
HotROD: Managing Grid Storage with On-Demand
Replication

Sriram Rao †1, Benjamin Reed ∗2, Adam Silberstein #3

†Microsoft Corp, USA
1 sriramra@microsoft.com

∗ Osmeta Inc, USA
2 br33d@yahoo.com
Trifacta Inc, USA

3 aesilberstein@yahoo.com

Abstract—Enterprises (such as, Yahoo!, LinkedIn, Facebook)
operate their own compute/storage infrastructure, which is effec-
tively a “private cloud”. The private cloud consists of multiple
clusters, each of which is managed independently. With HDFS,
whenever data is stored in the cluster, it is replicated within the
cluster for availability. Unfortunately, for datasets shared across
the enterprise, this leads to the problem of over-replication within
the private cloud. An analysis of Yahoo!’s HDFS usage suggests
that the disk space consumed due to replication of shared datasets
is substantial (viz., to the tune of PB’s of storage). New data sets
are typically popular and requested by many processing jobs
in (different) clusters. This demand is satisfied by copying the
dataset to each of the clusters. As data sets age, however, they get
used less and become cold. We then have the opposite problem
of having data overreplicated across clusters: each cluster has
enough replicas to recover from data loss locally, and the sum
total of replicas is high.

We address both the problems of initially replicating data
and cross cluster recovery in a private cloud setting using the
same technique: on-demand replication, which we refer to as Hot
Replication On-Demand (HotROD). By making files visible across
HDFS clusters, we let a cluster pull in remote replicas as needed,
both for initial replication and later recovery. We implemented
HotROD as an extension to a standard HDFS installation.

I. INTRODUCTION

Over the past few years, it has become increasingly com-
monplace across organizations ranging from Fortune-500 com-
panies (such as, Yahoo!, LinkedIn, Facebook) to venture-
capital funded startups (such as, Quantcast) to build and
operate their own compute and storage infrastructure. A typical
mode of operation is to begin by constructing a single cluster
and then expanding the operations to include multiple clusters,
many of which are within the same datacenter. Effectively,
these organization operate a cloud-based infrastructure some
of which is for their own private use.

Data sharing within an enterprise cloud is fairly common.
These companies collect massive amounts of data (viz., on the
order of Petabytes) which is usually pre-processed and then
shared across various business units within the organization.
In what follows, based on our experiences from the setting at
Yahoo!1, we highlight the issues related to managing shared

1Work done at Yahoo! Research

datasets in a private cloud setting.
Yahoo! has vast amounts of data and a large number

of processing jobs, both production and experimental, that
continuously churn through this data. All of this data is spread
across tens of large clusters, comprising thousands of servers.
This scale necessitates we use software such as Hadoop [6], the
open source implementation of Map/Reduce [2], and Pig [5]
to manage the processing and storage resources of our servers
and data.

Hadoop’s distributed file system (HDFS) [9] achieves effec-
tive utilization of processing and network resources by moving
processing to data. Data replication in HDFS provides both
failure tolerance and multiple locations for the scheduling of
data processing.

For a single Hadoop cluster, Hadoop’s basic policies work
well. We, however, have multiple clusters across multiple data
centers which can be effectively viewed as a private cloud.
Multiple clusters bring rise to two specific problems. First,
common datasets must be replicated across all of the clusters
so that jobs using the data can process it locally. Second,
datasets eventually grow cold, and we end up with more
replicas across all clusters than are needed for recovery.

Replicating data across clusters can be time consuming and
error prone. Tools such as distcp run Hadoop jobs to copy
data between clusters, but even when using parallelism such
data movement is inherently limited by the bandwidth between
clusters. Operators must monitor the replication process to
make sure it completes successfully. Because of the inherent
time it takes to move data across network connections, failures
will happen and the transfers must be restarted.

As time passes, we face the opposite problem: overrepli-
cation of data. The data becomes old and fewer jobs use it
(we refer to this as cold data), and we no longer benefit from
having multiple replicas of the data. In some cases the data is
used so infrequently that we prefer to let the rare job pull the
data from a remote cluster.

The issue of overreplication is clearly manifest when we
look at the problem of the wasted storage capacity to store
more copies of cold data than are needed for recovery. We
currently have 13 petabytes of unique, unreplicated data across

NameNode

DataNode DataNode DataNode

Fig. 1. The basic architecture of HDFS.

our clusters. For recoverability data is usually replicated 2 or 3
times, and so 13PB should expand to 26-39PB. Instead we use
49.7PB of storage. Dropping to 3x replication globally would
save us over 13PB of storage. This savings increases as the
number of HDFS clusters increase.

In this paper we focus on the problem of replica manage-
ment for the case of a private cloud. We address both the prob-
lems of cross-cluster data replication and overreplication with
one simple mechanism: on-demand replication. We employ
a cross-cluster database that tracks shared datasets and their
replication. We implement on-demand replication in HDFS by
creating a storage node (ProxyDataNode) that proxies remote
data as if were stored locally.

With this approach we achieve almost instant accessibility
of cross-cluster data and allow the replication of cold shared
data to go to zero on individual clusters.

II. BACKGROUND

This work is done in the context of HDFS. This distributed
file system uses a classic master/worker based architecture,
shown in Figure 1, in which a single master server, called
the NameNode, manages the file system meta-data, while the
workers, the DataNodes, manage the file system data.

DataNodes manage chunks of data called blocks, usually
on the order of 128M in size. Blocks are identified using a
64-bit numbers, referred to as BlockIds. DataNodes report to
the NameNode which blocks they have.

The NameNode manages both the file system namespace
and block replication. The NameNode has an in-memory
database that maps filenames to a list of BlockIds. It also
manages an in-memory database that maps BlockIds to the
DataNodes that store those blocks. If the NameNode detects
that a given block is underreplicated, it tells a DataNode
that still has a copy of that block to send a copy to another
DataNode that does not.

The most common way to access data in HDFS is using
the Hadoop Map/Reduce engine. Map/Reduce jobs get the
location of the blocks of the files they are processing. They
then divide up the processing tasks on block boundaries and
try to schedule each task to run on a machines holding the
task’s block.

At Yahoo! we have multiple HDFS clusters. This is partly
for geographic limitations and partly to avoid NameNode
scalability limitations, which prevent a cluster from growing
past 4000 nodes. Each of our clusters is effectively owned
by a different business unit and cluster resources are propor-
tionately shared across users/projects within that unit. Finally,
each cluster is run completely independently.

There are many common datasets that are copied onto each
HDFS cluster, generally under the /data subdirectory. After the
data is copied into one HDFS cluster the distcp tool is used
to copy data between clusters. This tool runs a Map/Reduce
job that splits up file between a set of Map only processes that
copy over their assigned portion of a file.

III. DESIGN REQUIREMENTS

As outlined in Section I, the objective of our work is to
enable efficient sharing of common datasets across HDFS
clusters that comprise an enterprise’s (private) cloud. The
design assumptions for a solution are as follows:
• Shared datasets are immutable.
• Shared datasets have controlled creation/deletion policies.
• From a deployment perspective, the software solution

should not require any modification to the HDFS Na-
meNode code.

Hadoop in general has immutable datasets. The early re-
leases of HDFS did not have the ability to append to a file. The
shared datasets we are targeting with this work are datasets
collected from various sources, such as the stream of user
events as they visit our sites, which are never changed after
they are loaded onto HDFS. Each dataset that is loaded has
a timestamp encoded in the name, so a name will always
correspond to the same immutable data.

Because these shared datasets are managed by a data group
rather than created in an adhoc fashion, the life cycle of the
data is different from that of normally generated file. The
data is generally loaded onto the clusters and provisioned
specifically for sharing. Thus, the data is not randomly created
or deleted, but rather replicated across clusters according to a
data sharing policy and then removed from all the clusters
according to the policy. An example of such a removal policy
is legal requirements for retention. For example, data older
than 13 months must be deleted 2 to comply with privacy
policies.

To get some deployment experience with HotROD, we also
want to avoid modifications to the HDFS NameNode. This is
a central component of the system that is difficult to upgrade
and bugs could take down the cluster. So we restricted our
modifications to the HDFS client code that can be distributed
with our jobs. We also added new components to the system
that transparently fit into existing infrastructure.

In addition to the above requirements, there were two main
data management goals we had:
• Near instant access to data;

2Laws and policies vary according to location and time, so this is merely
an example of a policy, it is not meant to represent Yahoo!’s policy.

• Minimize over-replication of cold data;
As we noted earlier our current method of replicating new
shared data to HDFS clusters use distcp. This tool has a high
latency since a dataset is not available until the copy is com-
pleted. Failures during the copy requires manual intervention
to restart the copy and additional data movement. Instead we
would like the data to be available nearly instantly and actual
the data transfer to happen in the backgroud. Any transfer
problems should be automatically resolved and restarted from
the last sucessful transfer point.

As we noted in Section I we have a large amount of
cold that is over-replicated according to our replication policy
(default of three copies) if we take into account the copies
on the different HDFS clusters. We found that the data goes
cold rather quickly (viz., typically a week after the data is
generated), thus it would be desirable to aggressively reduce
the number of copies of a given block to the minimum level
required for data availability.

IV. HOTROD

HotROD adds a new concept to HDFS called On-demand
Replication. We allow file blocks to be “copied” to another
cluster by reference rather than value. This allows an HDFS
cluster to know about data blocks and know how to retrieve
them before actually moving the data across the wire.

The advantage of this approach is that references to blocks
in other clusters can be added very quickly leading to ex-
tremely low latency file copies. This approach also allows a
cluster to have only references to cold blocks that are stored
in other cluster and to better use the storage capacity of the
cluster.

To make on-demand replication work we need to add
additional components to the system. Figure 2 shows how two
HDFS clusters are connected by these components. The first
component, the meta-data server, maps local BlockIds to cross-
cluster references and ensure that we have sufficient copies of
blocks across the different replicas to tolerate failures.

We also add a second new system component to HDFS,
called the ProxyDataNode, that allows the remote referenced
blocks to integrate nicely into the existing data model of
HDFS. These ProxyDataNodes do not store data blocks them-
selves, but instead advertise remote BlockIds that can be
retrieved from remote clusters to the NameNode.

There are two processes that are used to administer
HotROD. The first, called the populator, puts files from an
HDFS cluster into a shared pool. The second, called spoofer,
creates a reference to files from a shared pool in an HDFS
cluster.

A. ProxyDataNode

We add a new component to HDFS called a ProxyDataNode
which acts like a normal DataNode except that it does not
have any data instead it reports to the NameNode that it has
blocks that it knows how to get from other clusters. To both
the NameNode and the HDFS client the ProxyDataNode looks
like a normal DataNode. When the client requests a block

TABLE I
THE SCHEMA FOR THE BLOCKS2PATHS TABLE.

Field Description
BlockId The proxied BlockId.
Path The file that the block is part of.
Offset The offset of the block in the file.
Size The size of the block.

TABLE II
THE SCHEMA FOR THE PATH2LOCATION TABLE.

Field Description
Path The name of the shared file.
Locations The clusters that have a copy of the file with

the number of replicas in the cluster.
Size The size of the file.

for the ProxyDataNode, the ProxyDataNode will retrieve the
block from the remote cluster to serve the client request.

The ProxyDataNode is driven by a meta-data table that maps
blocks to paths, called the Blocks2Paths tables. Table I shows
the schema for the Blocks2Paths table. When spoofer runs,
it creates files in the NameNode just as if it were creating
files normally: it allocates a name in the namespace and starts
requesting BlockIds to add data to the new file; however,
unlike a normal file creation, instead of creating the blocks on
a DataNode and filling them with data, we add the BlockIds
to a table that maps the BlockId to the path in the shared
pool with the offset into the file and have the ProxyDataNode
report to the NameNode the receipt of the BlockId.

The entire operation involves no movement, so the copy
is almost instantaneous. Of course, to process the data it
does need to be transferred from the remote location. If
the data is cold, this may be acceptable since there is a
chance that the data will never be processed again, but if
we expect the data to be used, we may want to initiate
a background copy to avoid any additional latency when a
processing job is run. This is generally the case when we are
copying new data onto a cluster. Fortunately, HDFS provides a
natural way to do this background copy. When spoofer initially
creates the files in the NameNode, it uses a replication factor
of one, which means that the NameNode will consider the
ProxyDataNodes as storing the single replica. If we simply
boost the replication factor to something higher than one, the
NameNode will instruct other DataNodes to create a replica
of the blocks from the ProxyDataNode. This replication will
happen automatically and in the background after the spoofer
has already completed. The spoofed files will be continuously
available as the background copy happens, so any clients that
try to access the data before the additional copies happen can
still access the data through the proxies.

B. Cross-cluster Meta-data

HotROD also has cross-cluster meta-data to track with
respect to which clusters have actual replicas of shared data.
When populater adds content to the shared data pool it also
starts tracking the location of that content. The Path2Location
table, whose schema is shown in Table II maps a given path

NameNode

DataNode DataNode

ProxyDataNode

NameNode

DataNodeDataNode

ProxyDataNode

Meta-data

Fig. 2. Two HDFS clusters that share data through ProxyDataNodes.

NameNode

ProxyDataNode

Meta-data

Spoofer 1) get file info2) create file
3) add block
7) close file

5) spoof blockid for
 file @ offset

6) Report block

4) map blockid
 to file @ offset

Fig. 3. The steps involved in spoofing a file.

to the clusters that have its data. The ProxyDataNode uses this
mapping to figure out which HDFS cluster to request the data
from for a given block.

The Path2Location table also helps track the number of
replicas in each cluster of a given path. If that data goes cold
then the number of replicas in that data can be decreased at
each HDFS cluster, sometimes to zero, as long as there are
enough replicas across all clusters to satisfy the fault tolerance
policy. Our default fault tolerance policy is to have at least
three replicas of a given piece of data.

C. Replicating files

The first step of replicating files is to populate the
Path2Location table using populator. This is a relatively
simple step that adds entries to the Path2Location table and
thus makes files available for sharing.

The process to spoof a file, using spoofer, is more com-
plicated. Figure IV-C shows the process. This process is run
on the target HDFS cluster. In steps 1 and 2 spoofer gets the
name and size of the file and asks the NameNode to create
the file.

Steps 3-6 are used to add blocks to the file. spoofer asks
the NameNode to add blocks to the newly created file and
tracks the mapping of the BlockIds to the offsets of the file in
the Blocks2Paths table. So these steps are run once for each
block of the file. After all the blocks have been added the file
is closed. Even though there are multiple steps to the process,
each step is light weight and does not move any actual data.

These steps correspond closely to normal HDFS file cre-
ation. The main difference is that steps 4 and 5 of a normal
HDFS file creation involve transferring data to the DataNode.

D. Handling ProxyDataNode failures

Whenever a ProxyDataNode fails, any of the blocks spoofed
by that proxy may become temporarily inaccessible. To make
the spoofed blocks re-accessible, a new ProxyDataNode is
started which then spoofs those blocks. The new ProxyDataN-
ode first uses the Path2Locations table to determine the set
of files it should spoof; it then uses the Blocks2Paths table
to determine the block id’s of the spoofed blocks. Finally, it
notifies the HDFS NameNode of the spoofed blocks. The data
is now accessible to end-users.

E. Implementation Details

For our prototype we want to use stock HDFS clients and
NameNode. We were able to accomplish our goal using the
design outlined above.

Since Map/Reduce tasks are not perfectly block aligned,
a given block is almost always referenced twice by a
Map/Reduce job. It also simplifies our implementation to pull
down full blocks and then serve them from a local store. Thus
our ProxyDataNodes do use local disk storage for this caching
of blocks that are served.

Our ProxyDataNodes report to the NameNode that they are
full. This will prevent the NameNode from trying to move
blocks to ProxyDataNodes during rebalancing or rereplication
of a block.

Our meta-data management is done using HBase [7].

V. EVALUATION

We implemented HotROD by modifying the Hadoop 0.20.2
distribution. This involved implementing (1) the ProxyDataN-
ode which satisfies a request for local block by retrieving the
appropriate content from the shared file, (2) the populator tool
which allows files to be shared, and (3) the spoofer tool which
allows shared files to be spoofed by the ProxyDataNode.

To evaluate our implementation of HotROD we emulate a
private cloud using two HDFS clusters comprised of 5 nodes
each: Cluster A contains shared files; Cluster B runs HDFS
datanodes as well as a configurable number of ProxyDataN-
odes; MapReduce jobs run on Cluster B to access the shared
data which then gets downloaded by a ProxyDataNode on-
demand. In either cluster, each server has one Xeon dual-core

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40 45 50

Jo
b
 T

im
e

(s
ec

)

Input Size (GB)

HotROD
Native

Fig. 4. Change in job execution time as the job’s input size changes

2.1GHz processor, 4GB of RAM, gigabit ethernet, and two
1TB disks. The two clusters are within the same datacenter.

For MapReduce jobs, HotROD only affects the run-time
of map tasks whenever their input has to be downloaded
from a remote cluster. Therefore, to study the performance
of HotROD for the map-phase of a MapReduce computation,
we implemented MBench, which is a map-only job: Each map
task reads its input and writes out the output to local HDFS.
Using MBench, we perform 3 sets of experiments to measure:
(1) with a single ProxyDataNode, change in job running time
as the amount of data that has be read from remote cluster
varies, (2) change in job running time as we vary the number
of ProxyDataNodes, and (3) with multiple ProxyDataNodes,
change in job running time as the percentage of blocks read
from remote cluster varies.

Varying amount of remote data In this experiment, there
are four ProxyDataNodes in Cluster B. As noted earlier, the
proxy advertises to the HDFS namenode that the proxy has a
copy of all the blocks of all the shared files. Figure 4 shows
the results of the experiment. In the graph, we show two sets
of results: (1) Native when all data for a MapReduce is
available on the local HDFS, and (2) HotROD when every
block of a shared file has to be retrieved from the remote
HDFS by the ProxyDataNode. As the job input size increases
from 1GB to 50GB, the job run-time with both Native and
HotROD increases linearly as expected. The graph also shows
that the rate of increase in job execution time with HotROD is
much higher than Native. This is because of the limitations
of a single ProxyDataNode—the rate at which data can be
downloaded by the ProxyDataNode is limited by the machine’s
NIC. Despite this limitation, the MBench runs to completion
with HotROD and is within 1.5 to 2x the run-time of Native.

Varying number of ProxyDataNodes In this experiment,
we vary the number of ProxyDataNodes from 1 to 4; we fix
the input size for MBench to 10GB. When multiple proxy
datanodes are employed, to avoid the same block from being
downloaded multiple times by different proxies, the blocks of
a shared file are partitioned amongst the proxy datanodes. The
proxy datanode responsible for a block advertises that block
to the HDFS namenode. Figure 5 shows the results of our
experiments. As expected, having additional proxy datanodes
improves job running time since multiple proxy datanodes can

 0

 100

 200

 300

 400

 500

 600

 700

 1 1.5 2 2.5 3 3.5 4

Jo
b
 T

im
e
 (

se
c
)

Num Proxies

HotROD

Fig. 5. Varying the number of ProxyDataNodes for a given input size of
10GB.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 20 40 60 80 100
Jo

b
 T

im
e
 (

se
c
)

Percent Blocks Lost

HotROD

Fig. 6. With 4 ProxyDataNodes and a job input of 10GB, variation in job
execution time as the percentage of blocks that must be recovered remotely
changes.

concurrently download missing blocks. In our test cluster, as
the number of proxy datanodes is increased, the running time
of MBench decreases from 650 seconds to 400 seconds.

Varying percentage of remote data In this experiment,
we fix the number of ProxyDataNodes to 4; we also fix the
input size for MBench to 10GB. We vary the percentage of
blocks that have be read from the remote cluster (from 0% to
100%). Note that, when the percentage of blocks to be read
from the remote cluster 0%, it corresponds to the case where
all data is available locally; analogously, when percentage of
blocks to be read from the remote cluster 100%, it corresponds
to the case where all data has to be read from the remote
cluster. Figure 6 shows the results of the experiments. For a
given input size, as expected, the job run-time increases with
the increase in percentage of blocks that have be read from
the remote cluster. However the rate of increase is not linear.
This is because we have multiple proxy datanodes that can
concurrently download the missing data.

VI. LIMITATIONS

By ruling out making changes to the HDFS NameNode we
found that there were some limitation to what we can do.
While the limitations do not prevent us from addressing our
use cases, in the future there are changes to the NameNode
that we can make to improve performance and functionality.

The approach we use for HotROD really leverages the
assumption that the shared data will have the same name
across all clusters. For our target scenarios this is a valid
assumption and works in practice; however, it would be nice

accomodate different names for files as well as dealing with
replication at the block level rather than the file level. This
would allow us to lower replication of common blocks of
different files, and allow us to do block-level deduplication.
The problem is that the block garbage collection is based on
files that reference a block. To implement this solution well,
we would need to indicate to the NameNode that some blocks
will be garbage collected and managed by our global meta-
data manager.

Restricting ourselves to immutable files also limits the appli-
cability of our solution. If we had the block based replication
management mentioned above, we observed that we could
use copy-on-write [8] to allow shared files to be changed.
To implement copy-on-write we would have to involve the
NameNode. Making this change was hard to motivate since
we did not have production requirements for this feature and
would require rather invasive changes to the NameNode.

Another limitation is that the life cycle of the datasets has to
be managed in a manner different from non-shared datasets.
If a user deletes a shared file from a cluster, it affects the
dataset replication of all the clusters. For example, if we have
a cold file that is replicated across 7 clusters, there will be
three clusters that will actually contain the data. If the files
are deleted from those clusters at the same time, the data will
be lost. This situation could be avoided if we could indicate
to NameNode that those files or blocks are managed by an
outside process.

Finally, the NameNode could make better data access deci-
sions if it know that a DataNode was actually a ProxyDataN-
ode. Since the NameNode cannot distinguish a DataNode from
a ProxyDataNode we had to lie about space usage to make sure
that the NameNode does not try to manage the blocks on the
ProxyDataNode, such as move a block from a DataNode to a
ProxyDataNode. We also do note want the NameNode to tell
the client to access data from a ProxyDataNode if the data
is available at a normal DataNode. Adding information about
ProxyDataNodes and policies with respect to ProxyDataNodes
would be a minor change to the NameNode.

VII. RELATED WORK

As we mentioned earlier, the current way to replication files
across the grid is using distcp. This tool finishes only after
all the data is moved, so it has a high latency and will fail
if there is a problem with the data transfer. HotROD only
sets up the references, so it has very low latency, and the
data transfers happen in the background. While data transfer
is happening the blocks are still accessible on demand. Any
transient transfer problems will eventually get resolved in the
background without operator involvement.

DiskReduce [4], used erasure codes with cold data to reduce
the space needed to be able to recover data in case of a replica
loss. Facebook [10] uses this work in production. This work
was done in the context of a single HDFS cluster. It does not
take advantage of replicas in other clusters, so it doesn’t allow
the number of replicas in a file to go to zero. It could be used
together with HotROD to reduce even the number of cross-data

center replicas needed. For example, one data center could use
erasure codes to be able to recover from two failures using a
data overhead of less than 100% and the others could have
zero replicas.

On-demand migration for databases in cloud settings has
been recently studied [1], [3]. Similar in spirit to HotROD,
these systems focus on “pull-based” approaches, where a
reference to the data being migrated is first created on a new
machine; data serving on the new machine can be started
before the entire database is migrated and data pages are
fetched on-demand. Furthermore, these systems also have to
address mutable datasets—the data being migrated is still
mutable on the old machine. However, HotROD addresses
a simpler problem in that the shared data is immutable and
hence, leads to a simpler implementation which is also readily
deployable.

VIII. CONCLUSIONS

We have found that the concept of On-Demand replication
fits nicely into the design of HDFS. We were able to add it
with few modifications to the core HDFS code. The resulting
system simplifies data sharing and replica management in an
enterprise’s private cloud. In particular, HotROD allows for
instant access to data across clusters and it allows for proper
replication of cold data across clusters. HotROD accomplishes
both of these tasks using the same simple mechanism of
proxying remote references using the ProxyDataNode. It is
especially interesting that the same mechanism is used to
accomplish both tasks because in some sense the tasks are
exact opposites of each other: the first task replicates new (and
thus hot data) to all the clusters, and the second tasks removes
replicas of cold data from clusters as long as a minimum
replication factor is maintain across the enterprise’s cloud.

Our work was motivated by the use case from Yahoo!.
Any organization with a private cloud comprising of multiple
HDFS clusters with shared data can benefit from HotROD.
By carefully managing replicated datasets in an automated
manner, HotROD enables enterprises to reduce expenses (both,
capital expenditure and operating expenditure) for running
their private cloud infrastructure.

REFERENCES

[1] S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi. Albatross:
Lightweight elasticity in shared storage databases for the cloud using
live data migration. Proc. of the VLDB Endowment, 4(8), 2011.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of Operating Systems Design and
Implementation (OSDI), 2004.

[3] A. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr: Live
migration in shared nothing databases for elastic cloud platforms. In
Proceedings of the 2011 International Conference on Management of
Data, SIGMOD. ACM, 2011.

[4] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson. Diskreduce: Raid for
data-intensive scalable computing. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage, PDSW ’09, pages 6–10, New
York, NY, USA, 2009. ACM.

[5] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a High-
Level Dataflow System on top of Map-Reduce: The Pig Experience.
Proc. of the VLDB Endowment, 2(2):1414–1425, 2009.

[6] Apache Hadoop. http://hadoop.apache.org/.

[7] Apache Hbase. http://hbase.apache.org/.
[8] R. F. Rashid and G. G. Robertson. Accent: A communication oriented

network operating system kernel. SIGOPS Oper. Syst. Rev., 15(5):64–75,
Dec. 1981.

[9] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), MSST ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[10] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu. Data warehousing and analytics infrastructure
at facebook. In Proceedings of the 2010 International Conference on
Management of data, SIGMOD ’10, pages 1013–1020, New York, NY,
USA, 2010. ACM.

