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This talk 

The idea of “deep learning.” Using brain simulations, hope to:  

 - Make learning algorithms much better and easier to use. 

 - Make revolutionary advances in machine learning and AI.  

 

I believe this is our best shot at progress towards real AI.  
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What do we want computers to do with our data? 

Images/video 

 

 

Audio 

 

 

Text 

Label: “Motorcycle” 

Suggest tags 

Image search 

… 

Speech recognition 

Speaker identification 

Music classification 

… 

Web search 

Anti-spam 

Machine translation 

…  

Machine learning performs well on many of these problems, but is a 

lot of work.  What is it about machine learning that makes it so hard 

to use? 
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Machine learning and feature representations 
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What we want 

Input 
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Feature representations 

Learning 
algorithm 

Feature 
Representation 

Input 
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Computer vision features 

SIFT Spin image 

HoG RIFT 

Textons GLOH 
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Audio features 

ZCR 

Spectrogram MFCC 

Rolloff Flux 
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NLP features 

Parser features 
Named entity recognition Stemming 

Part of speech 
Anaphora 

Ontologies (WordNet) 

Coming up with features is difficult, time-

consuming, requires expert knowledge.   

  

When working applications of learning, we 

spend a lot of time tuning the features.  
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The “one learning algorithm” hypothesis 

[Roe et al., 1992] 

Auditory cortex learns to see 

 

Auditory Cortex 
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The “one learning algorithm” hypothesis 

[Metin & Frost, 1989] 

Somatosensory cortex learns to see 

 

Somatosensory Cortex 
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Learning input representations 

Find a better way to represent images than pixels. 
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Learning input representations 

Find a better way to represent audio.  
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Feature learning problem 

• Given a 14x14 image patch x, can represent 

it using 196 real numbers.  

 

 

• Problem: Can we find a learn a better  

feature vector to represent this?  

255 

98 

93 
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89 

91 

48 

… 



Andrew Ng 

Feature Learning via Sparse Coding 

Sparse coding (Olshausen & Field,1996). Originally 

developed to explain early visual processing in  

the brain (edge detection). 

Input: Images x(1), x(2), …, x(m) (each in Rn x n) 

Learn: Dictionary of bases f1, f2, …, fk (also Rn x n), 

so that each input x can be approximately 

decomposed as:   

   x     aj
 fj 

   s.t. aj’s are mostly zero (“sparse”)  

[NIPS 2006, 2007] 

j=1 

k 
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Sparse coding illustration 

    Natural Images Learned bases (f1 , …, f64):  “Edges” 
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 0.8 *                   + 0.3 *                     + 0.5 * 

     x       0.8 *       f
36         +  0.3 *        f42          

+ 0.5 *       f63 

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]  
(feature representation)  

Test example 

More succinct, higher-level, 
representation. 
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More examples 

 

 

 

Represent as: [a15=0.6, a28=0.8, a37 = 0.4]. 

 

 

 

Represent as: [a5=1.3, a18=0.9, a29 = 0.3]. 

 

 
 

     0.6 *                  + 0.8 *                  + 0.4 * 

                                    f15                                 f28                                                 
f

37  

     1.3 *                  + 0.9 *                  + 0.3 * 

                                   f5                                   f18                                               
f

29  

• Method “invents” edge detection.  

• Automatically learns to represent an image in terms of the edges that 

appear in it.  Gives a more succinct, higher-level representation than 

the raw pixels.  

• Quantitatively similar to primary visual cortex (area V1) in brain.  
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Sparse coding applied to audio 

[Evan Smith & Mike Lewicki, 2006] 

Image shows 20 basis functions learned from unlabeled audio.  
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Sparse coding applied to audio 

[Evan Smith & Mike Lewicki, 2006] 

Image shows 20 basis functions learned from unlabeled audio.  
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Learning feature hierarchies 

Input image (pixels) 

“Sparse coding” 

(edges; cf. V1)  

Higher layer 

(Combinations of edges;  

  cf. V2) 

[Lee, Ranganath & Ng, 2007] 

x1 x2 x3 x4 

a3 a2 a1 

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.] 
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Learning feature hierarchies 

Input image 

Model V1 

Higher layer 

(Model V2?) 

 

 

 

 

 

Higher layer 

(Model V3?) 

[Lee, Ranganath & Ng, 2007] 

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.] 

x1 x2 x3 x4 

a3 a2 a1 
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Hierarchical Sparse coding (Sparse DBN): Trained on face images 

pixels 

edges 

object parts 

(combination  

of edges) 

object models 

[Honglak Lee] 

Training set: Aligned 

images of faces.  
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State-of-the-art 

Unsupervised   

feature learning 
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Images 

Multimodal (audio/video) 

CIFAR Object classification Accuracy 

Prior art (Ciresan et al., 2011)  80.5% 

Stanford Feature learning 82.0% 

NORB Object classification Accuracy 

Prior art (Scherer et al., 2010) 94.4% 

Stanford Feature learning 95.0% 

AVLetters Lip reading Accuracy 

Prior art (Zhao et al., 2009) 58.9% 

Stanford Feature learning 65.8% 

Galaxy 

Other unsupervised feature learning records:  

Pedestrian detection (Yann LeCun) 

Speech recognition (Geoff Hinton) 

PASCAL VOC object classification (Kai Yu) 

Hollywood2 Classification Accuracy 

Prior art (Laptev et al., 2004) 48% 

Stanford Feature learning 53% 

KTH Accuracy 

Prior art (Wang et al., 2010) 92.1% 

Stanford Feature learning 93.9% 

UCF Accuracy 

Prior art (Wang et al., 2010) 85.6% 

Stanford Feature learning 86.5% 

YouTube Accuracy 

Prior art (Liu et al., 2009) 71.2% 

Stanford Feature learning 75.8% 

Video 

Text/NLP 

Paraphrase detection Accuracy 

Prior art (Das & Smith, 2009)  76.1% 

Stanford Feature learning 76.4% 

Sentiment (MR/MPQA data) Accuracy 

Prior art (Nakagawa et al., 2010)  77.3% 

Stanford Feature learning 77.7% 
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Technical challenge: 

Scaling up 
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Scaling and classification accuracy (CIFAR-10) 

Large numbers of features is critical. The specific learning algorithm is 

important, but ones that can scale to many features also have a big 

advantage.  

[Adam Coates] 
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Scaling up: Discovering 

object classes 

[Quoc V. Le, Marc'Aurelio Ranzato, Rajat  Monga, 

Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean] 
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Local Receptive Field networks 

Machine #1 Machine #2 Machine #3 Machine #4 

Le, et al., Tiled Convolutional Neural Networks. NIPS 2010 

Sparse features 

Image 
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Asynchronous Parallel SGD 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 
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Asynchronous Parallel SGD 

Parameter server 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 
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Asynchronous Parallel SGD 

Parameter server 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 
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Training procedure 

What features can we learn if we train a massive model on a massive 

amount of data.  Can we learn a “grandmother cell”? 

• Train on 10 million images (YouTube) 

• 1000 machines (16,000 cores) for 1 week.  

• 1.15 billion parameters 

• Test on novel images 

Training set (YouTube)                           Test set (FITW + ImageNet) 
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Face neuron 

[Raina, Madhavan and Ng, 2008] 

Top Stimuli from the test set Optimal stimulus by numerical optimization 
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Cat neuron 

[Raina, Madhavan and Ng, 2008] 

Top Stimuli from the test set Average of top stimuli from test set 



ImageNet classification 

20,000 categories 
 
16,000,000 images 
 
Others: Hand-engineered features (SIFT, HOG, LBP),  
Spatial pyramid,  SparseCoding/Compression 
 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 



20,000 is a lot of categories…  

… 
smoothhound, smoothhound shark, Mustelus mustelus 
American smooth dogfish, Mustelus canis 
Florida smoothhound, Mustelus norrisi 
whitetip shark, reef whitetip shark, Triaenodon obseus 
Atlantic spiny dogfish, Squalus acanthias 
Pacific spiny dogfish, Squalus suckleyi 
hammerhead, hammerhead shark 
smooth hammerhead, Sphyrna zygaena 
smalleye hammerhead, Sphyrna tudes 
shovelhead, bonnethead, bonnet shark, Sphyrna tiburo 
angel shark, angelfish, Squatina squatina, monkfish 
electric ray, crampfish, numbfish, torpedo 
smalltooth sawfish, Pristis pectinatus 
guitarfish 
roughtail stingray, Dasyatis centroura 
butterfly ray 
eagle ray 
spotted eagle ray, spotted ray, Aetobatus narinari 
cownose ray, cow-nosed ray, Rhinoptera bonasus 
manta, manta ray, devilfish 
Atlantic manta, Manta birostris 
devil ray, Mobula hypostoma 
grey skate, gray skate, Raja batis 
little skate, Raja erinacea 
… 

Stingray 

Mantaray 



0.005% 
Random guess 

9.5% ? 
Feature learning  
From raw pixels 

State-of-the-art 
(Weston, Bengio ‘11) 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 



ImageNet 2009 (10k categories): Best published result: 17%  
                                                          (Sanchez & Perronnin ‘11 ),  
                                                          Our method: 20% 
 
Using only 1000 categories, our method > 50% 
 

0.005% 
Random guess 

9.5% 
State-of-the-art 

(Weston, Bengio ‘11) 

19.2% 
Feature learning  
From raw pixels 

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 
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Speech recognition on Android 



Andrew Ng 

• Deep Learning : Lets learn rather than manually design 

our features.  

• Discover the fundamental computational principles that 

underlie perception.  

• Deep learning very successful on vision and audio tasks.   

• Other variants for learning recursive representations for 

text. 
 

 

 

  

Unsupervised Feature Learning Summary 

Thanks to: Adam Coates, Quoc Le, Brody 

Huval, Andrew Saxe, Andrew Maas, 

Richard Socher, Tao Wang 
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our features.  
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Unsupervised Feature Learning Summary 

Thanks to: Adam Coates, Quoc Le, Brody Huval, Andrew Saxe, 

Andrew Maas, Richard Socher, Tao Wang 
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Conclusion 
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• Deep Learning and Self-Taught learning: Lets 

learn rather than manually design our features.  

• Discover the fundamental computational 

principles that underlie perception?  

• Deep learning very successful on vision and 

audio tasks.   

• Other variants for learning recursive 

representations for text. 
 

 

Deep Learning Summary 

Unlabeled images 

Car Motorcycle 

    Adam Coates       Quoc Le       Honglak Lee     Andrew Saxe   Andrew Maas Chris Manning Jiquan Ngiam  Richard Socher     Will Zou  

Stanford 

Google:             Kai Chen     Greg Corrado     Jeff Dean   Matthieu Devin  Andrea Frome   Rajat Monga   Marc’Aurelio     Paul Tucker      Kay Le              

                                                                                                                                                            Ranzato 

 



Andrew Ng 

Advanced Topics 

Andrew Ng 
Stanford University & Google 
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Analysis of feature 

learning algorithms 

    Andrew Coates   Honglak Lee 
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Supervised Learning 

• Choices of learning algorithm: 

– Memory based 

– Winnow 

– Perceptron 

– Naïve Bayes 

– SVM 

– ….  

• What matters the most?  

 

 

 

[Banko & Brill, 2001] 

Training set size 

  
  
 A

c
c
u

ra
c
y
  
  
  

“It’s not who has the best algorithm that wins. 

It’s who has the most data.” 
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Unsupervised Feature Learning 

• Many choices in feature learning algorithms; 

– Sparse coding, RBM, autoencoder, etc.  

– Pre-processing steps (whitening) 

– Number of features learned  

– Various hyperparameters.  

• What matters the most?  
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Unsupervised feature learning 

Most algorithms learn Gabor-like edge detectors.  

Sparse auto-encoder 
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Unsupervised feature learning 

Weights learned with and without whitening.  

 

 

 

Sparse auto-encoder 

with whitening without whitening 

Sparse RBM 

with whitening without whitening 

K-means 

with whitening without whitening 

Gaussian mixture model 

with whitening without whitening 
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Scaling and classification accuracy (CIFAR-10) 



Andrew Ng 

Results on CIFAR-10 and NORB (old result) 

• K-means achieves state-of-the-art 

– Scalable, fast and almost parameter-free, K-means does 
surprisingly well.   

NORB Test accuracy (error) 

Convolutional Neural Networks 93.4%  (6.6%) 

Deep Boltzmann Machines 92.8%  (7.2%) 

Deep Belief Networks 95.0%  (5.0%) 

Jarrett et al., 2009 94.4%  (5.6%) 

Sparse auto-encoder 96.9%  (3.1%) 

Sparse RBM 96.2%  (3.8%) 

K-means (Hard) 96.9%  (3.1%) 

K-means (Triangle) 97.0%  (3.0%) 

CIFAR-10 Test accuracy 

Raw pixels 37.3% 

RBM with back-propagation 64.8% 

3-Way Factored RBM (3 layers) 65.3% 

Mean-covariance RBM (3 layers) 71.0% 

Improved Local Coordinate Coding 74.5% 

Convolutional RBM 78.9% 

Sparse auto-encoder 73.4% 

Sparse RBM 72.4% 

K-means (Hard) 68.6% 

K-means (Triangle, 1600 features) 77.9% 

K-means (Triangle, 4000 features) 79.6% 
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Tiled Convolution 

Neural Networks 

        Quoc Le        Jiquan Ngiam 
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Learning Invariances 

• We want to learn invariant features.  

• Convolutional networks uses weight tying to: 

– Reduce number of weights that need to be learned.   
 Allows scaling to larger images/models. 

– Hard code translation invariance.  Makes it harder to 
learn more complex types of invariances.   

• Goal: Preserve computational scaling advantage of 

convolutional nets, but learn more complex invariances.  
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Fully Connected Topographic ICA 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 

Doesn’t scale to large images. 
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Fully Connected Topographic ICA 

Input 

Orthogonalize 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 

Doesn’t scale to large images. 
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Local Receptive Fields 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 
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Convolution Neural Networks (Weight Tying) 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 
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Tiled Networks (Partial Weight Tying) 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 

Tile Size (k) = 2 

Local pooling can capture complex invariances (not just translation); 

but total number of parameters is small.  
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Tiled Networks (Partial Weight Tying) 

Input 

Pooling Units 
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Simple Units 

(Square) 

Tile Size (k) = 2 



Andrew Ng 

Tiled Networks (Partial Weight Tying) 

Number  

of Maps (l)  

= 3 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 

Tile Size (k) = 2 
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Tiled Networks (Partial Weight Tying) 

Number  

of Maps (l)  

= 3 

Input 

Pooling Units 

(Sqrt) 

Simple Units 

(Square) 

Tile Size (k) = 2 

Local 

Orthogonalization 
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NORB and CIFAR-10 results 

Algorithms NORB Accuracy 

Deep Tiled CNNs [this work]  96.1% 

CNNs [Huang & LeCun, 2006] 94.1% 

3D Deep Belief Networks [Nair & Hinton, 2009] 93.5% 

Deep Boltzmann Machines [Salakhutdinov & Hinton, 2009] 92.8% 

TICA [Hyvarinen et al., 2001] 89.6% 

SVMs 88.4% 

Algorithms CIFAR-10 Accuracy 

Improved LCC [Yu et al., 2010] 74.5% 

Deep Tiled CNNs [this work] 73.1% 

LCC [Yu et al., 2010] 72.3% 

mcRBMs [Ranzato & Hinton, 2010] 71.0% 

Best of all RBMs [Krizhevsky, 2009] 64.8% 

TICA [Hyvarinen et al., 2001] 56.1% 
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Scaling up: Discovering 

object classes 

[Quoc V. Le, Marc'Aurelio Ranzato, Rajat  Monga, 

Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean] 
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Training procedure 

What features can we learn if we train a massive model on a massive 

amount of data.  Can we learn a “grandmother cell”? 

• Train on 10 million images (YouTube) 

• 1000 machines (16,000 cores) for 1 week.  

• 1.15 billion parameters 

• Test on novel images 

Training set (YouTube)                           Test set (FITW + ImageNet) 
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Face neuron 

[Raina, Madhavan and Ng, 2008] 

Top Stimuli from the test set Optimal stimulus by numerical optimization 
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Random distractors 

Faces 
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Invariance properties 
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Cat neuron 

[Raina, Madhavan and Ng, 2008] 

Top Stimuli from the test set Optimal stimulus by numerical optimization 
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Cat face neuron 

Random distractors 

Cat faces 
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Visualization 

Top Stimuli from the test set Optimal stimulus by numerical optimization 
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Pedestrian neuron 

Random distractors 

Pedestrians 
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Weaknesses & 

Criticisms 
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Weaknesses & Criticisms 

• You’re learning everything.  It’s better to encode prior knowledge about 

structure of images (or audio, or text).  

 A: Wasn’t there a similar machine learning vs. linguists debate in NLP ~20 

years ago….   

• Unsupervised feature learning cannot currently do X, where X is:  
 

Go beyond Gabor (1 layer) features.  
Work on temporal data (video).  
Learn hierarchical representations (compositional semantics). 
Get state-of-the-art in activity recognition.  
Get state-of-the-art on image classification. 
Get state-of-the-art on object detection. 
Learn variable-size representations. 

 
    A: Many of these were true, but not anymore (were not fundamental 

weaknesses).  There’s still work to be done though!  

• We don’t understand the learned features.  

 A: True. Though many vision/audio/etc. features also suffer from this (e.g, 

concatenations/combinations of different features).  
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Summary/Big ideas 
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Probabilistic vs. non-probabilistic models 
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Where these algorithms work 

Two main settings in which good results obtained.  Has 

been confusing to outsiders. 

– Lots of labeled data. “Train the heck out of the 
network.”  

– Small amount of labeled data.  (Lots of unlabeled 
data.)  Unsupervised Feature Learning/Self-Taught 
learning. 
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Summary 

• Large scale brain simulations as revisiting of the big “AI 

dream.”  

• “Deep learning” has had two big ideas: 

– Learning multiple layers of representation 

– Learning features from unlabeled data 

• Scalability is important.  

• Detailed tutorial: http://deeplearning.stanford.edu/wiki  
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END END 

END 


