
Berkeley Data Analytics Stack!
(Beyond Spark & Shark)

UC	 BERKELEY	

Ion Stoica
UC Berkeley

What is Big Data used For?
Reports, e.g.,
» Track business processes, transactions

Diagnosis, e.g.,
» Why is user engagement dropping?
» Why is the system slow?
» Detect spam, worms, viruses, DDoS attacks

Decisions, e.g.,
» Personalized medical treatment
» Decide what feature to add to a product
» Decide what ads to show

Data is only as useful as the decisions it enables

Data Processing Goals
Low latency (interactive) queries on historical
data: enable faster decisions
» E.g., identify why a site is slow and fix it

Low latency queries on live data (streaming):
enable decisions on real-time data
» E.g., detect & block worms in real-time (a

worm may infect 1mil hosts in 1.3sec)

Sophisticated data processing: enable “better”
decisions
» E.g., anomaly detection, trend analysis

One Reaction
Specialized models for some of these apps
» Google Pregel for graph processing
» Impala for interactive queries
» Iterative MapReduce
» Storm for streaming

Problem:
» Don’t cover all use cases
» How to compose in a single application?

Our Goals

Batch

Interactive Streaming

One !
stack to

rule them all!

Support batch, streaming, and interactive computations…
… and make it easy to compose them

Easy to develop sophisticated algorithms

Approach: Leverage Memory
Memory bus >> disk & SSDs

Many datasets fit into
memory
» The inputs of over 90% of jobs

in Facebook, Yahoo!, and Bing
clusters fit into memory
» 1TB = 1 billion records @ 1 KB

Memory density (still) grows
with Moore’s law
» RAM/SSD hybrid memories at

horizon

High-end datacenter node

16-24 cores

10-30TB

128-512GB

1-4TB

10Gbps

0.2-1GB/s
(x10 disks) 1-4GB/s

(x4 disks)

40-60GB/s

Approach: Increase Parallelism
Reduce work per node à
improves latency

Techniques:
» Low latency parallel scheduler

that achieve high locality
» Efficient recovery from failures

and straggler mitigation
» Optimized parallel

communication patterns (e.g.,
shuffle, broadcast)

result

T

result

Tnew (< T)

Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution
Enable stages & jobs to share data efficiently
How?
» Resilient Distributed Datasets (RDDs): in-memory

fault-tolerant storage abstraction
» Low latency scheduler
» Efficient communication patterns

Spark: Interactive & Iterative Comp.

Achieve sub-second parallel job execution
Enable stages & jobs to share data efficiently
How?
» Resilient Distributed Datasets (RDDs): in-memory

fault-tolerant storage abstraction
» Low latency scheduler
» Efficient communication patterns

How to ensure fault tolerance?
RDDs: restricted form of shared memory
» Immutable, partitioned sets of records
» Can only be built through coarse-grained,

deterministic operations (map, filter, join, …)

Use lineage
» Log one operation to apply to many elements
» Recompute any lost partitions on failure

Resilient Distributed Datasets (RDDs)

filter(h)group-by(g)map(f)

RDD Recovery

Input file

filter(h)group-by(g)map(f)

RDD Recovery

Input file

filter(h)group-by(g)map(f)

RDD Recovery

Input file

Generality of RDDs
Surprisingly, RDDs can express many parallel
algorithms
» These naturally apply the same operation to many items

Unify many current programming models
» Data flow models: MapReduce, Dryad, SQL, …
» Specialized models for iterative apps: Pregel, iterative

MapReduce, GraphLab, …

Support new apps that these models don’t

PageRank Performance

17
1

80

23
	

14
	
0

20
40
60
80

100
120
140
160
180
200

30 60

Ite
ra

tio
n

tim
e

(s)

Number of machines

Hadoop

Spark

Other Iterative Algorithms

0.96

110

0 25 50 75 100 125

Logistic
Regression

4.1

155

0 30 60 90 120 150 180

K-Means
Clustering

Hadoop

Spark

Time per Iteration (s)

Spark: Narrow Waist of BDAS

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
fmwks

Spark: Narrow Waist of BDAS

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
fmwks

spark-‐project.org	 spark-‐project.org	 spark-‐project.org	

Existing Streaming Systems
Continuous processing model
» Each node has long-lived state
» For each record, update state &

send new records

State is lost if node dies!

Making stateful stream
processing fault-tolerant is
challenging

mutable state

node 1

node 3

input
records

node 2

input
records

Spark Streaming
Run a streaming computation as a series of very small,
deterministic batch jobs

Spark

Spark
Streaming

batches of X
seconds

live data
stream

processed
results

Divide live stream into batches of X
seconds

Spark treats each batch of data as
RDDs

Return results in batches

How Fast Can It Go?
Can process over 60M records/s (6 GB/s) on!
100 nodes at sub-second latency

Maximum throughput for latency under 1 sec

0	

20	

40	

60	

80	

0	
 50	
 100	

R
ec

or
ds

/s
 (

m
illi

on
s)
	

Nodes in Cluster	

Grep	

0	

10	

20	

30	

0	
 50	
 100	

R
ec

or
ds

/s
 (

m
illi

on
s)
	

Nodes in Cluster	

Top K Words	

How Fast Can It Recover?
Two second batches
Recovers from faults/stragglers within 1 second

Shark: Hive over Spark
Up to 100x faster when data in memory
Up to 5-10x faster even when data on disk

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
frmwks

What Is Next?
Trade between result accuracy
and response time
Why?
» In-memory processing doesn’t

guarantee interactive processing
•  E.g., ~10’s sec just to scan 512

GB RAM!
•  Gap between memory capacity

and transfer rate increasing

512GB

16 cores

40-60GB/s

doubles every
18 months

doubles every
36 months

BlinkDB: Approximate Computations

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
fmwks

Key Insight

Input often noisy: exact computations do not
guarantee exact answers
Error often acceptable if small and bounded

Don’t always need exact answers

Best scale
± 0.5lb error

Speedometers
± 2.5 % error
(edmunds.com)

OmniPod Insulin Pump
± 0.96 % error
(www.ncbi.nlm.nih.gov/pubmed/22226273)

BlinkDB Challenges
How to estimate error bounds for arbitrary
computations?
How do you know that technique you used is
actually working?
» Not trivial to check assumptions under which these

estimates hold
» Many assumptions are sufficient, not necessary

What Is Next? Graph X
GraphLab API on top of Spark
Leverage Spark’s fault tolerance

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
frmwks

What Is Next? MLlib/MLbase
MLlib: Highly scalable ML library
MLbase: Declarative approach to ML

Spark	

HDFS	
 S3	
 …

Spark
Straming	
 Shark	

SQL	

Graph 	

X	
 ML	

library	

…

BlinkDB	
 MLbase	

Storage

Execution
Engine

Domain
specific
frmwks

Summary
Spark: narrow waist of BDAS
» Unifies batch, streaming, and interactive comp.
» Ability to execute sub-second parallel jobs
» Enable job’s stages and jobs to share in-memory data

Future work
» Sophisticated computations (Graph X, MLbase)
» Trade accuracy, speed, and cost (BlinkDB)

Vibrant open source community
» Used by tens of companies (e.g., Yahoo!, Intel, Twitter…)
» 60+ contributors from 17+ companies

Batch

Interactive Streaming

Spark

UC	 BERKELEY	

