

Interactive learning systems: Lessons learned from ad placement.

Leon Bottou

Ad placement is difficult

Main relevant scientific topics

- Auction theory (mechanism design, placement auctions, ...)
- Learning with limited feedback (sequential design, explore/exploit, bandits, ...)

Engineering issues

• Team work + big data

Applying scientific insights

Sound scientific approach

• Focus on the simplest setup that exhibits the phenomenon of interest and is amenable to analysis

Practical consequences

- Setup too restrictive to apply
- Setup too general to lead to competitive system
- Both of the above

Auction theory for ad placement?

- Many queries are targeted by a single advertiser.
 When there is only one buyer, this is not an auction!
- Optimal auction theory does not (usually) apply to repeated auction.
 Repeated business gives more leverage to the buyers
- Advertisers place a single bid for multiple auctions.
 - Ad placement engines serve hundreds of millions of queries per day.
 The most active advertisers change their bids every 15 minutes.
- Placement decisions impact the future behavior of users.
 - Auction theory models the interaction of one seller and many potential buyers.
 publisher = seller, advertisers = buyers, user = ?

Contextual bandits for ad placement?

- Missing user feedback loop, missing advertiser feedback loop.
- Does not exploit action structure (similar ads on similar queries), policy structure (ad auctions must obey certain rules) or reward structure (pricing decisions affect users but not advertisers.)

How to help the engineer?

Listening to the question

Narrative

- Collected data shows a **positive correlation** between conditions A (e.g., some ad feature) and B (e.g., clicks),
- But when we change the ad placement engine to **get more A** we **do not get more B**.

Questions

- What is going on here?
- Why do such things happen all the time ?
- How can I engineer such a system?

Reichenbach's common cause principle

A and B are correlated \Rightarrow

- A causes B
- or B causes A
- or A and B have a common cause C.

Reichenbach's common cause principle

A and B are correlated =

• A causes B

Were this the case, manipulating A would change B as expected.

Impossible because B follows A in time.

- or B causes A
- or A and B have common causes.

By elimination

Reichenbach's common cause principle

A and B are correlated \Rightarrow

Manipulating A should not be expected to change B as the correlation suggests !

- A causes B
- or B causes A
- or A and B have common causes.

Humans are part of the learning system

Revisiting the question

Give us a **framework** to reason about such problems.

- A generic language should we use to express the assumptions that we believe adequate for the problem,
- with generic methods to construct sound learning algorithms tailored to our assumptions.
- and generic methods to construct sound monitoring techniques to validate assumptions, check the learning process at any time, debug problems, etc.

Solving the framework problem

Write a collection of papers with incompatible setups illustrating relevant insights. Express insights within a unified framework that provides a generic modeling language and generic methods.

• My bets are on causal inference.

