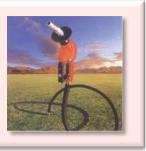
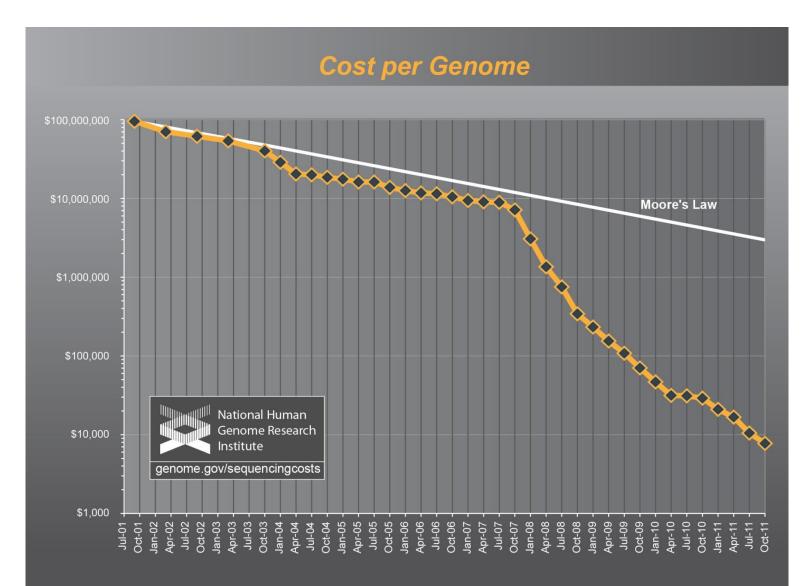

FaST Algorithms for Extremely Large Genome-Wide Association Studies

David Heckerman Christoph Lippert, Jennifer Listgarten, Bob Davidson, Carl Kadie Microsoft Research


eScience Research Group in MSR

Tackling societal challenges with machine learning



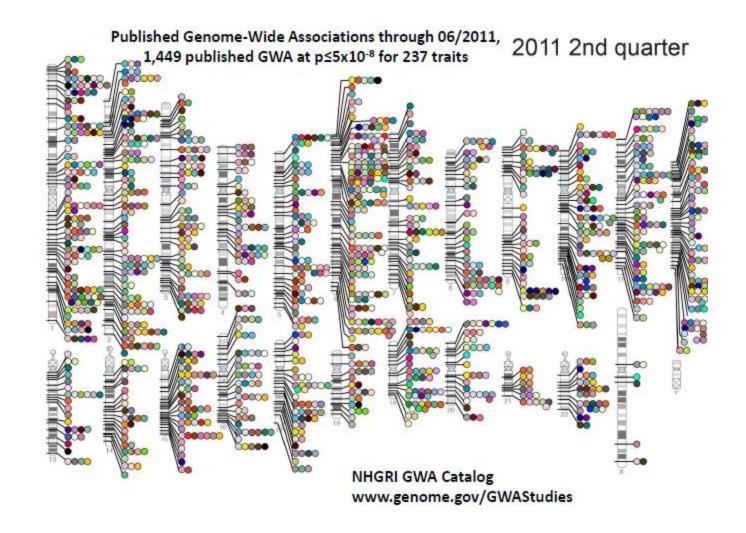
Genome assembly of sugar cane

The Genomics Revolution

Personalized Medicine

Use genetic markers to...

- Understand causes of disease
- Diagnose a disease
- Infer propensity to get a disease
- Predict favorable response to a drug
- Predict bad reaction to a drug


...actgccgcga G actgccgcgaggcctgactggcatccagtttagcggaactgccgcaa...
 ...actgccgcga G actgccgcgaggcctgactggcatccagtttagcggaactgccgcaa...

...actgccgcga C actgccgcgaggcctgactggcatccagtttagcggaactgccgcaa...
 ...actgccgcga G actgccgcgaggcctgactggcatccagtttagcggaactgccgcaa...
 ...actgccgcga C actgccgcgaggcctgactggcatccagtttagcggaactgccgcaa...

GWAS: Genome-wide association studies

Genome-Wide Association Studies

GWAS issues

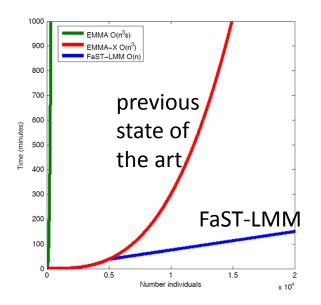
- For common diseases, signals are spread out across the genome and weak
- To pick up these signals, we need lots of data
 - deCode
 - 23andMe
 - Kaiser
- Large data \rightarrow confounding
 - Multiple ethnicities
 - Related individuals

Challenge: Confounding factors

- Suppose the set of cases has a different proportion of ethnicity X from control.
- Suppose we use linear regression to look for SNP-trait correlations.
- Then genetic markers that differ between X and other ethnicities in the study, Y, will appear artificially to be associated with disease.
- Problem gets worse with more data.

One solution: Throw out data

- Use one ethnicity
- Discard data for individuals who are too closely related


Bad idea: The most powerful comparisons are between closelyrelated individuals

FaST-LMM: Factored Spectrally Transformed Linear Mixed Models

Linear mixed models:

- O(N³) runtime
 O(N²) memory use
 N<5,000
- FaST-LMM has O(N) runtime and memory use; N>100,000
- More power than traditional approach

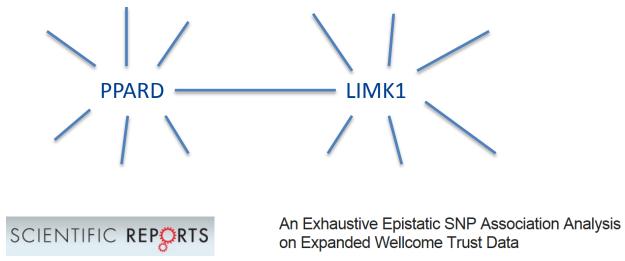
nature | methods September 2011 nature | methods June 2012

Faster and more power: Really?

- LMM captures confounding structure by computing similarities between all pairs of individuals
- In this view, one would think all SNPs should be used
- BUT: LMM is equivalent to performing linear regression with these SNPS as covariates
- If someone gave you a million potential covariates, would you blindly use them all?
- Solution: Variable selection ("feature selection")
- Result: ~100s of SNPs selected for similarity computation → less SNPs than individuals → O(N)

Application: Epistasis GWAS (SNP-SNP interactions)

Seven common diseases:


- Type I diabetes
- Type II diabetes
- Coronary artery disease
- Hypertension
- Crohn's disease
- Rheumatoid arthritis
- Bipolar disorder

With FaST-LMM and Azure, can look at all SNP pairs (about 60 billion of them)

1,000 compute years; 20 TB output – we did it in 13 days on Azure

New results for CAD

Christoph Lippert, Jennifer Listgarten, Robert I. Davidson, Jeff Baxter, Hoifung Poon, Carl M. Kadie & David Heckerman Software freely available for academic use (just bing "FaST-LMM")