Creating Infinitely Adaptable Courseware

Zoran Popović
zoran@cs.washington.edu

Center for Game Science University of Washington

The Challenge

A new learning environment that creates inspired learners and world-class experts

Standard approach

Knowledge, Expert Principles

Student Instruction

Outcomes

Engaged Mastery

People

Engagement

Expertise, Knowledge

Discoveries, Education

+CaH Chaty
(1) $=$ mateshon

A Motrictions
A micshom

nature

CHEMISTRY
INMOTION

2mine
nature
biotechnology

Game developed experts

Prior knowledge of biochemistry

Data-driven Game Evolution
 refinement

Optimize for

Engagement and Mastery

Importance of Early Math

0

Games for

 Massive Data-gathering to Optimize Learning Pathways

Time

Time

Extrinsic Motivation:

 short term effect

 CPT
CLASS
CLASS2
CLASS
CLAST
CPT
MAS
CLASS5
CLASS1
CLASS2
CLASS3
CLASS4
CLASSS

GENERAL				
	+			$\begin{aligned} & \star \wedge \\ & \star \stackrel{\star}{\star} \end{aligned}$
B6	MG	LTG	GEN	GOLS

Long term engagement: Self-identification

Create an exam

Game designer levels

Specialized Pathways to Mastery

Infinitely Adaptable Courseware

Engaged Learning Platform

Courseware that optimizes for each learner by optimizing mastery and engagement

1-8 grade Math

PA6-1: Increasing Sequences

In an increasing sequence, each number is greater than the one before it.
Deborah wants to continue the number pattern:
She finds the difference
between the first two numbers:

She finds that the difference between the other numbers in the pattern is also 2 . So the pattern was made by adding 2 :

$$
8_{8}^{(2)} 8^{(2)}, 10^{(2)}, 12,1
$$

To continue the pattern, Deborah adds 2 to the last number in the sequence.

The final number in the pattern is 14:
6, 8, 10, 12,?

$$
6^{(2)}, 8,10,12, ?
$$

$$
{ }_{6}^{2}, 8_{8}^{2}, 10^{2}, 12,14
$$

1. Extend the following patterns. Start by finding the gap between the numbers.
a) 2

b) 1

d) 4

\qquad -
f)

\qquad
\qquad
\qquad
e)

h) $7,15,23$ \qquad _ .
g)

j)

PA6-5: Introduction to T-tables

Claude creates an increasing pattern with squares. He records the number of squares in each figure in a chart or T-table. He also records the number of squares he adds each time he makes a new figure:

Figure 1

Figure 2

Figure 3

Figure	\# of Squares
1	4
2	6
3	8

The number of squares in the figures are $4,6,8$,
Claude writes a rule for this number pattern:
RULE: Start at 4 and add 2 each time.

1. Claude makes other increasing patterns with squares.

How many squares does he add to make each new figure?
Write your answer in the circles provided. Then write a rule for the pattern:
a)

c) \begin{tabular}{|c|c|}

\hline Figure \& | Number of |
| :---: |
| Squares |

\hline 1 \& 1

\hline 2 \& 6

\hline 3 \& 11

\hline
\end{tabular}

Rule:
Rule:

d)

e)

Figure	Number of Squares

f)

PA6-6: T-tables

1. Count the number of line segments (lines that join pairs of dots) in each set of figures by marking each line segment as you count, as shown in the example: HINT: Count around the outside of the figure first:

a)

b)

c)

2. Continue the pattern below, then complete the chart:

Figure 1

Figure	Number of Line Segments
1	
2	
3	

a) How many line segments would Figure 4 have?
b) How many line segments would you need to make a figure with 5 triangles? \qquad
Continue the pattern below, then complete the chart:

Figure 1

Figure	Number of Triangles	Number of Line Segments

1. In each pattern below, the number of shaded blocks increases directly with the Figure Number. The total number of blocks, however, does not increase directly.
i) Write a rule for the number of shaded blocks in each sequence.
ii) Write a rule for the total number of blocks in each sequence.
a)

Figure 1

Figure 2

Figure 3
b)

Figure 1

Rule for the number of shaded blocks:
$2 \times$ Figure Number
Rule for the total number of blocks:
$2 \times$ Figure Number +1
c)

Rule for the number of shaded blocks:

Rule for the total number of blocks:

e) Rule for the number of shaded blocks:

Figure 1

Figure 2

Figure 3

Rule for the number of shaded blocks:

Rule for the total number of blocks: \longrightarrow

Rule for the total number of blocks:
\qquad

Rule for the number of shaded blocks:

Rule for the total number of blocks:
d)

-

NS3-9: Comparing and Ordering Numbers

Write the value of each digit. Then complete the sentence.
a)

b)

\qquad is greater than \qquad
\ldots is greater than \qquad

2 Circle the pair of digits that are different in each pair of numbers. Then write the greater number in the box.
a) 475
475
b) 360

c) 852
858
d) 136
126

Read the numbers from left to right.
Circle the first pair of digits you find that are different. Then write the greater number in the box.
a) 583
597
597
b) 629
654
e) 384 597
f) 906
904
\square
c) 576 603

d) 432
431

h) 238
221

g) 875 869

Circle the greater number
a) 111 or 311
b) 625 or 525
c) 321 or 721
d) 843 or 867
e) 480 or 412
f) 219 or 220

What can we do with traces?

- Rank their difficulty
- Analyze and compare progressions
- Synthesize new progressions

JUMP Math Singapore Math

Fraction Addition and Subtraction
Integer Addition

Problem

Addition: Standard

Addition: Counting On

Division: Repeated Subtraction Full

Division: Repeated Subtraction Remainder Only

Fraction Division

Fraction Multiplication

Fraction Reciprocal

Fraction Reduction: Successive Division

GCF: Euclid's Algorithm

GCF: Successive Division

GCF: Simultaneous Division

Matrix Addition

Matrix Subtraction

Matrix Scalar Multiplication

Pattern Continuation: Addition

Pattern Continuation: Subtraction

Pattern Continuation: Explicit Addition

Pattern Continuation: Explicit Subtraction

Prime Factorization

Subtraction: Counting Back

Conceptual Problems

- Algebra
- Geometry proofs
- Solving unknown problems

Complexity Grows Exponentialy

Personalized Algebra

In-vivo courseware adaptation

100,000 students

Reinforcement Learning

Goal: Maximize student's learning \& engagement

Scaffolding RL experiments

- Dwell Time (Time on Task)

A	A	A	B	B	B	$A B$	$A B$
A	B	$A B$	C	$A B C$	D	$A B C D$	

- Concept layering

..	$A B C$	D	$A D$	$B D$	$C D$	$A B D$	$A C D$
ABCD							
..$A B C$	D	$A B C D$	E	$A B C D E$			

- Concept Ordering

B	$B C$	A	$A B C$			
$A B$	C	$A B C$	F	D	$F D$	$A B C D F$

Key RL experiments

- Optimal hinting strategies
- Persistence and tenacity
- Long-term effects on domains
- Self-identification

The Zone Violation

Optimize for

- Long-term effects on learning
- Optimal assistive strategies
- Persistence and tenacity
- Self-identification

Engaged Learning

- Convert courseware into infinitely adaptable courseware
- Automatically adapt for each unique student
- Optimize for robust measures of engagement and mastery

Washington

 Algebra Challenge1.5 Hours of Play / Percent Acheived Mastery

Levels to Mastery

_- Maximum Levels to Mastery

Average Levels to Mastery

Minimum Levels to Mastery

Effort to Mastery

_Maximum Levels to Mastery
—Average Levels to Mastery
_Minimum Levels to Mastery

