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What is Big Data used For?
Reports, e.g.,
» Track business processes, transactions 

Diagnosis, e.g.,
» Why is user engagement dropping?
» Why is the system slow?
» Detect spam, worms, viruses, DDoS attacks

Decisions, e.g.,
» Personalized medical treatment
» Decide what feature to add to a product
» Decide what ads to show 

Data is only as useful as the decisions it enables



Data Processing Goals
Low latency (interactive) queries on historical 
data: enable faster decisions
» E.g., identify why a site is slow and fix it

Low latency queries on live data (streaming): 
enable decisions on real-time data
» E.g., detect & block worms in real-time (a 

worm may infect 1mil hosts in 1.3sec)

Sophisticated data processing: enable “better” 
decisions
» E.g., anomaly detection, trend analysis



One Reaction
Specialized models for some of these apps
» Google Pregel for graph processing
» Impala for interactive queries
» Iterative MapReduce
» Storm for streaming

Problem:
» Don’t cover all use cases
» How to compose in a single application?



Our Goals

Batch

Interactive Streaming

One !
stack to 

rule them all!

Support batch, streaming, and interactive computations…
… and make it easy to compose them


Easy to develop sophisticated algorithms



Approach: Leverage Memory
Memory bus >> disk & SSDs

Many datasets fit into 
memory
» The inputs of over 90% of jobs 

in Facebook, Yahoo!, and Bing 
clusters fit into memory
» 1TB = 1 billion records @ 1 KB

Memory density (still) grows 
with Moore’s law
» RAM/SSD hybrid memories at 

horizon 




High-end datacenter node

16-24 cores

10-30TB

128-512GB

1-4TB

10Gbps

0.2-1GB/s
(x10 disks) 1-4GB/s

(x4 disks)

40-60GB/s



Approach: Increase Parallelism
Reduce work per node à 
improves latency

Techniques:
» Low latency parallel scheduler 

that achieve high locality
» Efficient recovery from failures 

and straggler mitigation
» Optimized parallel 

communication patterns (e.g., 
shuffle, broadcast)
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Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution
Enable stages & jobs to share data efficiently
How?
» Resilient Distributed Datasets (RDDs): in-memory 

fault-tolerant storage abstraction 
» Low latency scheduler
» Efficient communication patterns
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How to ensure fault tolerance?
RDDs: restricted form of shared memory
» Immutable, partitioned sets of records
» Can only be built through coarse-grained, 

deterministic operations (map, filter, join, …)

Use lineage
» Log one operation to apply to many elements
» Recompute any lost partitions on failure

Resilient Distributed Datasets (RDDs)



filter(h)group-by( g)map( f )

RDD Recovery

Input file
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Generality of RDDs
Surprisingly, RDDs can express many parallel 
algorithms
» These naturally apply the same operation to many items

Unify many current programming models
» Data flow models: MapReduce, Dryad, SQL, …
» Specialized models for iterative apps: Pregel, iterative 

MapReduce, GraphLab, …

Support new apps that these models don’t



PageRank Performance
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Other Iterative Algorithms

0.96

110

0 25 50 75 100 125

Logistic 
Regression

4.1

155

0 30 60 90 120 150 180

K-Means 
Clustering

Hadoop

Spark

Time per Iteration (s)



Spark: Narrow Waist of BDAS
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Existing Streaming Systems
Continuous processing model
» Each node has long-lived state
» For each record, update state & 

send new records

State is lost if node dies!

Making stateful stream 
processing fault-tolerant is 
challenging

mutable state

node 1

node 3

input 
records

node 2

input 
records



Spark Streaming
Run a streaming computation as a series of very small, 
deterministic batch jobs

Spark

Spark
Streaming

batches of X 
seconds

live data 
stream

processed 
results

Divide live stream into batches of X 
seconds 

Spark treats each batch of data as 
RDDs 

Return results in batches



How Fast Can It Go?
Can process over 60M records/s (6 GB/s) on!
100 nodes at sub-second latency


Maximum throughput for latency under 1 sec
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How Fast Can It Recover?
Two second batches
Recovers from faults/stragglers within 1 second



Shark: Hive over Spark
Up to 100x faster when data in memory 
Up to 5-10x faster even when data on disk
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What Is Next?
Trade between result accuracy 
and response time
Why? 
» In-memory processing doesn’t 

guarantee interactive processing
•  E.g., ~10’s sec just to scan 512 

GB RAM!
•  Gap between memory capacity 

and transfer rate increasing



512GB

16 cores

40-60GB/s

doubles every 
18 months

doubles every 
36 months



BlinkDB: Approximate Computations
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Key Insight

Input often noisy: exact computations do not 
guarantee exact answers
Error often acceptable if small and bounded

Don’t always need exact answers

Best scale
± 0.5lb error 

Speedometers
± 2.5 % error
(edmunds.com)

OmniPod Insulin Pump
± 0.96 % error
(www.ncbi.nlm.nih.gov/pubmed/22226273)



BlinkDB Challenges
How to estimate error bounds for arbitrary 
computations?
How do you know that technique you used is 
actually working?
» Not trivial to check assumptions under which these 

estimates hold
» Many assumptions are sufficient, not necessary






What Is Next? Graph X
GraphLab API on top of Spark 
Leverage Spark’s fault tolerance
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What Is Next? MLlib/MLbase
MLlib: Highly scalable ML library 
MLbase: Declarative approach to ML
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Summary
Spark: narrow waist of BDAS
» Unifies batch, streaming, and interactive comp.
» Ability to execute sub-second parallel jobs
» Enable job’s stages and jobs to share in-memory data

Future work
» Sophisticated computations (Graph X, MLbase)
» Trade accuracy, speed, and cost (BlinkDB)

Vibrant open source community
» Used by tens of companies (e.g., Yahoo!, Intel, Twitter…)
» 60+ contributors from 17+ companies

Batch

Interactive Streaming

Spark
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