
Context-Aware Time Series Anomaly Detection for Complex Systems

Manish Gupta1, Abhishek B. Sharma2, Haifeng Chen2, Guofei Jiang2

1UIUC, 2NEC Labs, America

Abstract

Systems with several components interacting to accomplish

challenging tasks are ubiquitous; examples include large

server clusters providing “cloud computing”, manufacturing

plants, automobiles, etc. Our relentless efforts to improve

the capabilities of these systems inevitably increase their

complexity as we add more components or introduce more

dependencies between existing ones. To tackle this surge

in distributed system complexity, system operators collect

continuous monitoring data from various sources including

hardware and software-based sensors. A large amount of this

data is either in the form of time-series or contained in logs,

e.g., operators’ activity, system event, and error logs, etc.

In this paper, we propose a framework for mining sys-

tem operational intelligence from massive amount of moni-

toring data that combines the time series data with informa-

tion extracted from text-based logs. Our work is aimed at

systems where logs capture the context of a system’s oper-

ations and the time-series data record the state of different

components. This category includes a wide variety of sys-

tems including IT systems (compute clouds, web services’

infrastructure, enterprise computing infrastructure, etc.) and

complex physical systems such as manufacturing plants. We

instantiate our framework for Hadoop. Our preliminary re-

sults using both real and synthetic datasets show that the pro-

posed context-aware approach is more effective for detecting

anomalies compared to a time series only approach.

1 Introduction

Complex distributed systems with multiple components in-

teracting to accomplish challenging tasks are drivers of our

economic growth. Examples of such systems include large

server clusters providing cloud computing services, critical

infrastructure such as power plants and power grids, man-

ufacturing plants, automobiles, etc. Our relentless efforts

to improve the capabilities of these systems inevitably in-

crease their complexity as we add more components or in-

troduce more dependencies between existing ones to provide

new functionality. The complex nature of such systems can

lead to failures like the Amazon Outage [1]. Such unantic-

ipated faults and unknown anomalies are a major source of

service disruption in complex systems. System operators try

to reduce such incidents through better visibility achieved

by collecting continuous monitoring data from multiple van-

tage points. The ultimate goal is to transition from the cur-

rent practice of reactive maintenance to a more pro-active

approach where operators can predict system behavior and

address possible service disruptions.

A significant barrier to making this leap from improved

visibility to pro-active system management that goes beyond

the current simple rules based solutions is the heterogeneity

of monitoring data. Monitoring data can be in the form

of time series and structured or semi-structured text logs

(operators’ activity, system events, and error logs), and

unstructured text. Mining of log and time series data for

fault and anomaly detection is an area of active research.

However, previous work analyzes logs and time series data

separately (Section 8) which has several shortcomings when

detecting anomalies in distributed systems.

Anomaly detection using only logs. Fault detection us-

ing only logs suffers from two major shortcomings. (1)

Incomplete coverage: It is challenging to a priori deter-

mine the right granularity for logging, and often program-

mers/designers do not want to log several relevant details

fearing that the log sizes and the associated time overheads

may be large. (2) Lack of root-cause visibility: Logs contain

information at conceptual/application level and hence often

do not contain sufficient information to identify the cause of

faults at the component level.

Anomaly detection using only time series. System moni-

toring using just the time series data suffers from the lack of

a global semantic view. For example, CPU utilization mea-

surements of a server supply information that is context in-

sensitive. In the absence of context, any significant change

in the metrics might seem quite abnormal, even to a human,

though some of them might be due to normal system events.

Such scenarios can lead to a lot of false positives. Another

drawback is the proliferation of alarms. A method that just

uses time series data can raise multiple alarms (one for a fault

in each time series) even when many of these faults are ac-

tually related to the same underlying problem. But the lack

of a global view prevents identification of any commonality

between these faults.

Our hypothesis is that performing data mining jointly on

logs and time series data can address these shortcomings. We

refer to it as context-aware time series anomaly detection.

The following example provides an illustration.

Importance of Context. Figure 1 shows the variation in

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60

N
o

rm
a

li
ze

d
 M

e
a

su
re

m
e

n
t

Time (sec)

CPU Utilization

Mem Utilization

Reduce

Task

Map

Task

Map

Task

Map

Task

Map

Task

�� �� �� �� ��

Figure 1: Logs and OS Metrics are Complementary

the normalized operating system (OS) performance metrics

such as CPU and memory utilization for a server executing

MapReduce [3]1 tasks. The measurements have been nor-

malized for clear display. The contexts C1, . . . , C5 (repre-

sented by green lines) denote the server’s state. We assume

that the server’s state changes whenever a task starts or stops.

Suppose we define an anomaly as unusual values in the time

series data for CPU and memory utilization. If we detect

anomalies based only on time series data on CPU and mem-

ory utilization, we will report one whenever a new task starts

or stops. However, when we combine the information on

the server’s states (extracted from logs and characterized by

variables like number of running tasks) along with the time

series data, then we can explain the observed CPU and mem-

ory utilization behavior and not consider them as anomalous.

For example, if we know that a new CPU resource intensive

task has started on the server, we expect the CPU utiliza-

tion to memory utilization ratio to go high, and so such an

increase will not be flagged as an anomaly.

Summary of our Contributions

(1) We introduce the notion of context-aware anomaly

detection in distributed systems by integrating the informa-

tion from system logs and time series measurement data. (2)

We propose a two-stage clustering methodology to extract

context and metric patterns using a PCA-based method and

a modified K-Means algorithm (see Figure 2). Anomalies are

then detected based on these context and metric patterns. (3)

We instantiate our framework for Hadoop, and show that our

approach can detect interesting and meaningful anomalies

from real Hadoop runs and can accurately discover injected

anomalies from synthetic datasets.

The rest of this paper is organized as follows. We

provide an overview of our work and highlight the main

challenges that it addresses in Section 2. In Section 3, we

provide background on Hadoop and define the context-aware

time series anomaly detection problem. Section 4 describes

the context and metric patterns, and the methodology used

to extract them. In Section 5, we present our anomaly

detection approach, and discuss various interesting aspects in

1We briefly describe the MapReduce framework in Section 3

Create

Instances

Extract

Context

Patterns

Extract

Metric

Patterns

Anomaly

Detection

Logs

OS Metrics
Instances

Context

Cluster1

Context

Cluster2

Context

ClusterK1

Metric

Clusters

Top

Anomalies

Extract

Metric

Patterns

Extract

Metric

Patterns

Metric

Clusters

Metric

Clusters

Figure 2: Anomaly Detection Methodology

Section 6. We present experimental results in Section 7 and

the related work in Section 8. We conclude with a summary

of our work in Section 9.

2 Overview: Challenges and the Proposed Solution

Challenges: There are three main challenges in combining

log and time series for context-aware anomaly detection: (1)

How do we represent the structured or semi-structured log

data and the multivariate time series data together? (2) How

do we model the combined data? (3) What is our definition

of an anomaly and how do we detect them? Figure 2 shows

the main steps of our proposed methodology to address these

three challenges. We instantiate this framework for Hadoop.

Combining system logs and time series. We assume

that system logs capture the current operational context,

and define context variables and extract their time-varying

values from the logs. This process exploits the fact that log

data is often structured or semi-structured. We also define

system events that signal a context change and assume that

they are recorded in system logs. (In general, we may not

have enough domain knowledge about a system to define

context changing events. However, there exist tools such as

Sisyphus [18] and PADS [5] that can help with this task.)

We combine logs and time series data through our def-

inition of an instance. An instance spans the interval be-

tween two consecutive context changing events on a compo-

nent. For example, we will define an instance for each of

C1, . . . , C5 in Figure 1. Each instance consists of context

variables and multivariate time series data collected during

the interval associated with it. For C1, . . . , C5 in Figure 1,

the context variables can be the number and type (map or

reduce) of running tasks, and the time series data consists

of the CPU and memory utilization measurements. Each

component in a distributed system can have its own set of

instances, i.e., for a large cluster of servers, we can extract

instances at the granularity of individual servers.

Iterative clustering for anomaly detection. It is reasonable

to assume that a system’s components will display similar

behavior under similar context. Hence, given the context val-

ues for an instance, we define an instance to be anomalous

if the time series data associated with it contains unusual or

inconsistent values. To detect anomalies as per this defini-

tion, we first cluster instances based on their context vari-

ables. We refer to these clusters as context clusters. Then we

partition the instances belonging to a context cluster based

on their time series data, and refer to these clusters as met-

ric patterns. We formally define the similarity measures for

context variables and time series data in Section 4. We want

to point out that our approach of identifying similar context

across instances is valid for two different scenarios: when

similar contexts appear over time on the same component

or when different components provide similar functionality.

The latter case happens when a functionality is replicated

across multiple components, e.g., when popular web sites

are hosted across multiple servers in order to support large

demand. Hence, we refer to the similarity in context vari-

ables across instances as peer similarity, and the similarity

in time series data for similar context as temporal similarity.

We assign a score to each instance based on the distance of

its multivariate time series from the closest metric pattern,

and flag instances with high score as anomalous (we define

this anomaly score in Section 5).

Instantiating our framework for Hadoop. Our approach

is aimed at distributed systems with a large number of

components that often have functionality replicated across

components to support heavy workload. It also needs data

on system events and errors logged for each component,

and time series measurements from each component. One

widely used system that meets these two criteria, and is also

easy to deploy is Hadoop, the de facto industry standard

for building large, parallel data processing infrastructure.

Hence, we instantiate our framework for Hadoop, i.e., we use

Hadoop system logs to demonstrate how to extract context

variables and instances from real world data, and also collect

time series measurements on resource usage (CPU, memory,

disk, and network utilization) from servers used to deploy

Hadoop. Another advantage of using Hadoop is that we can

inject anomalies while the system is running.

3 Problem Definition for Hadoop

In this section, we briefly introduce Hadoop and define our

problem.

3.1 MapReduce and Hadoop The MapReduce pro-

gramming model facilitates processing of a massive dataset

by partitioning it into smaller chunks that are distributed

across individual machines in the cluster. Data processing

is done in two phases – Map and Reduce. During the Map

phase the same (Map) function is applied to all the chunks

belonging to a data set in parallel at individual machines.

The output of the Map phase (spread across the cluster) is

fed into the Reduce phase. The Reduce phase consists of

multiple Reduce tasks that are run in parallel, and produces

the final output. Thus, a MapReduce job consists of multiple

Map and Reduce tasks.

Hadoop is an open-source implementation of the

MapReduce framework. In a typical Hadoop cluster, the

master and each slave run on separate servers. The master

(slave) node runs the NameNode (DataNode) and JobTracker

(TaskTracker) to manage the distributed file system and job

execution, respectively. Each slave node is configured with

a fixed number of Map and Reduce slots and each running

task takes up one slot.

Hadoop collects several logs at the master as well as

slave nodes [9]. The TaskTracker and DataNode processes

record task level events, errors and resource usage statistics

on each slave node. These task level information are ag-

gregated as job level events and statistics in the JobTracker

and NameNode logs at the master. The master node also

records control decisions, e.g., which task is scheduled on

which slave node, as well as information on any errors or

failures of slave nodes. Together, these logs capture the ap-

plication level semantics, i.e. the context, of an operational

Hadoop cluster. From each server in a Hadoop cluster, we

can also collect time series data on OS performance metrics

such as CPU and memory utilization.

3.2 Context and Metric Variables for MapReduce

Consider a Hadoop cluster with M machines. We parse the

Hadoop logs to identify the start and end times of the Map

and Reduce tasks run on each machine. This gives us a list

of events and the time at which they occur for each machine.

Based on this information, we define the set of instances for

each machine where an instance spans the duration between

two consecutive events. A new instance is thus created

whenever a Map or Reduce starts or ends on the machine.

We discard instances corresponding to time intervals during

which no task (Map or Reduce) is running. We compute

instances for each machine and then aggregate them into a

set represented as I = {I1, I2, . . . , IL}.

Instance Each instance is identified by a machine and its

time duration. It consists of two components (1) Context

values and (2) Metric time series. Thus, we represent an

instance Ir as (Cr,Mr) where Cr represents the vector of

context variables and Mr represents the vector of metric

variables.

Context Variables Context variables characterize the

Hadoop tasks running on a machine corresponding to the

time duration of an instance. We capture the number and

nature of Hadoop tasks using the #Maps, #Reduces and task

counters. Task counters are of 5 main types: (1) Map coun-

ters: Map Input/Output Bytes/Records (2) Reduce counters:

Reduce Input/Output Records, Reduce Shuffle Bytes (3)

Combine counters: Combine Input/Output Records (4)

Machine counters: CPU Milliseconds, Physical Memory

Bytes, Spilled Records (5) HDFS (Hadoop Distributed File

System) counters: HDFS Bytes Read/Written. Note that

these counters are all task specific and are available in the

job history logs after the job gets finished.

For a particular instance (identified by a machine and a

duration), there might be many tasks running concurrently.

The context values for that instance are then computed as the

average of the values across all these tasks.

Time series Metric Variables For every machine we can

record a variety of metrics that can help us understand the

performance of the machine. We use system level tools to

get the values of the following metrics for each machine ev-

ery second. (1) CPU Utilization (2) Memory Utilization (3)

Disk Read Operations (4) Disk Write Operations (5) eth0

RX/TX Bytes. Other system specific measures like eth0

RX/TX Errors, eth0 RX/TX Drops, Memory Buffers, Mem

SwapFree, Used File Descriptors, sda Disk Read/Write Sec-

tors, sda Disk pending IO Operations, Interrupts, OS Con-

text Switch, OS Running Processes, OS Blocked Processes

could also be exploited for the purpose. However, we focus

on showing the benefits of combining the context variables

with a simple set of metric variables to obtain better results

compared to using just the metric variables without any con-

text information.

3.3 Context-Aware Time Series Anomaly Detection

Problem Given the instances represented in terms of con-

text and metric values, the anomaly detection problem can

be defined as follows.

Input: Instances I1 = (C1,M1), . . . , IL = (CL,ML).
Output: Top κ instances with highest anomaly scores.

We discuss extraction of patterns in Section 4 and define

outlier scores and sum up the entire anomaly detection

algorithm in Section 5.

4 Pattern Extraction

In this section, we discuss how to extract patterns from

the instances and their context supplied by the job history

logs as well as from the OS metrics time series. Since the

Hadoop logs capture a global semantic view of the system,

we propose to first cluster the instances using the context

variables to extract context patterns. For each context cluster,

we find metric patterns by clustering the corresponding OS

metrics time series.

4.1 Extraction of Context Patterns Context patterns

are modeled as K1 Gaussians in the multi-dimensional space

defined by the context variables and can be discovered using

K-Means. However, we need to pre-process the data before

applying K-Means clustering. Some context variables can

have large values while some are quite small. This can cause

the K-Means clusters to be biased towards the attributes

with large values. Hence, we normalize all the attributes

such that they have zero mean and unit variance. We also

find that some context variables are highly correlated with

each other and can artificially bias the clustering. E.g., for

our workload, the following features were highly correlated:

bytes written, file bytes written and HDFS bytes written. We

calculate the correlation between each pair of variables and

retain only one variable from a group of highly correlated

variables.

A context pattern represents the logical state of a ma-

chine (running many Map jobs, moving many HDFS blocks,

etc.) for the time duration corresponding to the instance.

Such states capture the diversity of MapReduce computation

including the type and intensity of workload, number of Map

and Reduce tasks in a job, number of memory-heavy versus

CPU-heavy tasks, etc.

4.2 Extraction of Metric Patterns Context patterns can

cluster the dataset with respect to the logical view of the sys-

tem. To further characterize the dataset within each context,

we cluster the metric variables corresponding to all the in-

stances belonging to the same context cluster. Metric pat-

terns are defined with respect to a particular state (context)

of a machine. Essentially, metric patterns denote the usual

patterns observed in the OS metrics when the machine is in a

logical state described by its context variables. Note that the

OS metrics associated with an instance are represented as a

multi-variate time series. The number of components of this

time series is equal to the number of metrics and the length

of the time series corresponds to the time duration of the in-

stance. Thus the problem of clustering metric variables is

equivalent to clustering of a multi-variate time series dataset.

Clustering multivariate time series is a challenging task.

For the proposed problem, a technique is needed such that

it can cluster multi-variate time series that (1) may not be

of the same size, i.e., may not be defined over the same

length of time period, and (2) may not be defined over

the same exact time interval (asynchronous). Clustering of

general objects needs a definition of a measure of similarity

between a pair of objects. We want a measure for similarity

between two multivariate time series that stresses both on the

similarity of interactions between two (or more) univariate

time series from a multivariate time series set as well as on

the similarity of interactions (across time) within a univariate

time series. To capture such semantics and to avoid the

problem of uneven lengths of the multi-variate time series,

we first define the similarity between two multivariate time

series in the space of their principal components.

Similarity Between Two Multi-Variate Time Series Con-

sider two multi-variate time series corresponding to the met-

rics part Ma and Mb of the instances Ia and Ib. Let the

time series be defined over time intervals of length l1 and

l2 respectively. Thus the multi-variate time series can be

represented using matrices Ma
l1×c and Mb

l2×c respectively

where c is the number of metric variables. For both the matri-

ces, we can compute the top k principal components (that can

capture ≥ 95% variance) to obtain smaller subspaces P c×k

and Qc×k respectively. Similarity between the two multi-

variate time series can be expressed in terms of the similarity

between their principal components as follows.

sim(Ma,Mb) =
trace(P ′QQ′P)

k
(4.1)

Geometrically, this means that the similarity between

the two multivariate time series is the average sum of squares

of the cosines of the angles between each principal compo-

nent in P and Q. Thus, we can rewrite Eq. 4.1 as follows.

sim(Ma,Mb) =
1

k

k∑

i=1

k∑

j=1

cos2θij(4.2)

where θij is the angle between the ith and the jth principal

components in P and Q respectively.

Further, Eq. 4.2 can be modified using a weighted

average, with the amount of variance explained by each

principal component as weights, as follows.

sim(Ma,Mb) =

∑k
i=1

∑k
j=1 λPiλQjcos

2θij
∑k

i=1 λPiλQi

(4.3)

where λPi is the eigen value corresponding to the ith princi-

pal component (eigen vector) in P . Note that the similarity

value lies between 0 and 1.

Modified K-Means to obtain Metric Patterns Algo-

rithm 1 shows the modified K-Means algorithm for

clustering of multi-variate time series datasets using the

PCA-based similarity measure given in Eq. 4.2. The metric

patterns (clusters) are first initialized randomly (Step 1).

Then, the aggregate dataset representative of a cluster is

created by concatenating matrices of all constituent datasets

that currently belong to the cluster (Step 5). Next, each

time series is reassigned to the cluster corresponding to the

most similar aggregate dataset (Step 18) where similarity

is defined in the PCA space using Eq. 4.3. The modified

K-Means algorithm finally returns the metric patterns for

the input instances.

5 Anomaly Detection

Given an instance from a machine, the proposed method first

assigns it to the nearest context pattern and then assign it

to a metric pattern within that context cluster. Thus, the

method first estimates the context in which the machine was

executing the set of Maps and Reduces, and then discovers

the closest matching OS metrics behavior for that context.

For an instance, if the right context cluster can be detected

and if the instance is far away from any of the existing metric

patterns for that cluster, then that instance can be labeled as

an anomaly. Thus, an instance is anomalous if its metrics

exhibit an unexpected behavior given its context.

The anomaly score of an instance should therefore de-

pend on (1) how confidently the method can detect its context

cluster, and (2) how far away the instance is from its nearest

metrics cluster. If the distance between an instance and its

Algorithm 1 Modified K-Means for Metric Pattern Discovery

Input: (1) Multi-variate time series M1,M2, . . . ,MN representing the metrics
part of N instances I1, I2, . . . , IN respectively belonging to the context
cluster CP , (2) Number of metrics clusters K2.

Output: Metric clusters MP1,MP2, . . . ,MPK2
.

1: Randomly assign each dataset M1,M2, . . . ,MN to one of the
MP1,MP2, . . . ,MPK2

clusters.

2: while MP1,MP2, . . . ,MPK2
change do

3: for Each cluster MPi do
4: Let M1,M2, . . . ,M|MPi|

be the elements of MPi.

5: Aggregate dataset Di = [M1

′
,M2

′
, . . . ,M|MPi|

′
]′.

6: end for
7: MP1 ← φ,MP2 ← φ, . . . ,MPK2

← φ.

8: for Each multi-variate time series Mi do
9: max← 0.
10: nearestCluster ← 1.
11: for Each aggregate dataset Dj do
12: currSim← sim(Mi, Dj).
13: if currSim > max then
14: max← currSim.
15: nearestCluster ← j.
16: end if
17: end for
18: Assign Mi to cluster MPnearestCluster .
19: end for
20: end while

nearest context cluster centroid is large, then the appropriate

context of that instance cannot be detected. Hence, the nor-

mal metric patterns associated with this instance cannot be

determined and so it cannot be marked as an anomaly.

Anomaly score of an instance I = (C,M) is thus

calculated as follows.

score(I) = 1− sim(M,MPM)(5.4)

where MPM is the nearest metrics cluster for the instance I .

Top κ instances with highest anomaly scores can be marked

as anomalies.

Anomaly Post-processing As a post-processing step, the in-

stances which cannot be clustered into any context cluster

properly, are removed from the set of anomalies. Specif-

ically, if dist(C,CPC) ≥ median(CPC), the instance is

removed from the set of anomalies where CPC is the nearest

context cluster for the instance I and median(CPC) is the

median of the distances of any instance within cluster CPC

from cluster centroid CPC .

Online Analysis Big companies like Yahoo! and Microsoft

process similar jobs on a daily basis. Our system can

build the unsupervised model of context patterns and metric

patterns based on a training workload and then apply the

model for new test instances. New test instances arriving

every day can be cross-checked with the patterns learned

using logs of past jobs. For the online case, rather than

finding top κ anomalies, we can consider an instance as an

anomaly if its distance from the nearest cluster centroid is

greater than that of any instance in the training set. If the

number of such discovered anomalies increases beyond κ for

a batch of test instances, due to drift in the model, the model

can be retrained on the recent data.

Our system can classify an instance as normal or anoma-

lous as soon as the task corresponding to the instance fin-

ishes on the machine. Even for MapReduce jobs running for

several hours, the individual map and reduce tasks are quite

short (on the order of tens of seconds to a few minutes) and

so the analysis is timely enough to be useful [24].

Iterative Computation The set of instances in the input

dataset contains anomalies which can affect the metrics

pattern discovery. Thus, once the anomalies have been

discovered, the clustering of metrics time series can be

performed again, ignoring the anomaly instances. This

motivates an iterative approach where clustering of metrics

time series and anomaly detection are performed within each

iteration. The iterations terminate when the set of top κ

anomalies detected in the last two consecutive iterations

remains the same.

Summary We summarize our approach in Algorithm 2.

The algorithm consists of two stages: extracting patterns

and performing anomaly detection based on these patterns.

Pattern extraction in turn consists of two phases: extraction

of context patterns (Steps 1 and 2) followed by extraction of

metric patterns (Steps 5 to 7). On termination, the algorithm

returns the anomaly score for each instance.

Algorithm 2 Context-Aware Time Series Anomaly Detection

Input: Instances I1 = (C1,M1), I2 = (C2,M2), . . . , IL = (CL,ML).
Output: Anomaly scores for each instance, score.

1: Normalize the attributes in C1, C2, . . . , CL.
2: {CP1, CP2, . . . , CPK1

} ← K −Means(C1, C2, . . . , CL).

3: Anomaly Set A← φ
4: while A does not change do
5: for i = 1 to K1 do
6: Compute metric patterns for instances∈ (CPi−A) using Algorithm 1.
7: end for
8: for i = 1 to L do
9: Compute anomaly score for instance Ii (Eq. 5.4).
10: end for
11: A← Set of instances with top κ anomaly scores.
12: end while

6 Discussions

In this section, we will discuss various aspects of our algo-

rithm and the general framework.

Time Complexity Let L be #instances, i1 be #K-Means it-

erations, i2 be #iterations for Algorithm 1, i3 be #iterations

of while loop from Step 4 to 12, K1 be #context clusters,

K2 be #metric clusters, D1 be #context variables, and k be

#principal components used for PCA-based similarity com-

putation. Then the overall time complexity of Algorithm 2

is O(Li3(i1K1D1+ i2K2k
3)) which is linear in the number

of instances L. We omit details for lack of space.

Selecting Number of Clusters (K1 and K2) K-Means

needs the number of clusters as an input. We use K1 and

K2 as the input for clustering of context patterns and metric

patterns. We start with #clusters as 1 and keep increasing

them by 1. For each iteration, we compute the within cluster

sum of squares of distances. We pick K1 as the value where

the percentage change in the within cluster sum of squares

is small (knee of the curve).

Richer Context Besides the #Maps, #Reduces, and the task

counters, Hadoop configuration settings like input format,

output format, types of compression, file descriptor limits,

can also be used as context variables. OS logs such as

syslogs on Linux or Event Tracing for Windows [4] can also

provide context information. We plan to study these as part

of our future work.

7 Experiments

Evaluation of anomaly detection algorithms is quite difficult

due to lack of ground truth. We generate multiple synthetic

datasets by injecting anomalies, and evaluate anomaly detec-

tion accuracy of the proposed algorithms on the generated

data. We also conduct case studies by applying the method

to real data sets.

7.1 Baselines We compare the proposed algorithm

Context-Aware (CA) with two baseline methods: Single It-

eration (SI) and No Context (NC).

Single Iteration (SI) As described in Algorithm 2, CA

performs metric pattern discovery and anomaly detection

iteratively until the set of top κ anomalies do not change.

SI is a simpler version of CA, which performs only one

iteration. Thus the pattern discovery phase in SI suffers

from the presence of anomalies. This baseline will help

us evaluate the importance of ignoring the anomalies when

computing the metric patterns.

No Context (NC) CA performs pattern discovery in a

context-sensitive manner. A particular metric pattern may

be very popular in a particular context but may never be ex-

hibited in another context. Thus, performing context-aware

anomaly detection should be better than a context insensi-

tive approach. We test this claim by comparing CA with NC.

Note that this baseline is similar to [14] which performs fault

detection by using K-Means based clustering in the metrics

space only.

7.2 Synthetic Datasets We generate our synthetic

datasets as follows. The context part of our dataset comes

from real Hadoop runs, while the metrics part is generated

synthetically. Our Hadoop cluster consists of 6 nodes – 1

master and 5 slaves. We run the standard Hadoop examples

like Pi Estimator, Word Count, Sorter, Grep-Search (tasks

run in parallel) and gather N instances. For each of the N

instances, we obtain the context values (#Maps, #Reduces,

task counters) from the Hadoop logs. We cluster the context

part of these instances into 3 clusters. Fig. 3 shows the con-

text clusters with respect to the different context variables.

The values of context variables have been normalized as dis-

cussed in Section 4. Note that Cluster 1 contains instances

with large number of Map tasks and hence display high val-

ues for Map counters. Cluster 3 contains instances with large

number of Reduce tasks and hence display high values for

Reduce counters. Cluster 2 contains instances with a few

Map and a few Reduce tasks.

For each context cluster, we synthetically generate the

metrics time series as follows. We first fix a number of metric

clusters and randomly assign the instances to one of the

metric clusters. We also fix the number of metrics. Next, we

randomly generate a template matrix for each of the metric

clusters. This template matrix serves as the basic multi-

variate time series for that metric cluster. For a metric cluster,

we generate the multi-variate time series for each instance

by adding 10% uniform noise to the each of the entries of

the template matrix for the cluster. We randomly select the

duration of the time series between 20 and 50. Thus, we have

for each instance, context values obtained from real logs and

metric time series generated synthetically by adding random

perturbations to a template matrix for the metric cluster of

the instance.

Anomalies are injected in the metric time series as

follows. First we set an anomaly factor Ψ and choose

a random set of instances, R with N×Ψ
2 instances. For

each instance, we swap the time series with that of another

randomly chosen instance. This corresponds to the situation

of observing metric values which usually do not appear with

the given context but may appear in some other context. For

some of the instances rather than adding swap-anomalies,

we replace the metric time series with random new matrices.

This corresponds to the situation of observing metric values

which usually never appear in any of the contexts.

Results on Synthetic Datasets We generate a variety of

synthetic datasets capturing different experimental settings.

For each setting, we perform 20 experiments and report the

average values. We vary the number of instances as 500,

1000, 2000 and 5000. We also study the accuracy with

respect to variation in the number of metrics (5, 10, 20)

and variation in the number of metric clusters (4, 6, 10).

We also vary the percentage of injected anomalies as 2%,

5% and 10%. We terminate the external while loop after

a maximum of 5 iterations (i3 = 5). For each algorithm,

we show the accuracy with respect to matches in the set

of detected anomalies and the set of injected anomalies,

in Tables 1 and 2 (best accuracy in bold). Each of the

accuracy values is obtained by averaging the accuracy for

that experimental setting across 20 runs. Average standard

deviations are 3.34% for CA, 7.06 % for SI and 4.58% for

NC. As the table shows, the two versions of the proposed

algorithm outperform the baseline algorithm (NC) for all of

the settings by a wide margin. On an average across all

experimental settings, CA is 28% better than NC. For small

N , we observe that CA performs significantly better than SI.

Running Time The experiments were run on a Linux ma-

chine with 4 Intel Xeon CPUs with 2.67GHz each. The code

was implemented in Java. Fig. 4 shows the average execu-

tion time spent in the metric pattern discovery stage of the

CA algorithm for different number of instances and metrics.

Note that the algorithm is linear in the number of instances.

As number of machines in the cluster increase, number of in-

stances increases proportionately. Thus, our algorithm scales

well with number of machines. These times are averaged

across multiple runs of the algorithm across different set-

tings for number of metric clusters and across multiple runs

for each setting. We also observed that the time spent in

anomaly detection (∼188ms on an average) is a small frac-

tion of the time spent in clustering metric time series.

0

5

10

15

20

25

30

500 1000 2000 5000

E
xe

cu
ti

o
n

 T
im

e
 f

o
r

M
e

tr
ic

P
a

tt
e

rn
s

D
is

co
v

e
ry

 (
se

c)

Number of instances (N)

#Metrics=5

#Metrics=10

#Metrics=20

Figure 4: Average Running

Time (sec) for Metrics Pat-

tern Discovery Stage of CA

 !"#!$%$&'(

)%"

 !"#
!$%$&

'*

!
"
#
!
$
%
$
&'
+

 ,-

./01'23/&%

./01'4%56

Figure 5: Top 3 Princi-

pal Component Representa-

tion for Metric Pattern 1 for

Context Cluster 3
N Ψ #Metrics = 5 #Metrics = 10 #Metrics = 20

(%) CA SI NC CA SI NC CA SI NC

500
2 0.8 0.55 0.28 0.741 0.642 0.281 0.86 0.59 0.255
5 0.641 0.641 0.302 0.79 0.627 0.332 0.777 0.69 0.345

10 0.661 0.617 0.351 0.742 0.666 0.35 0.605 0.633 0.345

1000
2 0.716 0.603 0.255 0.695 0.683 0.314 0.631 0.608 0.272
5 0.706 0.636 0.368 0.651 0.654 0.311 0.691 0.641 0.315

10 0.655 0.66 0.359 0.637 0.679 0.345 0.659 0.665 0.322

2000
2 0.64 0.638 0.258 0.603 0.643 0.27 0.537 0.583 0.278
5 0.578 0.655 0.289 0.623 0.623 0.319 0.586 0.632 0.321

10 0.574 0.6 0.331 0.659 0.715 0.299 0.626 0.611 0.311

5000
2 0.664 0.71 0.361 0.666 0.7 0.362 0.636 0.661 0.362
5 0.604 0.62 0.343 0.594 0.626 0.423 0.628 0.669 0.36

10 0.661 0.67 0.414 0.654 0.7 0.41 0.585 0.555 0.418

Table 1: Synthetic Dataset Results (CA=The Proposed Algo-

rithm, SI= Single Iteration, NC=No Context) for K2=4

N Ψ #Metrics = 5 #Metrics = 10 #Metrics = 20
(%) CA SI NC CA SI NC CA SI NC

500
2 0.462 0.482 0.181 0.71 0.5 0.265 0.682 0.497 0.241
5 0.514 0.505 0.279 0.488 0.465 0.3 0.531 0.461 0.298

10 0.466 0.485 0.314 0.527 0.503 0.334 0.536 0.549 0.371

1000
2 0.406 0.459 0.223 0.501 0.493 0.276 0.548 0.548 0.225
5 0.491 0.543 0.264 0.452 0.516 0.286 0.53 0.541 0.292

10 0.509 0.537 0.327 0.535 0.556 0.331 0.476 0.505 0.316

2000
2 0.532 0.564 0.228 0.511 0.565 0.226 0.576 0.538 0.26
5 0.582 0.579 0.296 0.503 0.539 0.286 0.453 0.5 0.237

10 0.533 0.55 0.319 0.508 0.495 0.289 0.499 0.486 0.288

5000
2 0.506 0.546 0.26 0.531 0.552 0.352 0.532 0.545 0.309
5 0.544 0.585 0.356 0.543 0.529 0.362 0.501 0.522 0.343

10 0.557 0.587 0.41 0.496 0.553 0.398 0.517 0.534 0.374

Table 2: Synthetic Dataset Results (CA=The Proposed Algo-

rithm, SI= Single Iteration, NC=No Context) for K2=10

7.3 Real Datasets We test the effectiveness of our

approach for two different real dataset scenarios. These

scenarios capture the usual faults that occur in Hadoop

instances: CPU Hog and Disk Hog. Such faults have been

reported on Hadoop users’ mailing list or on the Hadoop bug

database. See [20] for details.

Dataset Generation The workload comprises of the two

standard Hadoop examples – RandomWriter and Sort. We

configure the RandomWriter to write 1GB of random data to

HDFS. We run RandomWriter with 16 Maps and each Map

generates 64 MB of data. We run sort with 16 Maps and 16

Reduces. Logs and metrics are copied to a single machine

-1

0

1

2

#
M

a
p

s

#
R

e
d

u
ce

s

C
O

M
B

IN
E

 O
U

T
P

U
T

R
E

C
O

R
D

S

C
O

M
M

IT
T

E
D

 H
E

A
P

B
Y

T
E

S

C
P

U

M
IL

L
IS

E
C

O
N

D
S

F
IL

E
 B

Y
T

E
S

W
R

IT
T

E
N

H
D

F
S

 B
Y

T
E

S
 R

E
A

D

M
A

P
 I

N
P

U
T

 B
Y

T
E

S

M
A

P
 I

N
P

U
T

R
E

C
O

R
D

S

M
A

P
 O

U
T

P
U

T

B
Y

T
E

S

M
A

P
 O

U
T

P
U

T

M
A

T
E

R
IA

L
 B

Y
T

E
S

P
H

Y
S

IC
A

L

M
E

M
O

R
Y

 B
Y

T
E

S

R
E

C
O

R
D

S
 W

R
IT

T
E

N

R
E

D
U

C
E

 I
N

P
U

T

G
R

O
U

P
S

R
E

D
U

C
E

 I
N

P
U

T

R
E

C
O

R
D

S

R
E

D
U

C
E

 O
U

T
P

U
T

R
E

C
O

R
D

S

R
E

D
U

C
E

 S
H

U
F

F
L
E

B
Y

T
E

S

S
P

IL
L
E

D
 R

E
C

O
R

D
S

S
P

L
IT

 R
A

W
 B

Y
T

E
S

V
IR

T
U

A
L
 M

E
M

O
R

Y

B
Y

T
E

S

N
o

rm
a

li
ze

d
 M

e
a

su
re

m
e

n
t Cluster1 Cluster2 Cluster3

Figure 3: Characterization of the Context Patterns for the Hadoop Examples Dataset

where the processing is performed. Hadoop history logs and

metric files are very small and hence it takes negligible time

to process/copy them. Also, for our experiments, the cluster

had only Hadoop processes running on the machines. How-

ever, in general for clusters with multiple applications run-

ning on the machines, one needs to extract metrics corre-

sponding to the Hadoop processes only to avoid interference

from other applications.

For lack of space, we do not show the characterization

of the patterns obtained after clustering in the context space.

But we present a few observations. Cluster 1 consists of

a mix of Maps and Reduces, Cluster 2 has large number

of Maps while Cluster 3 has large number of Reduces.

Cluster 1 has a distinctly high number of HDFS bytes being

written. Cluster 2 shows a large number of Map Output

Records. Cluster 3 demonstrates a large activity in Reduce

counters. Further, Fig. 5 shows the various metric variables

in the space of the top three principal components for the

first metric pattern in the third context cluster. Each metric

variable is represented by a vector; direction and length of

the vector indicates how each variable contributes to the

three principal components in the plot. E.g., Memory and

Disk read operations have strong influences on the first and

second principal components respectively. The red dots are

the instances belonging to the metric pattern as plotted in the

top 3 principal component space.

Results on Real Datasets We run the workload 10 times for

each of the CPU hog and the Disk hog experiments. For

the first run in both the experiments, we inject an anomaly

(CPU hog or disk hog) on one of the machines. CPU hog is

simulated by running a infinite loop program while disk hog

is simulated by writing multiple files to the disk in parallel.

Overall, we have 134 and 121 instances for the disk hog and

CPU hog datasets. There are 7 and 4 anomalous instances

from the machine where the hog was injected for the disk

hog and the CPU hog datasets respectively.

Fig. 6 shows a plot of the anomaly scores of various in-

stances. The X axis shows the instance number and the Y

axis shows the anomaly score. The steep decrease in the

anomaly score both for the CPU Hog and the Disk Hog

case clearly shows that our algorithm computes a discrim-

inative score for the anomalies while giving distinctly lower

anomaly scores to the normal instances.

As expected we observed that the instances on the

machine where the hog is injected has an abnormal metrics

behavior. E.g., in case of CPU hog, the CPU utilization

of the machine is much higher than that expected for the

context. Similarly, in case of disk hog, the number of disk

write operations increases by a large amount. Out of the 7

anomalies for the disk hog, 4 of them are present in the top

5 and all 7 get detected in the top 10. In the case of CPU

hog, 3 get detected in the top 5 and all 4 in the top 10. Thus,

our methodology is quite effective in detecting anomalies,

specifically in localizing the anomalies to the machine level

and also with respect to the time duration.

For the CPU hog, we did some analysis of the false pos-

itives that were reported. One of the false positives appeared

to have some reasonable amount of CPU utilization (about

37% which was higher compared to the other members of

its metric cluster (average=5.08%, std dev=1.37%)). We be-

lieve that this was because of some other process running on

the machine at that time. Another false positive showed high

number of disk reads (71 compared to an average 28) and

low disk write operations (13 compared to an average of 17)

for the same metrics cluster.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

A
n

o
m

a
ly

 S
co

re

Instance Number

Disk Hog

CPU Hog

Figure 6: Anomaly

Scores for CPU Hog and Disk

Hog Datasets (Both the series

have been sorted with respect to

anomaly scores)

0

20

40

60

80

100

1 21 41 61

C
P

U
 U

ti
li

za
ti

o
n

Time (sec)

Anomaly

Metric Cluster 0

Metric Cluster 1

Metric Cluster 2

Figure 7: CPU Utiliza-

tion of an Anomaly Versus Av-

erage CPU Utilization of Nor-

mal Instances for Metric Pat-

terns within the same Context

We show one of the anomalies for the CPU Hog case in

Fig. 7 for a period of 80 seconds. Note that the anomalous

instance has a very high CPU Utilization. The other curves

show the average CPU Utilization of the instances belonging

to the metric patterns within the same context. The graph

shows that in the particular context, the expected CPU

utilization is quite low and shows a fluctuating trend, while

the anomaly shows a very high CPU utilization which is

almost flat. Hence, the proposed algorithm marks this

instance as an anomaly.

8 Related Work

Our work is related to previous work on anomaly detection

for distributed systems using logs only and using perfor-

mance metrics only.

Anomaly/Fault Detection using System Logs Recently,

there has been work that uses system logs for anomaly

detection ([11, 12, 16, 17]). Researchers have studied

logs using Hidden Markov Models [23], state machines

and control and data flow models (SALSA) [19] for fault

identification. Besides system logs, message logs across

components have been exploited in fault detection systems

like Pip [15] and Pinpoint [2]. While log analysis-based

systems exploit the event and context information from logs,

they fail to exploit the rich information contained in the

operating system performance metrics.

Anomaly/Fault Detection using OS Performance Metrics

Tiresias performs anomaly detection by exploring individual

performance metrics by putting thresholds on each metric

separately [22]. Clustering on OS metrics has been used

for fault detection (Ganesha [14]) and prediction ([6, 7],

ALERT [21]). Time series models and probabilistic corre-

lations among monitored metrics have also been exploited

for the task [8, 10]. Recent works [13, 20] discuss about

combining Hadoop logs and OS metrics for better fault

detection. But our work is different from them in several

ways: 1. Though they point out that OS metrics and

Hadoop logs are complementary, they do not provide any

principled methodology to tightly integrate the two pieces.

2. They provide a supervised approach while our approach

is completely unsupervised and requires no prior labeling.

3. Their study is focused on jobs that take exceptionally

longer, while we focus on out-of-context metric anomalies.

Our method helps in finding time durations on any machine

for which the metrics were inconsistent with respect to the

context in which they were observed.

9 Conclusions

We motivated the need of combining system log informa-

tion and OS performance metric observations for effective

anomaly detection for MapReduce systems. The anomalies

were detected based on the context patterns and metric pat-

terns. The context patterns were derived by clustering in

the space of context variables associated with the instances.

Metric patterns were discovered for every context cluster us-

ing a PCA-based similarity measure for multi-variate time

series and a modified K-Means algorithm. Metric pattern

discovery and anomaly detection was performed iteratively

to mutually improve the quality of results. Using synthetic

datasets and real Hadoop runs, we showed the effectiveness

of the proposed approach in finding interesting anomalies.

The approach could be extended to study anomalies related

to change in OS performance metrics with transitions in the

context captured by the system logs.

References

[1] Amazon Outage. http://aws.amazon.com/message/

65648/.

[2] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. A. Brewer. Pin-

point: Problem Determination in Large, Dynamic Internet Services.

In ICDSN, pages 595–604, 2002.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing

on Large Clusters. CACM, 51(1):107–113, Jan 2008.

[4] Improving Debugging And Performance Tuning with ETW.

http://msdn.microsoft.com/en-us/magazine/

cc163437.aspx.

[5] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From Dirt to Shovels:

Fully Automatic Tool Generation from Ad hoc Data. In POPL, pages

421–434, 2008.

[6] X. Gu, S. Papadimitriou, P. S. Yu, and S.-P. Chang. Toward Predictive

Failure Management for Distributed Stream Processing Systems. In

ICDCS, pages 825–832, 2008.

[7] X. Gu and H. Wang. Online Anomaly Prediction for Robust Cluster

Systems. In ICDE, pages 1000–1011, 2009.

[8] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira. Tracking Probabilistic

Correlation of Monitoring Data for Fault Detection in Complex

Systems. In ICDSN, pages 259–268, 2006.

[9] Hadoop Logs. http://tinyurl.com/hadoop-logs.

[10] G. Jiang, H. Chen, and K. Yoshihira. Modeling and Tracking of

Transaction Flow Dynamics for Fault Detection in Complex Systems.

TDSC, 3:312–326, Oct 2006.

[11] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure Prediction in

IBM BlueGene/L Event Logs. In ICDM, pages 583–588, 2007.

[12] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado. Machine Learn-

ing Methods for Predicting Failures in Hard Drives: A Multiple-

Instance Application. JMLR, 6:783–816, Dec 2005.

[13] X. Pan, J. Tan, S. Kalvulya, R. Gandhi, and P. Narasimhan. Blind

Men and the Elephant: Piecing Together Hadoop for Diagnosis. In

ISSRE, 2009.

[14] X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Gane-

sha: BlackBox Diagnosis of MapReduce Systems. SIGMETRICS

Perform. Eval. Rev., 37(3):8–13, Jan 2010.

[15] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and

A. Vahdat. Pip: Detecting the Unexpected in Distributed Systems. In

NSDI, pages 9–22, 2006.

[16] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma,

R. Vilalta, and A. Sivasubramaniam. Critical Event Prediction for

Proactive Management in Large-scale Computer Clusters. In KDD,

pages 426–435, 2003.

[17] B. Schroeder and G. A. Gibson. Disk Failures in Real World: What

does MTTF of 1,000,000 Hours mean to you? In FAST, 2007.

[18] Sisyphus – A Log Data Mining Toolkit. http://www.cs.

sandia.gov/˜jrstear/sisyphus/.

[19] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. SALSA:

Analyzing Logs as State Machines. In WASL, pages 6–13, 2008.

[20] J. Tan, X. Pan, E. Marinelli, S. Kavulya, R. Gandhi, and

P. Narasimhan. Kahuna: Problem Diagnosis for Mapreduce-based

Cloud Computing Environments. In NOMS, pages 112–119, 2010.

[21] Y. Tan, X. Gu, and H. Wang. Adaptive System Anomaly Prediction

for Large-Scale Hosting Infrastructures. In PODC, pages 173–182,

2010.

[22] A. W. Williams, S. M. Pertet, and P. Narasimhan. Tiresias: Black-box

Failure Prediction in Distributed Systems. IPDPS, pages 1–8, 2007.

[23] K. Yamanishi and Y. Maruyama. Dynamic Syslog Mining for

Network Failure Monitoring. In KDD, pages 499–508, 2005.

[24] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,

and I. Stoica. Delay Scheduling: A Simple Technique for Achieving

Locality and Fairness in Cluster Scheduling. In EuroSys, pages 265–

278, 2010.

http://aws.amazon.com/message/65648/
http://aws.amazon.com/message/65648/
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx
http://msdn.microsoft.com/en-us/magazine/cc163437.aspx
http://tinyurl.com/hadoop-logs
http://www.cs.sandia.gov/~jrstear/sisyphus/
http://www.cs.sandia.gov/~jrstear/sisyphus/

	Introduction
	Overview: Challenges and the Proposed Solution
	Problem Definition for Hadoop
	MapReduce and Hadoop
	Context and Metric Variables for MapReduce
	Context-Aware Time Series Anomaly Detection Problem

	Pattern Extraction
	Extraction of Context Patterns
	Extraction of Metric Patterns

	Anomaly Detection
	Discussions
	Experiments
	Baselines
	Synthetic Datasets
	Real Datasets

	Related Work
	Conclusions

