
1090 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 5, MAY 2013

Improving Statistical Machine Translation Using
Bayesian Word Alignment and Gibbs Sampling

Coşkun Mermer, Murat Saraçlar, Member, IEEE, and Ruhi Sarikaya, Senior Member, IEEE

Abstract—We present a Bayesian approach to word alignment
inference in IBM Models 1 and 2. In the original approach, word
translation probabilities (i.e., model parameters) are estimated
using the expectation-maximization (EM) algorithm. In the pro-
posed approach, they are random variables with a prior and are
integrated out during inference. We use Gibbs sampling to infer
the word alignment posteriors. The inferred word alignments
are compared against EM and variational Bayes (VB) inference
in terms of their end-to-end translation performance on several
language pairs and types of corpora up to 15 million sentence
pairs. We show that Bayesian inference outperforms both EM and
VB in the majority of test cases. Further analysis reveals that the
proposed method effectively addresses the high-fertility rare word
problem in EM and unaligned rare word problem in VB, achieves
higher agreement and vocabulary coverage rates than both, and
leads to smaller phrase tables.

Index Terms—Bayesian methods, Gibbs sampling, statistical
machine translation (SMT), word alignment.

I. INTRODUCTION

W ORD alignment is a crucial early step in the training
pipeline of most statistical machine translation (SMT)

systems [1]. Whether the employed models are phrase-based
or tree-based, they use the estimated word alignments for con-
straining the set of candidates in phrase or grammar rule ex-
traction [2]–[4]. As such, the coverage and the accuracy of the
learned phrase/rule translation models are strongly correlated
with those of the word alignment. Given a sentence-aligned par-
allel corpus, the goal of the word alignment is to identify the
mapping between the source and target words in parallel sen-
tences. Since word alignment information is usually not avail-
able during corpus generation and human annotation is costly,
the task of word alignment is considered as an unsupervised
learning problem.
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State-of-the-art word alignment models, such as IBMModels
[5], hidden Markov model (HMM) [6], and the jointly-trained
symmetric HMM [7], contain a large number of parameters
(such as word translation, transition, and fertility probabilities)
that need be estimated in addition to the desired alignment
variables. The common method of inference in such models
is expectation-maximization (EM) [8] or an approximation to
EM when exact EM is intractable. The EM algorithm finds
the value of parameters that maximizes the likelihood of the
observed variables. However, with many parameters to be
estimated without any prior, EM tends to explain the training
data by overfitting the parameters. A well-documented example
of overfitting in EM-estimated word alignments is the case of
rare words, where some rare words act as “garbage collectors”
aligning to excessively many words on the other side of the
sentence pair [9]–[11]. Moreover, EM is generally prone to
getting stuck in a local maximum of the likelihood. Finally,
EM is based on the assumption that there is one fixed value
of parameters that explains the data, i.e., EM gives a point
estimate.
We propose1 a Bayesian approach in which we utilize a

prior distribution on the parameters. The alignment probabil-
ities are inferred by integrating over all possible parameter
values. We treat the word translation probabilities as multino-
mial-distributed random variables with a sparse Dirichlet prior.
Inference is performed via Gibbs sampling, which samples
the posterior alignment distribution. We compare the EM and
Bayesian alignments on the case of IBM Models 1 and 2.
The inferred alignments are evaluated in terms of end-to-end
translation performance on various language pairs and corpora.
The remainder of this paper is organized as follows: The

related literature is reviewed in Section II. The proposed model
and the inference algorithm are presented in Section III. The
experiments are described and their results are presented in
Section IV. A detailed analysis of the results and various
aspects of the proposed method are provided in Section V,
followed by the conclusions in Section VI.

II. RELATED WORK

Problems with the standard EM estimation of IBM Model 1
were pointed out by Moore [11]. A number of heuristic changes
to the estimation procedure, such as smoothing the parameter
estimates, were shown to reduce the alignment error rate, but
the effects on translation performance were not reported. Zhao
and Xing [13] address the data sparsity issue using symmetric
Dirichlet priors in parameter estimation and they use variational
EM to find the maximum a posteriori (MAP) solution. Vaswani

1Part of this work was presented at a conference [12].
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et al. [14] encourage sparsity in the translation model by placing
an prior on the parameters and then optimize for the MAP
objective.
Zhao and Gildea [15] use sampling in their proposed fertility

extensions to IBMModel 1 and HMM, but they do not place any
prior on the parameters. Their inference method is stochastic
EM (also known as Monte Carlo EM), a maximum-likelihood
technique in which sampling is used to approximate the ex-
pected counts in the E-step. Even though they report substan-
tial reductions in the alignment error rate, the translation per-
formance measured in BLEU does not improve.
Bayesian modeling and inference have recently been applied

to several unsupervised learning problems in natural language
processing such as part-of-speech tagging [16], [17], word seg-
mentation [18], [19], grammar extraction [20] and finite-state
transducer training [21] as well as other tasks in SMT such as
synchronous grammar induction [22] and learning phrase align-
ments directly [23].
Word alignment learning problem was addressed jointly with

segmentation learning by Xu et al. [24], Nguyen et al. [25],
and Chung and Gildea [26]. As in this paper, they treat word
translation probabilities as random variables (with an associ-
ated prior distribution). Both [24] and [25] place nonparametric
priors (also known as cache models) on the parameters. Sim-
ilar to our work, this enables integration over the prior distribu-
tion. In [24], a Dirichlet Process prior is placed on IBM Model
1 word translation probabilities. In [25], a Pitman-Yor Process
prior is placed on word translation probabilities in a proposed
bag-of-words translation model that is similar to IBM Model
1. Both studies utilize Gibbs sampling for inference. However,
alignment distributions are not sampled from the true posteriors
but instead are updated either by running GIZA++ [24] or using
a “local-best” maximization search [25]. On the other hand, a
sparse Dirichlet prior on the multinomial parameters is used in
[26] to prevent overfitting.
Bayesian word alignment with Dirichlet priors was also in-

vestigated in a recent study using variational Bayes (VB) [27].
VB is a Bayesian inference method which is sometimes pre-
ferred over Gibbs sampling due to its relatively lower compu-
tational cost and scalability. However, VB inference approxi-
mates the model by assuming independence between the hidden
variables and the parameters. To evaluate the effect of this ap-
proximation, we also present and analyze the experimental re-
sults obtained using VB (Sections IV-C and V-A).
This paper extends the initial work in [12] in several aspects:

1) Extension to inference in Bayesian IBM Model 2, 2) com-
plete derivation of the Gibbs sampler for both Models 1 and
2, 3) performance comparison with VB, 4) improved perfor-
mance for both baseline and proposed systems via alignment
combination, 5) reporting the average and standard deviation
over 10 MERT runs for each BLEU score, 6) experimental re-
sults on two to three orders of magnitude larger training sets,
7) results with morphologically-segmented corpora, 8) several
new metrics, including AER, for intrinsic and extrinsic evalua-
tion of alignments obtained using different methods, 9) analysis
of the effect of sampling settings, and 10) convergence behavior
of both EM and Gibbs sampling.

III. BAYESIAN INFERENCE OF WORD ALIGNMENTS

We first recap the IBMModel 1 presented in [5] and establish
the notation used in this paper. Given a parallel corpus
of sentence pairs, let denote the -th sentence in ,
and let denote the -th ( -th) word among a total of
words in 2. We also hypothesize an imaginary “null” word
to account for any unaligned words in . Also let and

denote the size of the respective vocabularies.
We associate with each a hidden alignment variable

whose value ranges over [0, ]. The set of alignments for a sen-
tence (corpus) is denoted by . The model parameters con-
sist of a table of word translation probabilities such
that . Since is conditioned on , we refer to
as the “source” word (sentence) and as the “target” word
(sentence)3.
The conditional distribution of the Model 1 variables given

parameters is expressed by the following generative model:

(1)

(2)

The two unknowns and are estimated using the EM al-
gorithm, which finds the value of that maximizes the likeli-
hood of the observed variables and according to the model.
Once the value of is known, the probability of any alignment
becomes straightforward to compute.
In the following derivation of our proposed model, we treat

the unknown as a random variable. Following the Bayesian
approach, we assume a prior distribution on and infer the
distribution of by integrating over all values of .

A. Canonical Representation of Model 1

We first convert the token-based expression in (2) into a type-
based one as (with now a random variable):

(3)

(4)

where in (3) the count variable denotes the number of
times the source word type is aligned to the target word type
in the sentence pair , and in (4) .
This formulation exposes two properties of IBM Model 1

that facilitates the derivation of a Bayesian inference algorithm.
First, the parametrization on is in the canonical form of an

2Keeping in mind that , , , (and introduced later) are defined with
respect to the -th sentence, we drop the subscript for notational simplicity.
3Historically, the source and target designations were based on the translation

task, when the word alignment direction was dictated by the “noisy channel
model” to be the inverse of the translation direction. Today almost all SMT
systems using IBM models train alignments in both directions, decoupling the
alignment direction from that of translation and nullifying the justification of
the early nomenclature.
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exponential family distribution (as the inner-product of param-
eters and sufficient statistics ), which implies the
existence of a conjugate prior that simplifies calculation of the
posterior.
Second, the distribution in (4) depends on the variables ,
and only through a set of count variables . In other

words, the order of words within a sentence has no effect on the
likelihood, which is called exchangeability or a “bag of words”
model. This results in simplification of the terms when deriving
the Gibbs sampler.

B. Prior on Word Translation Probabilities

For each source word type , by definition
form the parameters of a multinomial distribution that governs
the distribution of the target words aligned to . Hence, the con-
ditional distribution of the -th target word in a sentence pair is
defined by:

Since the conjugate prior of multinomial is the Dirichlet distri-
bution, we choose:

where . Overall, are the
hyperparameters of the model. The mathematical expression for
the prior is provided in (13) in the Appendix.
We can encode our prior expectations for into the model

by suitably setting the values of . For example, we generally
expect the translation probability distribution of a given source
word type to be concentrated on one or a few target word types.
Setting allocates more prior weight to such sparse
distributions.

C. Inference by Gibbs Sampling

To infer the posterior distribution of the alignments
, we use Gibbs sampling [28], a stochastic

inference technique that produces random samples that con-
verge in distribution to the desired posterior. In general, for a
set of random variables , a Gibbs sampler iteratively
updates the variables one at a time by sampling its value
from the distribution , where the superscript
denotes the exclusion of the variable being sampled.
Before applying Gibbs sampling to our model in (4), since we

are only after , we integrate out the unknown using:

(5)

The remaining set of variables is , of which only
is unknown.
Starting from (5), the Gibbs sampling formula is found as (the

derivation steps are outlined in the Appendix):

(6)

Here, denotes the number of times the source word
type is aligned to the target word type in , not counting

TABLE I
ALIGNMENT INFERENCE ALGORITHM FOR BAYESIAN

IBM MODEL 1 USING GIBBS SAMPLING

the current alignment link between and . We can also
observe the effect of the prior, where the hyperparameters act
as pseudo-counts added to . Table I describes the com-
plete inference algorithm. In Step 1, can be initialized ar-
bitrarily. However, informed initializations, e.g., EM-estimated
alignments, can be used for faster convergence. Once the Gibbs
sampler is deemed to have converged after burn-in iterations,
we collect samples of to estimate the underlying distribu-
tion . To reduce correlation between these sam-
ples, a lag of iterations is introduced in-between. Thus the
algorithm is run for a total of iterations.
The phrase/rule extraction step requires as its input the most

probable alignment , which is also
called the Viterbi alignment. Since is a vector with a large
number of elements, we make the assumption that the most
frequent value for the vector can be approximated by the
vector consisting of the most frequent values for each element
. Hence, we select for each its most frequent value in the
collected samples as the Viterbi alignment.

D. Extension to IBM Model 2

IBM Model 1 assumes that all alignments are equally prob-
able, i.e., . In IBM Model 2 [5],
the alignment probability distribution for a given target
word at position depends on the quadruple . This de-
pendency is parametrized by a distortion parameter for each
quadruple such that

(7)

Note that Model 1 is a special case of Model 2 in which the
parameters are fixed at .
Different variants of Model 2 have been proposed to reduce

the number of parameters, e.g., by dropping dependence on
( [10]) or using relative distortion ( where

[6], also called “diagonal-oriented Model 2” [29]). In
the following, we used the latter parametrization; the derivation
for inference in the other variants would be similar.
Bayesian inference inModel 2 can be derived in an analogous

manner toModel 1. Treating the set of distortion parameters, de-
noted by , as a new random variable,
equations (2) and (4) can be adapted to Model 2 as:

(8)

(9)



MERMER et al.: IMPROVING STATISTICAL MACHINE TRANSLATION USING BAYESIAN WORD ALIGNMENT AND GIBBS SAMPLING 1093

where in (9) the count variable stores the number of times a
particular relative distortion occurs in .
Since form the parameters of a multinomial distribution on
(see (7)), we choose a Dirichlet prior on :

where are the distortion hyperparam-
eters. Integrating out the parameters and results in the fol-
lowing Gibbs sampling formula for Bayesian IBM Model 2:

(10)

where . A complete derivation is presented
in the Appendix. To infer the alignments under Model 2, the
only change needed in Table I is the use of (10) instead of (6) in
step 6.

IV. EXPERIMENTAL RESULTS

A. Setup

We evaluated the performance of the Bayesian word align-
ment via bi-directional translation experiments. We performed
the initial experiments and analyses on small data, then tested
the best performing baseline and proposed methods on large
data. Furthermore, we performed some of the side investigations
and compute-intensive experiments such as those concerning
the alignment combination schemes, morphological segmenta-
tion, convergence and the effect of sampling settings only on the
smallest of the datasets (Turkish English).
For Turkish English experiments, we used the

travel domain BTEC dataset [30] from the annual IWSLT eval-
uations [31] for training, the CSTAR 2003 test set for tuning,
and the IWSLT 2004 test set for testing. For Arabic English

, we used LDC2004T18 (news from years 2001-2004)
for training, subsets of the AFP portion of LDC2004T17 (news
from year 1998) for tuning and testing, and the AFP and Xinhua
subsets of the respective Gigaword corpora (LDC2007T07 and
LDC2007T40) for additional LM training. We filtered out sen-
tence pairs where either side contains more than 70 words for
Arabic English. All language models are 4-gram in the travel
domain experiments and 5-gram in the news domain experi-
ments with modified Kneser-Ney smoothing [32] and interpo-
lation. Table II shows the statistics of the data sets used in the
small-data experiments.
For each language pair, we obtained maximum-likelihood

word alignments using the EM implementation of GIZA++ [10]
and Bayesian alignments using the publicly available Gibbs
sampling (GS) implementation [33]. As sampling settings
(Section III-C), we used ; ; and for

and 8000 for . We chose identical symmetric
Dirichlet priors for all source words with
to obtain a sparse Dirichlet prior.
After alignments were obtained in both translation di-

rections, standard phrase-based SMT systems were trained
in both directions using Moses [34], SRILM [35], and

TABLE II
CORPUS STATISTICS FOR EACH LANGUAGE PAIR IN THE SMALL-DATA

EXPERIMENTS. T: TURKISH, E: ENGLISH, A: ARABIC

ZMERT [36] tools. The translations were evaluated using
the single-reference BLEU [37] metric. Alignments in both
directions were symmetrized using the default heuristic in
Moses (“grow-diag-final-and”). To account for the random
variability in minimum error-rate training (MERT) [38], we
report the mean and standard deviation of 10 MERT runs for
each evaluation.
We also investigated alignment combination, both within and

across alignment methods, to obtain the best possible perfor-
mance. For this purpose, we obtained three alignment samples
from each inference method while trying to capture as much
diversity as possible. For EM, we obtained alignments after 5,
20, and 80 iterations (denoted by EM-5, EM-20, and EM-80, re-
spectively). For GS, we ran three separate chains, two initialized
with the EM alignments (denoted by GS-5 and GS-80, respec-
tively), and to provide even more diversity, a third initialized
based on co-occurrence (denoted by GS-N): Each target word
was initially aligned to the source candidate that it co-occurred
with the most number of times in the entire parallel corpus.

B. Performance Comparison of EM and GS

Fig. 1 compares the BLEU scores of SMT systems trained
with individual EM- and GS-inferred alignments. In all cases,
using GS alignments that are initialized with the alignments
from EM leads to higher BLEU scores on average than using
the EM alignments directly. In Section V-A, we investigate the
intrinsic differences between the EM- and GS-inferred align-
ments that lead to the improved translation performance.
Alignment combination across methods (heterogeneous com-

bination) has been previously shown [39], [40] to improve the
translation performance over individual alignments. Moreover,
alignment combination within a method (homogeneous combi-
nation) can also cope with random variation (in GS) or overfit-
ting (in EM).
We implemented alignment combination by concatenating

the individual sets of alignments, meanwhile replicating the
training corpus, and training the SMT system otherwise the
same way. We experimented with various alignment combi-
nation schemes and found that combining the EM alignments
from 5, 20, and 80 iterations is in general better than the
individual alignments, with a similar conclusion for combining
the three GS alignments described in Section IV-A. Further
combination of these two combinations for a total of six align-
ments sometimes improved the performance even more. So we
present the results in this section using these three combination
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Fig. 1. Translation performance of word alignments obtained by expectation-
maximization (EM), Gibbs sampling initialized with EM (GS) and variational
Bayes (VB): EM, GS, VB.

Fig. 2. Translation performance of EM, Gibbs sampling, and variational Bayes
after applying alignment combination within and across methods: EM(Co),
GS(Co), EM(Co)+GS(Co), VB(Co), and EM(Co)+VB(Co). The same

BLEU scale is used as in Fig. 1.

schemes (denoted by EM(Co), GS(Co), and EM(Co)+GS(Co),
respectively, in Fig. 2).
We observe from Fig. 2 that GS(Co) outperforms EM(Co)

on average, both by itself and in combination with EM(Co),
in most cases by a significant margin. However, which scheme
(GS(Co) or EM(Co)+GS(Co)) is the best seems to depend on
the language pair and/or dataset.

C. Comparison with Variational Bayes

Using the publicly available software [41], we experimented
with variational Bayes (VB) inference using similar alignment
combination schemes: combination of three VB-inferred align-
ments after 5, 20, and 80 Model 1 iterations; and further com-
bination of it with the three EM-inferred alignments above (de-
noted by VB(Co) and EM(Co)+VB(Co), respectively).
The translation performance of the individual VB alignments

in Fig. 1 shows that, compared to EM, VB achieves higher

Fig. 3. Results for the morphologically-segmented Turkish-English corpus.
All BLEU scores are computed at the word level.

BLEU scores in but lower scores in . On the
other hand, GS outperforms VB in all cases but one in Fig. 1.
As for the performance after alignment combination, Fig. 2
shows that, for all translation directions GS(Co) leads to higher
average BLEU scores compared to VB(Co), both with and
without further combination with EM(Co). The performance of
VB(Co) relative to EM(Co) is similar to the case for individual
alignments (better in , worse in ). However,
EM(Co)+VB(Co) outperforms or performs as good as EM in
all cases, demonstrating that Bayesian word alignment can be
beneficial even with a fast, yet approximate inference method.
To explain the particularly low performance of VB in Arabic
English, we inspected the alignments inferred by EM, GS,

and VB. We found that while VB with sparse Dirichlet prior
avoids excessive alignment fertilities, it leaves many rare source
words unaligned. For example, the percentage of unaligned
source singletons for EM-5, GS-5, and VB-5 in the English
Arabic (Arabic English) alignments are 27%, 16%, and 69%
(44%, 34%, and 71%), respectively. We believe the higher rate
of unaligned singletons can lead to poorer training set coverage
and lower translation performance (Section V-A).

D. Experiments With Morphologically Segmented Corpus

Morphological preprocessing is a common practice in
modern SMT systems dealing with morphologically un-
matched language pairs. Thus, as a side investigation, we also
experimented with morphological segmentation in the
corpus to see its effect on the performance of our proposed
method (morphological segmentation is also applied in the
large-data experiments presented in Section IV-E). We
used the morphological analyzer by Oflazer [42] to segment
the Turkish words into lexical morphemes. As a result, the
vocabulary size decreased to 5.6k (from 18k, cf. Table II),
with 2.4k of them singletons. The out-of-vocabulary rate in the
Turkish tuning and test sets decreased from 5.2% and 6.1%
to 0.9% and 0.8%, respectively. The BLEU scores were still
computed at the word level in the case of English Turkish
translation by joining the morphemes in the output.
The results in Fig. 3 show that the advantage of GS over EM

still holds in the morphologically-segmented condition in both
translation directions, both individually and with combination.
In addition, comparing the BLEU scores with those in Figs. 1
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TABLE III
CORPUS STATISTICS FOR EACH LANGUAGE PAIR IN THE LARGE-DATA
EXPERIMENTS. A: ARABIC, E: ENGLISH, C: CZECH, G: GERMAN

and 2 confirms the previous studies that applying morpholog-
ical segmentation improves the translation performance signif-
icantly, especially in the morphologically poorer direction (i.e.,
Turkish English).

E. Experiments on Larger Datasets

The scalability of the alignment inference methods was
also tested on publicly available large datasets (Table III).
We used the 8-million sentence Multi-UN corpus [43] for
Arabic English translation experiments. As is common in
most state-of-the-art systems for this language pair, we per-
formed morphological segmentation on the Arabic side for
the best performance (we used the MADA+TOKAN tool
[44]). Note that after morphological segmentation, Arabic no
longer exhibits the vocabulary characteristics of a morpho-
logically-rich language (Table III). We set aside the last 100k
sentences of the corpus and randomly extracted the tuning
and test sets from this subset. The English side of the parallel
corpus was used for language model training.
We used the WMT 2012 [45] datasets for Czech Eng-

lish and German English translation
experiments. The training data consisted of the Eu-
roparl, news commentary, and the 15-million sentence CzEng
1.0 [46] corpora while the training data consisted of
only the Europarl and news commentary corpora. WMT 2011
and 2012 news testsets were used for tuning and testing, re-
spectively. TheWMT 2012monolingual news corpora covering
years 2007–2011 were used for language model training.
In all large-data experiments, sentences longer than 70 words

were excluded from translation model training. Gibbs sampling
settings of (B, M, L)=(1000, 100, 1) were used. All language
models were 4-gram. To obtain the best possible baseline, we
also utilized techniques that we had previously observed to im-
prove performance on similar corpora, such as lattice sampling
[47] and search in random directions [48] during MERT and
minimum Bayes risk decoding [49]. All other experimental set-
tings (e.g., 10 MERT runs etc.) were identical to the small-data
experiments (Section IV-A).
To conform with the majority of previous research and evalu-

ations in these language pairs, we trained SMT systems in both
directions for the WMT 2012 language pairs and in the Arabic
English direction for the Multi-UN task. For the two largest

datasets ( and ), we also experimented with
1-million sentence versions for faster development experiments
and to provide an intermediate data size setting.
The results are presented in Figs. 4–6. For translation to Eng-

lish, Gibbs sampling improves over EM for all five corpora, the

Fig. 4. Arabic English BLEU and TER scores of various alignment
methods: EM(Co), GS(Co), EM(Co)+GS(Co), and VB(Co).

Fig. 5. Czech English BLEU scores of various alignment methods:
EM(Co), GS(Co), EM(Co)+GS(Co), and VB(Co).

Fig. 6. German English BLEU scores of various alignment methods:
EM(Co), GS(Co), EM(Co)+GS(Co), and VB(Co).

largest improvement achieved by GS(Co)+EM(Co) in
(0.5 to 0.7 BLEU mean difference) and by GS(Co) in
and (0.3 to 0.5 BLUE mean difference). However, for
translation from English ( and ), we do not ob-
serve a consistent improvement over EM.
For the 1-million sentence task, we also report the

translation error rates (TERs) [50] (bottom row of Fig. 4). Ex-
cept for the comparison between GS(Co) and EM(Co)+GS(Co)
in the 1M-sentence setting, in all possible pair-wise compar-
isons between the alignment methods in both corpus settings,
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Fig. 7. Arabic English BLEU scores of various alignment combination
schemes in the 1M-sentence translation task.

TABLE IV
BLEU SCORES OF IBM MODEL 2 ALIGNMENT INFERENCE METHODS

ON THE 1M-SENTENCE ARABIC ENGLISH TRANSLATION

the method with the higher mean BLEU score also has the lower
mean TER score4.
In addition, we compared the performance of some of the

many possible alignment combination schemes (Fig. 7). Not
surprisingly, combination with EM(Co) helps both GS(Co) and
VB(Co), and the relative ranking of the latter two does not
change after combination with EM(Co). Furthermore, combi-
nation of GS(Co)+VB(Co) improves the performance slightly
over EM(Co)+GS(Co).

F. Bayesian Model 2 Results

We tested the IBM Model 2 Gibbs sampling algorithm on
the 1M-sentence subset of the Arabic-EnglishMulti-UN corpus.
Unlike the case of translation parameters , there is no clear
language- and domain-independent knowledge of how the dis-
tortion parameters (the distribution of ) should look like.
Therefore, we assumed that all distortion distributions are a
priori equally probable, which corresponds to setting the dis-
tortion hyperparameters for all . We also collapsed the
counts for distortions larger in magnitude than 5, resulting in 11
total distortion count variables , as
done in [7].
We compared the translation performance of the EM- and

GS-inferred Model 2 alignments. Both methods are initialized
with the same EM-5 alignments (i.e., 5 iterations of Model 1
EM). Model 2 EM is run for 5 iterations. Model 2 GS is es-
timated with , and . The results
are shown in Table IV. Bayesian inference improves the mean
BLUE score by 0.2 BLEU. Further improvement could be pos-
sible by alignment combination within and across methods, as
done in Section IV-B.

V. ANALYSIS AND DISCUSSION

A. Analysis of Inferred Alignments

In order to explain the BLEU score improvements achieved
by the Bayesian alignment approach and to characterize the dif-

4BLEU was used as the error metric for optimization in MERT.

Fig. 8. Distribution of alignment fertilities for source language tokens.

ferences between the alignments obtained by various methods,
we analyzed the alignments in Fig. 1 using several intrinsic and
extrinsic evaluation metrics. As representative alignments from
each method, we selected EM-5, VB-5, and GS-5.
1) Fertility Distributions: Fertility of a source word is de-

fined as the number of target words aligned to it. In general, we
expect the fertility values close to the word token ratio between
the languages to be the most frequent and high fertility values to
be rare. Fig. 8 shows the fertility distributions in alignments ob-
tained from different methods.We can observe the “garbage col-
lecting” effect in the long tails of the EM-estimated alignments.
For example, in English-Arabic Model 1 alignment using EM,
1.2% of the English source tokens are aligned with nine or more
Arabic target words, corresponding to 22.3k total occurrences or
about 0.4 occurrence per sentence. In all alignment tasks, both
Bayesian methods result in fewer high-fertility alignments com-
pared to EM.Among Bayesian inference techniques, GS is more
effective than VB in avoiding high fertilities.
2) Alignment Dictionary Size: Reducing the number of

unique alignment pairs has been proposed as an objective for
word alignment [51], [52]: it was observed during manual
alignment experiments that humans try to find the alignment
with the most compact “alignment dictionary” (a vocabulary of
unique source-target word pairs) as possible. Fig. 9(a) shows
that both GS and VB explain the training data using a signifi-
cantly smaller alignment-pair vocabulary compared to EM.
3) Singleton Fertilities: The average alignment fertility of

source singletons was proposed as an intrinsic evaluation metric
in [40]. We expect lower values to correlate with better align-
ments. However, a value of zero could be achieved by leaving
all singletons unaligned, which is clearly not desirable. There-
fore, we refine the definition of this metric to calculate the av-
erage over aligned singletons only. The minimum value thus
attainable is one. Fig. 9(b) shows that both Bayesian methods
significantly reduce singleton fertilities.
The average fertility of aligned singletons by itself is not suf-

ficient to accurately assess an alignment since unaligned single-
tons are not represented. Hence, we also report the percentage of
unaligned singletons in Fig. 9(c). GS has the lowest unaligned
singleton rate amongModel 1 inferencemethods. An interesting



MERMER et al.: IMPROVING STATISTICAL MACHINE TRANSLATION USING BAYESIAN WORD ALIGNMENT AND GIBBS SAMPLING 1097

Fig. 9. Intrinsic and extrinsic evaluation of alignments in the small data experiments. (a) Alignment dictionary size normalized by the average of source and target
vocabulary sizes. (b) Average alignment fertility of aligned singletons. (c) Percentage of unaligned singletons. (d) Number of symmetric alignments normalized by
the average of source and target tokens. (e) Percentage of training set vocabulary covered by single-word phrases in the phrase table. (f) Decode-time rate of input
words that are in the training vocabulary but without a translation in the phrase table. (g) Phrase table size normalized by the average of source and target tokens.

observation is that, while EM-estimated alignments suffer from
rare words being assigned high fertilities (Fig. 9(b)), VB suffers
from a high percentage of the rare words (e.g., about 70% of sin-
gletons in ) being left unaligned, resulting in lower trans-
lation performance (Section IV-C). Our analysis agrees with the
findings of Guzman et al. [53] that unaligned words in an align-
ment results in lower-quality phrase tables.
4) Alignment Points in Agreement: Since the IBM alignment

models are one(source)-to-many(target), switching the source
and target languages usually result in a different set of align-
ment links (or points in an alignmentmatrix). The intersection of
the two sets consists of high-precision alignment points where
both alignment models agree [7]. Since the number of alignment
points in each direction is constant (equal to the number of target
words), increasing precision at the expense of recall by pre-
dicting fewer alignment points is not applicable in these models.
Therefore higher agreement rate implies not only higher preci-
sion but higher recall as well. Fig. 9(d) shows that GS has the
highest alignment agreement rate among the alignment methods
for both language pairs.
5) Training Set Vocabulary Coverage by Phrase Table: We

can also evaluate the inferred alignments extrinsically, e.g., by
evaluating the SMT systems trained using those alignments. A
desirable feature in a SMT system is to have as high vocab-
ulary coverage as possible. This metric is highly sensitive to
the performance of an alignment algorithm on infrequent words
since they represent the majority of the vocabulary of a corpus
(see Table II). Fig. 9(e) shows that alignment by GS leads to the
best vocabulary coverage in all four alignment tasks. Note that
word types that appear in the phrase table only as part of larger
phrase(s) are excluded from this metric, since such words are
practically out-of-vocabulary (OOV) except only in those spe-
cific contexts.

TABLE V
ALIGNMENT ERROR RATE (%) OF THE UNI-DIRECTIONAL AND

SYMMETRIZED CZECH-ENGLISH ALIGNMENTS

Poor training set vocabulary coverage results in some
non-OOV words being treated by the system as OOV, either
dropping them from the output or leaving them untranslated.
Such pseudo-OOV words further degrade the translation per-
formance in addition to the OOV words. Fig. 9(f) shows that
GS alignments lead to the lowest rate of pseudo-OOV words.
6) Phrase Table Size: In most machine translation appli-

cations, having a small model size is valuable, e.g., to reduce
the memory requirement or the start-up/access time. Alignment
methods can affect the induced phrase table sizes. Fig. 9(g) com-
pares the number of phrase pairs in the SMT systems trained
by different alignment methods. In the task, where
model size is of more concern compared to the smaller
task, GS results in significantly smaller phrase tables. This

result is particularly remarkable since it means that a system
using GS-inferred alignments achieves more vocabulary cov-
erage (Section V-A-5) and higher BLEU scores (Section IV-B)
with a smaller model size. Thanks to a larger intersection during
alignment symmetrization (Fig. 9(d)), GS-based phrase tables
contain a higher number of single-word phrase pairs (Fig. 9(e)).
Moreover, fewer unaligned words after symmetrization lead to
fewer poor-quality long phrase pairs [53].
7) Alignment Error Rate: Table V shows the alignment error

rates (AERs) [10] obtained in the alignment tasks
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Fig. 10. BLEU scores obtained by different sampling settings (Section III-C).
Averages and standard deviations are over 8 separate Gibbs chains. (a)

and . (b) . (a) Changing B; (b) changing M and L.

using a publicly available 515-sentence manually-aligned refer-
ence set [54]. The Bayesian methods achieve better AERs than
EM in both alignment directions (denoted by “EC” and “CE”).
Contrary to the ranking of the methods according to BLEU
(Fig. 5), VB achieves the best AER, which also holds true after
symmetrization (denoted by “Sym.”). Furthermore, the sym-
metrized GS-5 alignment has the worst AER in the 1M-sentence
experiment. These discrepancies support earlier findings by sev-
eral others that AER is generally not a good predictor of BLEU
performance [55].
As a final remark, in Table V EM-5 enjoys a larger amount

of reduction in AER via symmetrization compared to GS-5,
which suggests the possibility that the default alignment sym-
metrization heuristic inMoses (“grow-diag-final-and”) has been
fine-tuned for the default EM-based alignments, and thus other
symmetrization/phrase extraction methods might work better
for the GS- and VB-based alignments. For example, Bayesian
alignment inference could be complemented with a probabilistic
model of phrase extraction, e.g. [23], which is left as a future
work.

B. Effect of Sampling Settings

We investigated the effect of changing the sampling settings
, , and (Section III-C) on GS-N alignments. To

account for the variability due to the randomness of the sam-
pling process, we present in Fig. 10 the mean and the standard
deviation of BLEU scores over eight separate chains with dif-
ferent random seeds. At each B value shown, eight separate
SMT systems were trained. These eight runs each comprise a
separate MERT run, thus error bars in Fig. 10 also include the
variation due to MERT.
Fig. 10(a) shows the effect of changing with

and . In this experiment, the sampler converges after
roughly a few thousand iterations. Comparing the BLEU scores
in Fig. 10(a) to those of the three EM-initialized samplers in
Fig. 1, where , for the same language pair suggests that
running more iterations of Gibbs sampling can compensate for
poor initializations, or equivalently, initializing with EM align-
ments can provide a head start in the convergence of the Gibbs
chain.
Fig. 10(b) compares the effect of different read-out schemes.

The settings of both (1000,1) and (100,10) collect sam-
ples over the same 1000-sample interval. We can deduce from

Fig. 11. BLEU scores of alignments estimated at different iterations. Left: EM,
middle: samples from the Gibbs chain, right: GS viterbi estimates with

, . A separate SMT system is trained at each shown data point on the
plots. Note the difference in x-axis scales.

their comparison in Fig. 10(b) that including or discarding the
intermediate samples does not make a significant difference. On
the other hand, comparing the settings (100,1) and (1000,1) con-
firms our intuition that increasing the number of samples
leads to more reliable (smaller variance) estimates of the Viterbi
alignments.

C. Convergence and Variance Between Iterations

Fig. 11 compares the change in BLEU scores as iterations
progress during both EM and GS. Each dot in the graphs cor-
respond to a separate SMT system trained and optimized from
the alignment estimated at that iteration. In the figure, there are
two main sources of BLEU score variation between the itera-
tions: updated alignments at each iteration and randomness due
to MERT.
Comparing the BLEU scores of sample and Viterbi align-

ments obtained by GS, we observe smaller variance and higher
average BLEU scores using Viterbi alignments. Compared to
EM, GS achieves higher average BLEU scores, albeit with a
larger amount of variation between iterations due to the random
nature of sampling. To reduce the variation, a larger value of
(Section V-B) and/or a combination of alignments at different
iterations can be used.

D. Computational Complexity

The computational complexity of the Gibbs sampling algo-
rithm in Table I is linear in the number of sentences and roughly
quadratic in the average number of words per sentence. Run-
ning Gibbs sampling (Model 1) on the largest of our datasets,
the 15.4M-sentence Czech-English corpus, takes on average 33
seconds per iteration (steps 3–7 in Table I) using 24 threads on
a 3.47GHz Intel Xeon X5690.5 In the case of Model 2, the av-
erage time per Gibbs sampling iteration increases to 48 seconds.
For comparison, a Model 1 EM iteration on the same hardware

5Our multi-threaded implementation is actually an approximation of Gibbs
sampling, where the counts and are not updated until the end of an
iteration. Similar approximations have been done in scaling Gibbs sampling
to large datasets using multiple parallel processors, e.g., in [56]. All large-data
experiments reported in Sections IV-E and IV-F have been performed using this
multi-threaded implementation.
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and number of threads using MGIZA [57] takes 326 seconds on
average (excluding pre-processing and initializations)6.

VI. CONCLUSION

We developed a Gibbs sampling-based word alignment
inference method for Bayesian IBM Models 1 and 2 and
showed that it compares favorably to EM estimation in terms
of translation BLEU scores. We observe the largest improve-
ment when data is sparse, e.g., in the cases of smaller corpora
and/or more morphological complexity. The proposed method
successfully overcomes the well-known “garbage collection”
problem of rare words in EM-estimated current models and
learns a compact, sparse word translation distribution with more
training vocabulary coverage. We also found Gibbs sampling to
perform better than variational Bayes inference, which leaves
a substantially high portion of source singletons unaligned.
Additionally, we utilized alignment combination techniques
to further improve the performance and robustness. Future
research avenues include estimation of the hyperparameters
from data/auxiliary sources and utilization of the proposed
algorithm in either initialization or inference of more advanced
alignment models.

APPENDIX
DERIVATION OF THE GIBBS SAMPLING FORMULA

In this section, we describe the derivation of the Gibbs sam-
pler for IBMModel 2 given in (10). Since IBMModel 1 is a spe-
cial case of Model 2 where is fixed (Section III-D), the deriva-
tion of the sampler for Model 1 given in (6) would follow ex-
actly the same steps, except that there would be no prior
and the related terms.

A. The Dirichlet Priors

We choose a simple prior for the parameters where each
has an independent7 Dirichlet prior with hyperparameters
(Section III-B):

(11)

where and

(12)

Hence, the complete prior for is given by:

(13)

6In the case of Model 2, for which multi-threading is not implemented in
MGIZA, an EM iteration took 1960 seconds on average.
7While the prior knowledge about could have been possibly expressed as a

more refined, correlated distribution; we show that a simple, independent prior
is also successful in biasing the parameters away from flat distributions.

Similarly, from Section III-D:

(14)

We further define the priors for the translation and distortion
parameters to be independent so that .

B. The Complete Distribution

Since we are only interested in inferring , we integrate out
the unknowns and in (9) using (13) and (14):

(15)

(16)

(17)

As a result of choosing conjugate priors, the integrands with
respect to and in (17) can be recognized to be in the same
form as the priors (i.e., Dirichlet distributions) with new sets of
parameters and , respectively, where we have
defined and .
Since the integral of a probability distribution is equal to 1, we
obtain the closed-form expression:

(18)

C. Gibbs Sampler Derivation

Given the complete distribution in (18), the Gibbs sampling
formula (Section III-C) can be derived as:

(19)

(20)

(21)

(22)
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(23)

(24)

(25)

(26)

where (20) follows since is independent of ,
in (21) we used (18), in (23) we used (12) and grouped similar
factors, in (25) each fraction is simplified using the property
of the gamma function , and in (26) the
proportionality comes from the omission of the last term in (25),
which is constant for all values of .
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