Large-Scale Visual Recognition Powered by Big Data and Big Crowd

Fei-Fei Li Stanford University

Dr. Jia Deng Stanford U. -> U. Michigan

Prof. Kai Li Princeton U. Prof. Alex Berg Stony Brook U. Sanjeev Satheesh Stanford U. Jonathan Krause Stanford U. Zhiheng Huang Stanford U. Olga Russakovsky Stanford U.

Build a computer to recognize **EVERYTHING**

Surveillance

Robotics

Assistive tools

Wearable devices

Smart photo album

Image search

Driverless cars

Mining social media

What can computers already recognize?

But when it comes to generic objects in the world...

But when it comes to generic objects in the world...

What about Gas Pumps!

Image size: 401 × 604 No other sizes of this image found

But when it comes to generic objects in the world...

20 object classes: PASCAL VOC [Everingham et al. 2006-2012]

Airplane	Dining table
Bird	Dog
Boat	Horse
Bike	Motorbike
Bottle	Person
Bus	Potted plant
Car	Sheep
Cat	Sofa
Chair	Train
Cow	TV monitor

How many things are there?

From PASCAL's 20 classes to Millions?

The EVA system, powered by ImageNet, can annotate images with guaranteed accuracies. It currently recognizes over 10,000 visual categories. See the project page to find out more.

Paste a URL I Upload an image

Agenda

How to build a large-scale recognition engine using big data

Agenda

How to build a large-scale recognition engine using big data

- Expert constructed
- Rich structure
 - Taxonomy, Partonomy
- Widely used

[Torralba, Fergus, Freeman '08] [Yao, Yang, Zhu '07] [Everingham et al '06] [Russell et al '05] [Griffin & Perona '03] [Fei-Fei, Fergus, Perona '03]

- Expert constructed
- Rich structure
 - Taxonomy, Partonomy
- Senses disambiguated
- Widely used

[Torralba, Fergus, Freeman '08] [Yao, Yang, Zhu '07] [Everingham et al '06] [Russell et al '05] [Griffin & Perona '03] [Fei-Fei, Fergus, Perona '03] **Graduate Students**

Good at complex tasks

Good quality

Very few of them

High cost

Estimate: 20 Years, \$2M+

Blue North American songbird				1250 pictures	64.99% Popularity Percentile	Wordne IDs
Numbers in brackets: (the number of ynsets in the subtree).	Treemap Visualization	Images of the Synset	Downloads			
ImageNet 2011 Fall Release (21841			Stor A		Nº CON	
🕂 animal, animate being, beast, br. \Xi						1.0
- mate (0)					1/2	200
+ chordate (2953)			The second second	NG	6.8	C.S.C.
tunicate, urochordate, uroc					Cart I	100
- cephalochordate (1)				all and a second		-
+ vertebrate, craniate (2943)			Notes -	CARLEN STREET	1	
🗁 mammal, mammalian				State of the second	C S	
aquatic vertebrate (578)	ALL XALL		State V	Contraction of the second		
🔤 tetrapod (1)			NIN PRESERVE	ALC: NOT		
- amniote (0)	CARACTER IN A					
i⊷ fetus, foetus (2)				4	57	
- Amniota (0)		VE GATE			P	
🛏 amphibian (93)		- A HOLL A			192	
🛌 reptile, reptilian (267)				100		
* bird (855)			TOTAL AND A			
- dickeybird, dickey-bi				-	1.10	
- nonpasserine bird (13	2	
👘 bird of prey, raptor, r			ALL YAR	An		
👘 gallinaceous bird, g	110 110			and and	1	
i⊧- parrot (19)	ALC: ADITO X				10	
► cuculiform bird (8)			Carlo Carlos	THE REAL PROPERTY AND		
► coracilform bird (14)					6	
i apoditorm bird (8)	Str. March			in the second second		-
E- caprimulgiform bird	STATES SAR			A. Life Speed		
tragen (2)				R S R S R		-5
Pri trogon (2)	*Images of children synsets are not in	cluded. All images shown are thum	bnails. Images may be subject to co	opyright.		
Paquatic bird (278)	Prev 1 2 3 4 5 6	7 8 9 10 3	5 36 Next			
vassenne, passenne						

IM GENET [Deng et al. 2009] **www.image-net.org**

22,000 categories and 14,000,000+ images

- Animals •
 - Bird
 - Fish

 - Invertebrate Materials Structures Sport Activities

- Plants
 Structures
 - Tree
 Artifact
 Scenes
- Flower
 Tools

- Person

 - Indoor
- Mammal
 Food
 Appliances
 Geological Formations

Number of Labeled Images

PASCAL VOC, 30K [Everingham et al. '06-'12] Caltech101, 9K

SUN, **131K** [Xiao et al. '10]

[Russell et al. '07]

[Fei-Fei, Fergus, Perona, '03]

IMAGENET hired 50K+ AMT workers

who looked at **160M+** images

and made **550M+** binary decisions

Number of images in ImageNet

an-08 May-08 Sep-08 Jan-09 May-09 Sep-09 Jan-10 May-10 Sep-10 Jan-11 May-11

ECCV 2012 Best paper Award

Kuettel, Guillaumin, Ferrari. Segmentation Propagation in ImageNet. ECCV 2012

Le et al. Building high-level features using large scale unsupervised learning. ICML 2012.

HOME PAGE	TODAY'S PAPER	VIDEO	MOST POPULAR	U.S. Edition 🔻	Subscribe: Digital / Home Delivery Log In Register Now Help
The New York Times Science		Science	Search All NYTimes.com Go Orange Savings Account**		

WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

Seeking a Better Way to Find Web Images

By JOHN MARKOFF

Published: November 19, 2012

STANFORD, Calif. — You may think you can find almost anything on the Internet.

 Science Reporters and Editors on Twitter

Like the science desk on Facebook. But even as images and video rapidly come to dominate the Web, search engines can ordinarily find a given image only if the text entered by a searcher matches the text with which it was labeled. And the labels can be unreliable, unhelpful ("fuzzy" instead of "rabbit") or simply nonexistent.

To eliminate those limits, scientists will need to create a new generation of visual search technologies or else, as the Stanford computer scientist <u>Fei-Fei Li</u> recently put it, the Web will be in danger of "going dark."

Now, along with computer scientists from Princeton, Dr. Li, 36, has built the world's largest visual database in an effort to mimic the human vision system. With more than 14 million labeled objects, from obsidian to orangutans to ocelots, the database has because a vital resource for computer vision researchers.

The labels were created by humans. But now machines can learn from the vast database to recognize similar, unlabeled objects, making possible a striking increase in recognition accuracy.

This summer, for example, two Google computer scientists, Andrew Y. Ng and Jeff Dean, tested the new system, known as <u>ImageNet</u>, on a huge collection of labeled photos.

FACEBOOK		
y TWITTER		
COOGLE+		
SAVE		
E-MAIL		
+ SHARE		
THE SESSIONS		

Agenda

How to build a large-scale recognition engine using big data

Learn to Classify 10K Classes

- 9 Million images
- 4 methods
 - SPM+SVM [Lazebnik et al. '06]
 - BOW+SVM [Csurka et al. '04]
 - BOW+NN
 - GIST+NN [Oliva et al. '01]
 - 6.4% for 10K categories

Deng, Berg, Li, & Fei-Fei, ECCV2010

Learn to Classify 10K Classes

Deng, Berg, Li, & Fei-Fei, ECCV2010

Fine-grained categories are a lot harder

Deng, Berg, Li, & Fei-Fei, ECCV2010

Agenda

How to build a large-scale recognition engine using big data

What breed is this dog?

Key: Find the right features.

Prairie Warbler (wikipedia)

Click Me or Press 2

Yellow Warbler (wikipedia)

The BubbleBank Representation

Test Image

KDES [Bo et al. '10]

Tricos [Chai '12]

Birdlet [Farrell et al. '11] CFAF [Yao et al.'12]

Top Activated Bubbles (successful predictions)

Agenda

How to build a large-scale recognition engine using big data

Agenda

How to build a large-scale recognition engine using big data

The Current State of the Art

10K classes	32.6%	Krizhevsky et al. NIPS 2012
20K classes	15%	Le et al. NIPS 2012

Not quite practical yet...

But we are measuring the very fine-grained level

Hedging: Be as informative as possible with few mistakes

Assumptions

- Same distribution for training and test.
- A base classifier *g* that gives posterior probability on the hierarchy.

Goal

- Find a *decision rule f*
 - Expected accuracy **A**(**f**) is at least **1-ε**
 - Maximize expected reward R(f)

Maximize R(f)Subject to $A(f)^{3}1 - e$

The EVA system, powered by ImageNet, can annotate images with guaranteed accuracies. It currently recognizes over 10,000 visual categories. See the project page to find out more.

Paste a URL I Upload an image

Google Goggles Use pictures to search the web.

No close image matches found

• Avoid glare from the flash.

• Zoom in as much as possible by placing your device close to whatever you want to photograph.

0.95 <u>coffee mug</u> 0.97 <u>mug</u> 0.99 <u>drinking vessel</u>

Image size: 401 × 604 No other sizes of this image found.

Visually similar images - Report images

0.75 artifact, crater, matter, vertebrate
0.77 crater, matter, vertebrate
0.78 chordate, crater, matter
0.86 animal, matter
0.87 animal

Agenda

How to build a large-scale recognition engine using big data

Conclusion & Future Work

Harvesting Knowledge

- Crowd-Machine Collaboration
- Visual Representation
- Active Learning
- Visual Turing Test
 Vision and Language
 - Visual Reasoning

Managing Big Visual Data

- Large-Scale Learning
- Indexing and Retrieval
- Knowledge Transfer
 - Exploiting Data Biases
 - Domain Adaptation
- Mining Big Visual Data
 Visual Knowledge Graph
 Social Media

Conclusion & Future Work

– Harvesting Knowledge

- Crowd-Machine Collaboration
- Visual Representation
- Active Learning
- Visual Turing Test
 Vision and Language
 Visual Reasoning

Managing Big Visual Data

- Large-Scale Learning
- Indexing and Retrieval
- Knowledge Transfer
 - Exploiting Data Biases
 - Domain Adaptation

— Mining Big Visual Data — Visual Knowledge Graph — Social Media

