150 matrix multiplication and clustering

algorithm (others in our papers)

Experimental setup and ground rules

x(1)

y(1)

F, EKF

x(2)

y(2)

setup costs are per-computation

x(B)

y(B)

. . .

Pinocchio Pepper, Ginger, Zaatar

F, x(1)

y(1)

x(2)

y(2)

x(B)

y(B)

. . .

q

setup costs are per-batch

V W V W

 A system is included iff it has published experimental results.

 Data are from our re-implementations and match or exceed

published results.

 All experiments are run on the same machines (2.7Ghz, 32GB

RAM). Average 3 runs (experimental variation is minor).

 For a few systems, we extrapolate from detailed microbenchmarks

 Measured systems:

 General-purpose: IKO, Pepper, Ginger, Zaatar, Pinocchio

 Special-purpose: CMT, Pepper-tailored, Ginger-tailored, Allspice

 Benchmarks: 150×150 matrix multiplication and clustering

algorithm (others in our papers)

Experimental setup and ground rules

102

1011

108

105

1014

1017

0

1020

1023

1026

150×150 matrix multiplication

Pepper Ginger Zaatar Pinocchio

Ishai et al. (PCP-based efficient argument)

v
e
ri

fi
c
a
ti

o
n

 c
o

st

(m
s

o
f

C
P

U
 t

im
e
)

50 ms

5 ms

Verification cost sometimes beats (unoptimized)

native execution.

Some of the general-purpose protocols have

reasonable cross-over points.

0

10

20

30

40

50

0 10K 20K 30K 40K 50K 60K

native (sl
ope: 50 ms/inst)

Zaatar (slo
pe: 33 ms/inst)

v
er

if
ic

a
ti

o
n

 c
o

st

(m
in

u
te

s
o

f
C

P
U

 t
im

e)

instances of the same computation

Ginger (slope: 18 ms/inst) cross-over point: 4.5 million instances

Pinocchio (slope: 12 ms/inst)

..
..

1.6 days

instances of 150x150 matrix multiplication

15K

30K

45K

60K

1.2B 450K

25.5K

50.5K

22K

4.5M

matrix multiplication (m=150) PAM clustering (m=20, d=128)

7.4K
7 1

N/Ac
ro

ss
-o

v
e
r

p
o

in
t

The cross-over points can sometimes improve

with special-purpose protocols.

101

105

0

109

103

107

1011

w
o

rk
e
r’

s
c
o

st

n
o

rm
a
li

z
e
d

 t
o

 n
a
ti

v
e
 C

matrix multiplication (m=150) PAM clustering (m=20, d=128)

N/A

The worker’s costs are pretty much preposterous.

Summary of performance in this area

 None of the systems is at true practicality

 Worker’s costs still a disaster (though lots of progress)

 Verifier gets close to practicality, with special-purposeness

 Otherwise, there are setup costs that must be amortized

 (We focused on CPU; network costs are similar.)

applicable computations

setup costs “regular” straightline pure, no RAM stateful, RAM

none

(w/ fast worker)
Thaler
[CRYPTO13]

none
CMT
[ITCS12]

low
Allspice
[Oakland13]

medium
Pepper
[NDSS12]

Ginger
[Security12]

Zaatar
[Eurosys13]

Pantry
[SOSP13]

high
Pinocchio
[Oakland13]

Pantry
[SOSP13]

(1)

(2)

before:

F, x

y

after:

Pantry [SOSP13] creates verifiability for real-world computations

 V supplies all inputs

 F is pure (no side effects)

 All outputs are shipped back

V W

query, digest

result
V W

F, x

y
V W RAM

DB

V

map(), reduce(),

input filenames

output filenames
Wi

V

W

QAP

arith.

circuit

F(){

[subset of C]

}

constraints

on circuit

execution

Recall the compiler pipeline.

V W

F, x

y

(The last step differs among

Ginger, Zaatar, Pinocchio.)

if Y = 4 …

… there is a solution

Input/output pair correct ⟺ constraints satisfiable.

0 = Z – 7

0 = Z – 3 – 4

Programs compile to constraints on circuit execution.

f(X) {

Y = X − 3;

return Y;

}

0 = Z − X,

0 = Z – 3 – Y

As an example, suppose X = 7.

if Y = 5 …

… there is no solution

0 = Z – 7

0 = Z – 3 – 5

dec-by-three.c

compiler

V

W

V W

QAP

arith.

circuit

F(){

[subset of C]

}

constraints (E)

F, x

y

“E(X=x,Y=y) has a

satisfying assignment”

The pipeline decomposes into two phases.

0 = X + Z1

0 = Y + Z2

0 = Z1Z3 − Z2

….

“If E(X=x,Y=y) is satisfiable,

computation is done right.”
=

Design question: what can we put in the constraints so

that satisfiability implies correct storage interaction?

Representing “load(addr)” explicitly would be horrifically expensive.

How can we represent storage operations? (1)

Straw man: variables M0, …, Msize contain state of memory.

B = M0 + (A − 0) F0

B = M1 + (A − 1) F1

B = M2 + (A − 2) F2

…

B = Msize + (A − size) Fsize

Requires two variables for every possible memory address!

B = load(A)

 They bind references to values

 They provide a substrate for verifiable RAM, file systems, …

[Merkle CRYPTO87, Fu et al. OSDI00, Mazières & Shasha PODC02, Li et al. OSDI04]

How can we represent storage operations? (2)

Consider self-certifying blocks:

Key idea: encode the hash checks in constraints

 This can be done (reasonably) efficiently

Folklore: “this should be doable.” (Pantry’s contribution: “it is.”)

digest

block
cli. serv.

hash(block) = digest
?

d = hash(Z)

add_indirect(digest d, value x)
{

value z = vget(d);

y = z + x;

return y;

}

y = Z + x

We augment the subset of C with the semantics of untrusted storage

 block = vget(digest): retrieves block that must hash to digest

 hash(block) = vput(block): stores block; names it with its hash

Worker is obliged to supply the “correct” Z

(meaning something that hashes to d).

constraints (E)

V

W

QAP

circuit

subset of C

+

{vput, vget}

C with RAM,

search trees

map(),

reduce()

V W

F, x

y

Putting the pieces together

= recall: “I know a satisfying assignment to E(X=x,Y=y)”

 checks-of-hashes pass ⟺ satisfying assignment identified

 checks-of-hashes pass ⟺ storage interaction is correct

 storage abstractions can be built from {vput(), vget()}

The verifier is assured that a MapReduce job was

performed correctly—without ever touching the data.

The two phases are handled separately:

mappers

in = vget(in_digest);

out = map(in);

for r=1,…,R:

d[r] = vput(out[r])

reducers

for m=1,…,M:

in[m] = vget(e[m]);

out = reduce(in);

out_digest = vput(out);

V
Mi Ri

0

5

10

15

200K 400K 600K 800K 1M 1.2M

verifier

baseline

C
P

U
 t

im
e

(s
ec

o
n

d
s)

input size
(number of nucleotides in the DNA dataset)

Example: for a DNA subsequence search, the verifier saves

work, relative to performing the computation locally.

 A mapper gets 1000 nucleotides and outputs matching locations

 Vary mappers from 200 to 1200; reducers from 20 to 120

Pantry applies fairly widely

 Privacy-preserving facial recognition

query, digest

result
V W DB

 Verifiable queries in (highly restricted) subset of SQL

 Our implementation works with Zaatar and Pinocchio

 Our implemented applications include:

Major problems remain for this area

 Setup costs are high (for the general-purpose systems)

 Verification costs are high, relative to native execution

 Evaluation baselines are highly optimistic

 Example:100×100 matrix multiplication takes 2 ms on

modern hardware; no VC system beats this.

 Worker overhead is 1000×

 The computational model is a toy

 Loops are unrolled, memory operations are expensive

Summary and take-aways

 A framework for organizing the research in this area is

performance versus expressiveness.

 Pantry extends verifiability to stateful computations,

including MapReduce, DB queries, RAM, etc.

 Major problems remain for all of the systems

 Setup costs are high (for the general-purpose systems), and

verification does not beat optimized native execution

 Worker costs are too high, by many orders of magnitude

 The computational model is a toy

