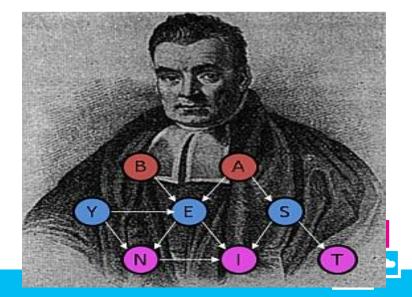
Deep Learning: Looking Forward Yoshua Bengio U. Montreal

July 16th, 2013 Microsoft Research Faculty Summit 2013, Bellevue, WA **LISA**

Representation Learning

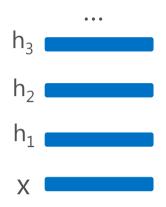
- Good input features essential for successful ML *(feature engineering = 90% of effort in industrial ML)*
- Handcrafting features vs learning them
- Representation learning: guesses the features / factors / causes = good representation.



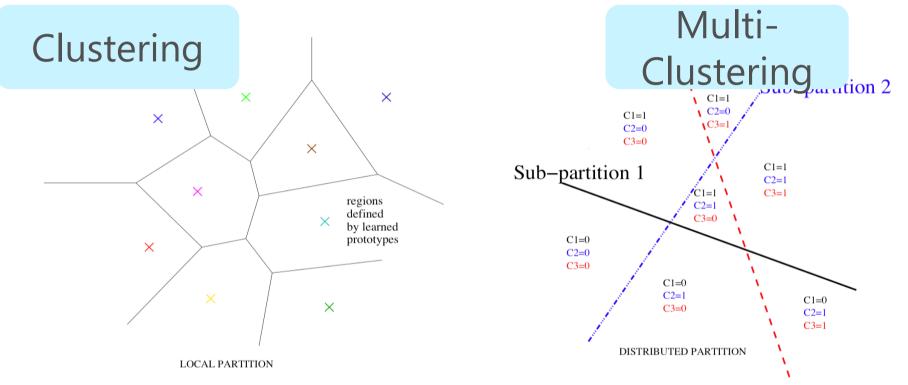
Deep Representation Learning

Learn multiple levels of representation of increasing complexity/abstraction

- potentially exponential gain in expressive power
- brains are deep
- humans organize knowledge in a compositional way
- Better mixing in the space of deeper representations (Bengio et al, ICML 2013)
- They work! SOTA on industrial-scale AI tasks (object recognition, speech recognition, language modeling, music modeling)



The need for distributed representations



Each parameter influences many regions, not just local neighbors # distinguishable regions grows almost exponentially with # parameters

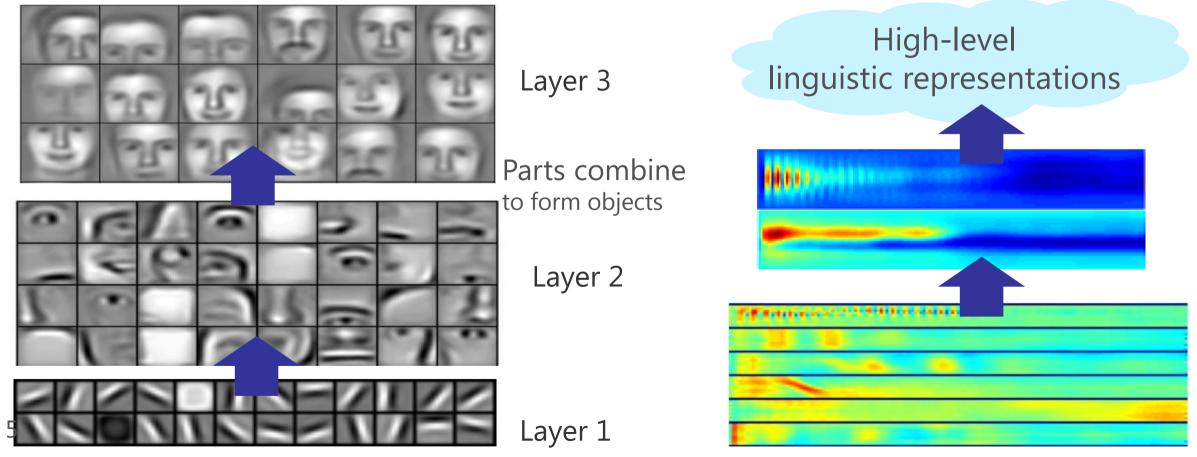
input

Learning a set of features that are not mutually exclusive can be exponentially more statistically efficient than nearest-neighborlike or clustering-like models

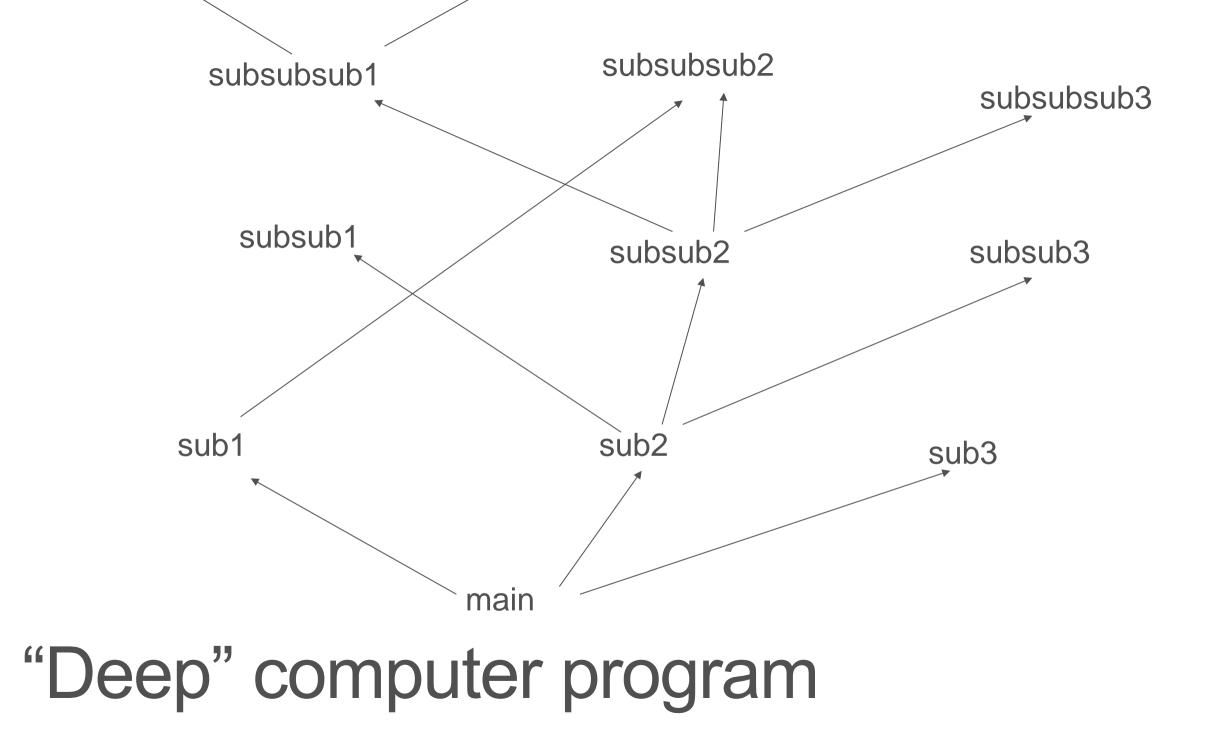
Learning multiple levels of representation

(Lee, Largman, Pham & Ng, NIPS 2009) (Lee, Grosse, Ranganath & Ng, ICML 2009)

Successive model layers learn deeper intermediate representations

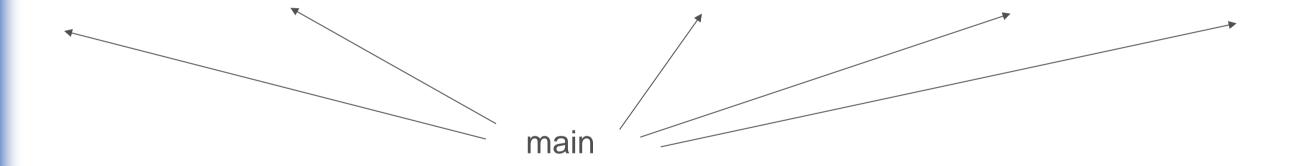


Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction



subroutine1 includes subsub1 code and subsub2 code and subsubsub1 code

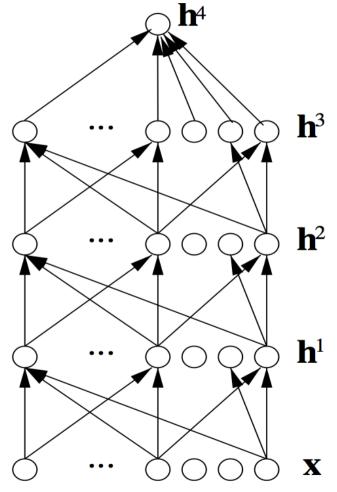
subroutine2 includes subsub2 code and subsub3 code and subsubsub3 code and ...

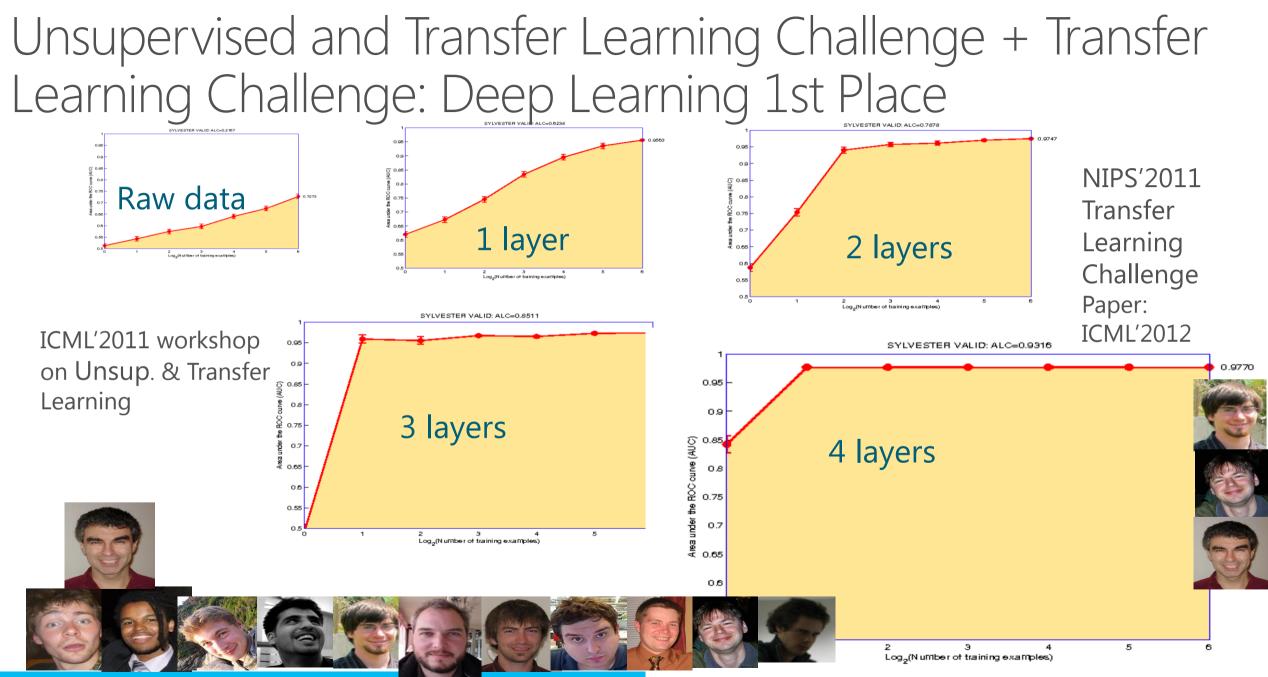


"Shallow" computer program

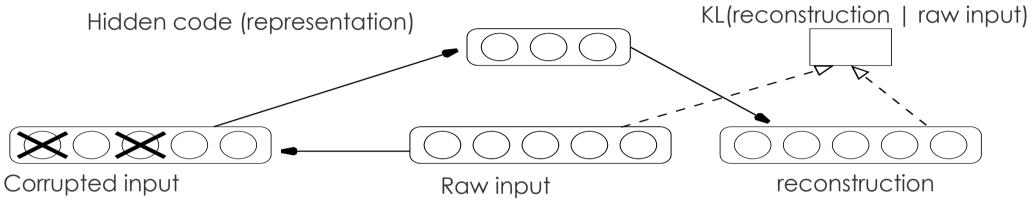
Deep Supervised Neural Nets

- We can now train them even without unsupervised pre-training, thanks to better initialization and non-linearities (rectifiers, maxout) and they can generalize well with large labeled sets and dropout.
- Unsupervised pre-training still useful for rare classes, transfer, smaller labeled sets, or as an extra regularizer.





Denoising Auto-Encoder (Vincent et al 2008)



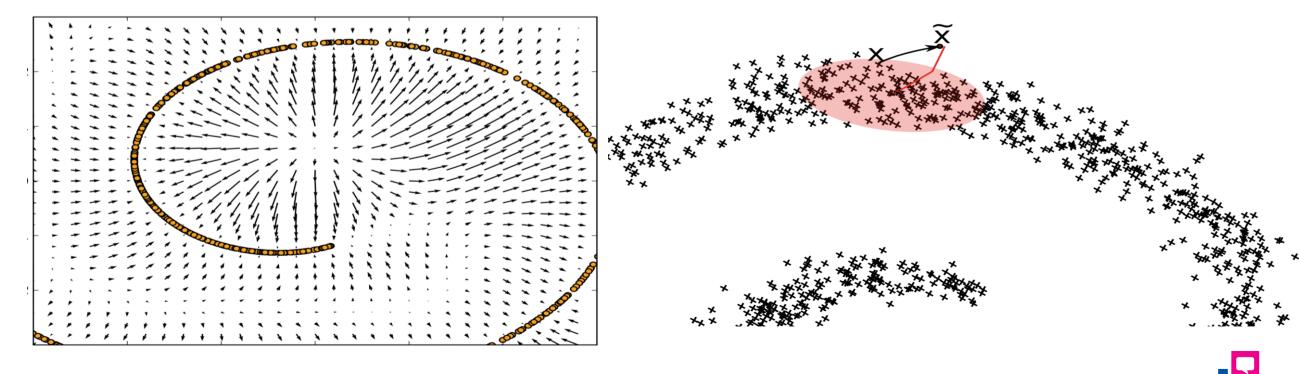
- Corrupt the input
- Try to reconstruct the uncorrupted input
- Models the input density through a form of score matching (Vincent 2011, Alain & Bengio ICLR 2013) or as the transition kernel of a Markov chain (Bengio et al, arxiv 2013 "Generalized Denoising Auto-Encoders as Generative Models")

Regularized Auto-Encoders Learn Salient Variations, like non-linear PCA with shared parameters

- Minimizing reconstruction error forces to keep variations along manifold.
- Regularizer wants to throw away all variations.
- With both: keep ONLY sensitivity to variations ON the manifold.

Regularized Auto-Encoders Learn a Vector Field or a Markov Chain Transition Distribution

- (Bengio, Vincent & Courville, TPAMI 2013) review paper
- (Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)

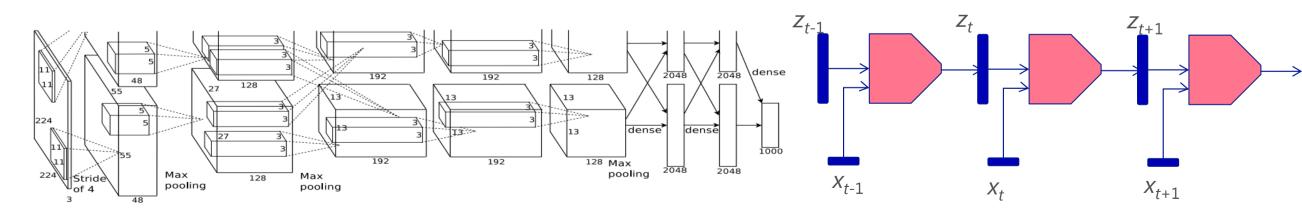


Stochastic Neurons as Regularizer: Improving neural networks by preventing co-adaptation of feature detectors (Hinton et al 2012, arXiv)

- **Dropouts** trick: during training multiply neuron output by random bit (p=0.5), during test by 0.5
- Used in deep supervised networks
- Similar to denoising auto-encoder, but corrupting every layer
- Works better with rectifiers, even better with maxout (Goodfellow et al. ICML 2013)
- Equivalent to averaging over exponentially many architectures
 - Used by Krizhevsky et al to break through ImageNet SOTA
 - Also improves SOTA on CIFAR-10 (18 \rightarrow 16% err)
 - Knowledge-free MNIST with DBMs ($.95 \rightarrow .79\%$ err)
 - TIMIT phoneme classification (22.7 \rightarrow 19.7% err)

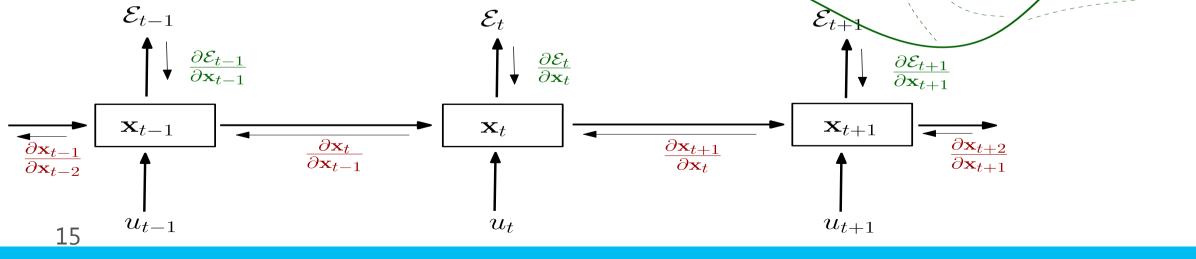
Temporal & Spatial Inputs: Convolutional & Recurrent Nets

- Local connectivity across time/space
- Sharing weights across time/space (translation equivariance)
- Pooling (translation invariance, cross-channel pooling for others)
- Recurrent nets can summarize information from the past
- Bidirectional recurrent nets can also summarize information from the future



The Optimization Challenge in Deep / Recurrent Nets

- Higher-level abstractions require highly non-linear transformations to be learned
- Sharp non-linearities are difficult to learn by gradient
- Composition of many non-linearities = sharp non-linearity
- Exploding or vanishing gradients

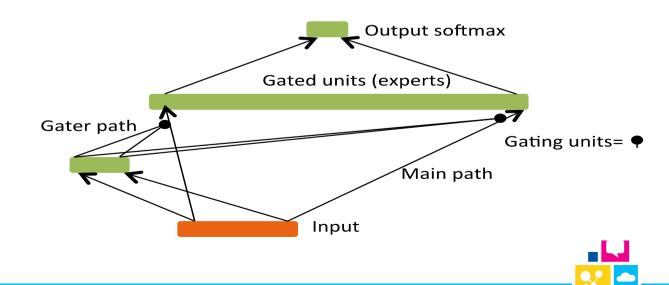


Deep Learning Challenges (Bengio, arxiv 1305.0445 Deep learning of representations: looking forward)

- Computational Scaling
- Optimization & Underfitting
- Approximate Inference & Sampling
- Disentangling Factors of Variation
- Reasoning & One-Shot Learning of Facts

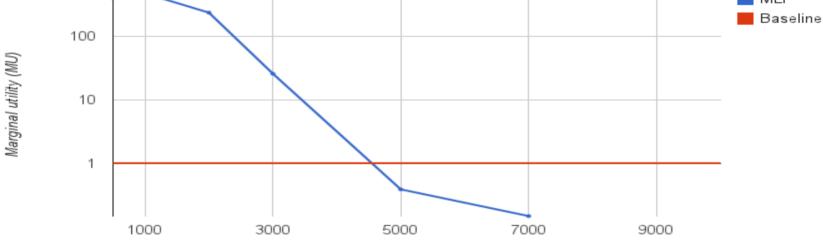
Conditional Computation

- Deep nets vs decision trees
- Hard mixtures of experts
- Conditional computation for deep nets: sparse distributed gaters selecting combinatorial subsets of a deep net
- Challenges:
 - Back-prop through hard decisions
 - Gated architectures exploration
- Symmetry breaking to reduce ill-conditioning



Optimization & Underfitting

- On large datasets, major obstacle is underfitting
- Marginal utility of wider MLPs decreases quickly below memorization baseline



- Nb. of hidden units
- Current limitations: local minima or ill-conditioning?
- Adaptive learning rates and stochastic 2nd order methods
- Conditional comp. & sparse gradients \rightarrow better conditioning: when some gradients are 0, many cross-derivatives are also 0.

Inference & Sampling

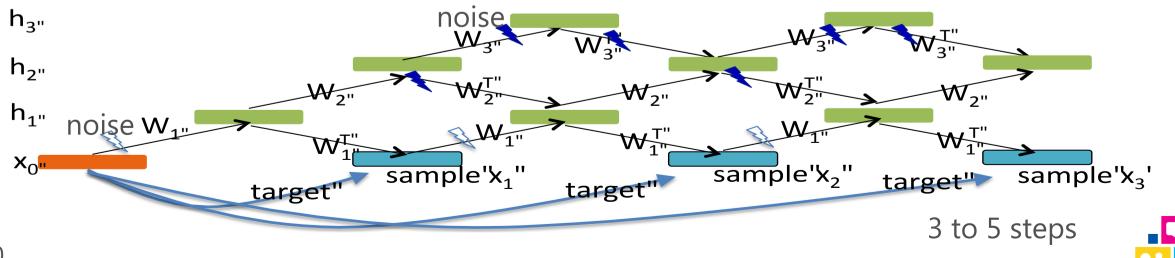
- Currently for unsupervised learning & structured output models
- P(h|x) intractable because of many important modes
- MAP, Variational, MCMC approximations limited to 1 or few modes
- Approximate inference can hurt learning

(Kulesza & Pereira NIPS'2007)

• Mode mixing harder as training progresses (Bengio et al ICML 2013)

Learning Computational Graphs

- Deep Stochastic Generative Networks (GSNs) trainable by backprop (Bengio & Laufer, arxiv 1306.1091)
- Avoid any explicit latent variables whose marginalization is intractable, instead train a stochastic computational graph that generates the right {conditional} distribution.



GSN Experiments: Consecutive Samples

Filling-in the LHS

2.

2.

Q

ŝ **.** κ. Ľ. Ε. $\overline{\mathbf{a}}$ $\overline{\mathcal{O}}$ $\bar{\mathbf{D}}$ 6. 6. **C** R R

Ο D D

Conclusions

- Deep Learning & Representation Learning have matured
 - Int. Conf. on Learning Representation 2013 a huge success!
- Industrial strength applications in place (Google, Microsoft)

• Room for improvement:

- Scaling computation even more
- Better optimization
- Getting rid of intractable inference (in the works!)
- Coaxing the models into more disentangled abstractions
- Learning to reason from incrementally added facts

Merci! Questions?

LISA team:

