Three Assertions about Interactive Machine Learning

Xiaojin Zhu

Department of Computer Sciences University of Wisconsin-Madison

jerryzhu@cs.wisc.edu 2013

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assertion 1: Humans can be modeled with statistical learning theory

Unifying math behind cognitive science and machine learning

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example 1a: Human Rademacher Complexity

(grenade, A), (meadow, A), (skull, B), (conflict, B), (queen, B)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 1a: Human Rademacher Complexity

(grenade, A), (meadow, A), (skull, B), (conflict, B), (queen, B)

- "learning random labels" $(x_1, \sigma_1) \dots (x_n, \sigma_n)$
- Rademacher complexity (similar to VC dimension)

$$Rad_n(F) \approx \left| \frac{2}{n} \sum_{i=1}^n \sigma_i \hat{f}(x_i) \right|$$

- ... of our mind!
- ► Larger Rademacher complexity → worse generalization error bound (overfitting) [ZRG NIPS09]

Example 1b: Human Semi-Supervised Learning

- Humans learn supervised first, then
- ... decision boundary shifts to distribution trough in test data
- Can be explained by a variety of semi-supervised machine learning models [GRZ ToCS13]

Example 1c: Human Active Learning

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�?

Assertion 2: There is a theoretically optimal way to teach

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Human teaches machine (interactive ML) Machine teaches human (education)

Example 2: 1D threshold function

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

A formula for optimal teaching

- 1. World: $p(x, y \mid \theta^*)$, loss function $\ell(f(x), y)$
- 2. Learner: makes prediction $f(x \mid \text{data})$
- 3. Teacher:
 - clairvoyant, knows everything above
 - can only teach by examples (x, y)
 - ▶ goal: choose the least-effort teaching set D = (x, y)_{1:n} to minimize the learner's future loss (risk):

 $\min_{D} \quad \mathbb{E}_{\theta^*}[\ell(f(x \mid D), y)] + \operatorname{effort}(D)$

▶ if the future loss approaches Bayes risk, D is a teaching set and n is the (generalized) teaching dimension

[KZM NIPS11, Z arXiv13]

Assertion 3: Even when human teachers are not optimal, they are not iid

 \ldots and machine learners should take advantage of that non- $iid{\rm ness.}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example 3: Feature Volunteering (Interactive ML)

・ロット (雪) (日) (日) (日)

[JZSR ICML13]

Probability ∝ Size

Probability ∝ Size

(日)、

э

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Domoin	Reference Distributions				
Domain	SWIRL	Equal	Schapire		
sports	0.865	0.847	0.795		
movies	0.733	0.733	0.725		
webkb	0.463	0.444	0.429		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References

R. Castro, C. Kalish, R. Nowak, R. Qian, T. Rogers, and X. Zhu. Human active learning. In <u>Advances in Neural Information Processing Systems (NIPS) 22</u> . 2008.
B. R. Gibson, T. T. Rogers, and X. Zhu. Human semi-supervised learning. Topics in Cognitive Science, 5(1):132–172, 2013.
KS. Jun, X. Zhu, B. Settles, and T. Rogers. Learning from human-generated lists. In The 30th International Conference on Machine Learning (ICML), 2013.
F. Khan, X. Zhu, and B. Mutlu. How do humans teach: On curriculum learning and teaching dimension. In Advances in Neural Information Processing Systems (NIPS) 25. 2011.
X. Zhu, T. T. Rogers, and B. Gibson. Human Rademacher complexity. In Advances in Neural Information Processing Systems (NIPS) 23. 2009.

Three Assertions

- 1. Humans can be modeled with statistical learning theory.
- 2. There is a theoretically optimal way to teach.
- 3. Even when human teachers are not optimal, they are not *iid*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Capacity

VC-dimension

- ► F: a family of binary classifiers
- \blacktriangleright VC-dimension VC(F): size of the largest set that F can shatter
- With probability at least 1δ ,

$$\sup_{f \in F} R(f) - R_n(f) \le 2\sqrt{2\frac{VC(F)\log n + VC(F)\log\frac{2e}{VC(F)} + \log\frac{2}{\delta}}{n}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- R(f): error of f in the future
- $R_n(f)$: error of f on a training set of size n

Capacity

Rademacher complexity

•
$$\sigma_1, \dots, \sigma_n : P(\sigma_i = 1) = P(\sigma_i = -1) = \frac{1}{2}$$

Rademacher complexity

$$Rad_n(F) = \mathbb{E}_{\sigma,x} \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^n \sigma_i f(x_i) \right| \right).$$

• With probability at least $1 - \delta$,

$$\sup_{f \in F} |R_n(f) - R(f)| \le 2Rad_n(F) + \sqrt{\frac{\log(2/\delta)}{2n}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Machine learning \rightarrow human learning

- f: you categorize x by f(x)
- ► F: all the classifiers in your mind
- $R_n(f)$: how did you do in class
- R(f): how well can you do outside class
- Capacity: can we measure it in humans?
 - ► VC(F): too brittle (find <u>one</u> dataset of size n) and combinatorial (verify shattering)

• Others may behave better, e.g., $Rad_n(F)$

Overfitting indicator

- e test set error, \hat{e} training set error
- generalization error bound holds
- actual overfitting tracks bound (nice but <u>not</u> predicted by theory)
- The study of capacity may
 - constrain cognitive models
 - understand groups differ in age, health, education, etc.

Human semi-supervised learning, the other way around Human unsupervised learning first

trough peak uniform converge ... influences subsequent (identical) supervised learning task

< 🗇 🕨

Human teacher behaviors

strategy	boundary	curriculum	linear	positive
"graspability" $(n = 31)$	0%	<mark>48</mark> %	42%	10%
"lines" $(n = 32)$	<mark>56</mark> %	<mark>19</mark> %	25%	0%

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで