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Abstract
Live programming allows programmers to edit the code of a run-
ning program and immediately see the effect of the code changes.
This tightening of the traditional edit-compile-run cycle reduces the
cognitive gap between program code and execution, improving the
learning experience of beginning programmers while boosting the
productivity of seasoned ones. Unfortunately, live programming is
difficult to realize in practice as imperative languages lack well-
defined abstraction boundaries that make live programming respon-
sive or its feedback comprehensible.

This paper enables live programming for user interface pro-
gramming by cleanly separating the rendering and non-rendering
aspects of a UI program, allowing the display to be refreshed on a
code change without restarting the program. A type and effect sys-
tem formalizes this separation and provides an evaluation model
that incorporates the code update step. By putting live program-
ming on a more formal footing, we hope to enable critical and tech-
nical discussion of live programming systems.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]; D.2.2 [Design Tools and Techniques]: User Inter-
faces; D.2.6 [Programming Environments]

General Terms Languages, Human Factors

Keywords Live Programming, Graphical User Interface

1. Introduction
One major difficulty in writing programs is that a programmer must
effectively simulate parts of the execution of the program in his
mind during development [14, 19]. If we can narrow the gap be-
tween the program text and seeing how the program behaves, pro-
ductivity during code editing and debugging could be improved
substantially. This gap takes two forms: 1) the time gap between
making an edit and seeing the effect of the change is dominated
by rebuilding the program, executing the program and guiding it
(possibly with manual input) to the place where the edit can be
observed. Speeding up this “edit-compile-run” cycle can narrow
the time gap, but the re-execution part remains critical and cannot
be narrowed by improvements in development tools. 2) the per-
ception gap is the cognitive distance between looking at the code
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and understanding what the code will do when it is run. Address-
ing this perception gap requires an environment where code can
be edited continuously with uninterrupted “live” feedback, show-
ing the consequences of those edits. This so-called live program-
ming [11] enables more fluid problem solving compared to today’s
common “edit-compile-debug” style of programming.

Most people are familiar with live programming in the context
of spreadsheets, where data and formulae can be edited and the ef-
fect of those edits be seen immediately. Besides spreadsheets, lan-
guages based on mostly declarative programming models, includ-
ing many visual languages like Pure Data [20], already provide a
live programming experience, but these languages are not expres-
sive enough for more complex general purpose programs [6].

Grafting live programming features onto existing mainstream
imperative programming languages such as Java or C# is daunting.
Currently, such languages support fix-and-continue features that al-
low a restricted set of code changes to a live program and then
continue execution. However, fix-and-continue alone does not pro-
vide a live programming experience. Live programming requires
at a minimum some state snapshot, some re-execution of changed
code, and some re-displaying of results. Exactly what data to save,
what code to re-execute, and which parts of the UI to maintain is
difficult to answer in a general purpose language. A natural start-
ing point is re-execution of a trace of the entire program to the
current point. However, apart from the cost of trace capturing and
re-execution, traces are problematic since code changes can cause
the re-execution to diverge from the previous trace. In light of this
observation, it seems difficult to establish a precise technical defi-
nition of live programming to start with.

This paper tackles the question of live programming in the
domain of user interface (UI) programming by proposing a formal
model, where a program consists of both code and persistent data.
The program is event based and viewed as continually executing. A
code change is simply one possible transition of the program in our
model. The benefit of formalizing such a language and execution
model is that it unambiguously answers questions about what state
is saved, what state is rebuilt, and what code is re-executed as a
result of a code change. Our language is imperative and has an
explicit imperative way of building up user-interface state in the
form of nested boxes, akin to TeX and HTML, on a stack of pages.
We separate both the UI state from ordinary state, and the render
code that builds UI state from ordinary code. As a result, upon code
changes, we throw away the UI state, and then rebuild the UI state
for the currently displayed page using the separated render code for
that page.

Beyond achieving live feedback, our model also reduces the
perceptive gap between code and the UI components rendered on
a page by the use of a boxed construct that builds a UI element
as a side effect. Using syntactic nesting and arbitrary code such



Figure 1. The two pages of the mortgage calculator example; a start page is on the left; a detail page is on the right.

as loops, conditionals, and procedure abstraction, UI construction
is very expressive and not limited to a specialized declarative sub-
language. We make the following contributions:

– We propose a programming model where UI state is built using
procedural code, but maintained separate from the normal state
of the program. UI’s are organized as page stacks with opera-
tions to push a new page or pop the current page.

– We put live programming on a formal footing by providing an
execution model in which one can argue what parts of the code
are re-executed upon a program change.

– Although live programming has recently been demonstrated [10,
27] to much fanfare, designing and building these systems is so
far a black art. We report on our experience implementing and
using our programming model in TouchDevelop [1, 25], a de-
vice independent browser-based programming language and
development environment.

Section 2 further motivates live programming while Section 3 in-
troduces how our language and environment supports it. Section 4
describes and formalizes our implementation, providing insights on
how to design and build future systems. Section 5 presents our ex-
perience with our implementation and a discussion of the trade-offs
made in its construction. Section 6 presents related work while Sec-
tion 7 concludes.

2. Motivation
We now explain the motivation for live programming with a dis-
cussion of how it improves on existing programming practice. For
this discussion, we use as a running example a simple program to
browse local listings of houses for sale, and calculate mortgage
payments and an amortization schedule. On startup, the applica-
tion issues a web request to obtain listings that are displayed on the
program’s start page (Figure 1, left). When the user taps an entry,
the program navigates to a detail page that displays the monthly
mortgage payment and an amortization schedule (Figure 1, right).
The user can modify the term of the mortgage and the annual per-
centage rate by tapping the corresponding box.

Suppose that the programmer is not satisfied with the UI and
wishes to make the following fixes and improvements: (I1) adjust
various margins to improve the visual appearance; (I2) print the
monthly balance in properly formatted dollars and cents; and (I3)
highlight every fifth line of the amortization schedule with a differ-

ent color. If the code were written in a conventional language and
programming environment, a programmer implementing the three
improvements (I1-I3) would have to iterate the following steps:

1. Stop the program execution.

2. Discover and navigate to the code location that needs to be
fixed.

3. Edit the code to change the behavior.

4. Compile the code, and restart the program.

5. Navigate to the appropriate UI context by waiting for the list to
download, and clicking on an entry.

6. Inspect the display to verify the fix.

7. If not satisfied, continue with step 1.

This cycle is time-consuming and tiring since temporal delays
drain programmer concentration; e.g., consider the waiting for code
compilation or the list to download, navigating to the correct UI
screen, and, while debugging, remembering procedure names and
the call graph to retrieve relevant code. Hancock [11] compares this
way of programming to the activity of an archer: “you aim, shoot,
string another arrow, carefully correct the aim, shoot again, and so
on.” This productivity drain is particularly harmful when dealing
with design properties that require many iterations in practice, such
as margins, font sizes, or colors.

Conventional programming can currently be made more fluid in
a couple of ways. First, a programmer could use a read-eval-print
loop (REPL) to quickly experiment with code statements, such as
monthly interest rate printing, on a command line. However, using
a REPL precludes debugging the UI directly, and each feature must
be developed as a command-line computation. Second, many IDEs
for languages such as LISP [23], Smalltalk [9], Java, and C# support
a “fix-and-continue” feature where the programmer can modify
their code without restarting the debugging process. Unfortunately,
fix-and-continue often does not result in responsive feedback: for
the common “retained” UI where a program builds and modifies
a tree of widget objects to be rendered, changing the code that
initially builds this widget tree is meaningless as that code has
already executed and will not execute again!

If editing and debugging a program were to occur simultane-
ously, the programmer could make an adjustment to interest rate
printing, observe immediately what this change produces, and then



Figure 2. Code edited in the right code view is continuously type-checked, compiled, and executed, where its behavior is instantly visible in the left live
view. Selecting a box in the left live view (highlighted red outline) causes the corresponding boxed statement to be selected in the right code view, and vice
versa.

quickly make another edit to adjust the formatting based on that ob-
servation. Although parts of the program must be re-executed, the
application and UI state of the program must be maintained so that
the programmer can focus on editing and observing. Hancock [11]
compares live programming to using a water hose in contrast to
archery: “as we adjust which way the hose is pointed, the stream
of water from us toward the target reflects back as an uninterrupted
stream of information about the consequences of our aim.”

Live programming has long been supported by many visual pro-
gramming languages; e.g., a program in PureData [20] is expressed
as a data flow graph that is continuously executing while the user
is adding nodes and edges in this graph. Such visual languages re-
alize live programming with inexpressive declarative programming
models of simplified control flow constructs and heavily encapsu-
lated state. For example, editing a PureData program simply causes
re-execution of its data flow graph where any state encapsulated in
a node is easily preserved.

Unfortunately, a large class of programs, including our running
example, cannot easily be rewritten using existing declarative live
visual languages given their inexpressive programming models. On
the other hand, building an IDE that can support live program-
ming for a more expressive language like C# is technically daunt-
ing given their support for complex control flow and imperative
state. Many programming environments for conventional languages
do offer a limited live experience by separating declarative style
declarations from the imperative code that generates content; e.g.,
HTML and cascading style sheets (CSS) allow designers to change
box structure and stylistic properties of web pages and inspect the
result immediately while ignoring embedded Javascript code. This
live experience can handle aesthetic tweaks like the I1 improvement
in the list above, but unfortunately cannot support a wide variety of
program alterations, such as the I2 and I3 improvements.

As observed in [17], updating a UI based on changes in the
code is really not that different from updating the UI based on
model changes. The important question is how to ensure that the
view is up-to-date with respect to the model in the first place. The
widely used model-view-controller (MVC) pattern (pioneered in
[21]) requires the programmer to write code that reacts to model
changes and performs the corresponding updates to the view. If the
view is a complex function of the state, writing such code can be
challenging (in database systems, this is known as the view-update
problem), and it is questionable whether the programmer should be

bothered to perform such dangerous mental acrobatics. We adopt
a more straightforward solution: the programmer writes code that
directly specifies how the view is constructed from the model, and
just rerun this code whenever the model changes. We thus construct
a fresh view instead of updating the existing one, known as the
immediate vs. retained approach to GUI programming [18]. The
immediate approach naturally enables live programming, because
in response to a code change we can simply re-render the UI
with the new code applied to the program’s old state. The next
section describes how we leverage this technique to enable live
programming in our language.

3. Live Programming in TouchDevelop
We modify the TouchDevelop language [25] with programming
model changes that enable live UI programming in an enhanced
programming environment. The traditional edit-compile-run cycle
is tightened and enhanced via the following three features:

Live Editing. The program keeps running while the program-
mer edits their code. Our editor provides a split screen that
shows program execution on the left in the live view, and pro-
gram code being edited on the right in the code view (Figure 2).
All changes to UI-rendering code are immediately visible in
the live view because the program is continuously being type-
checked, compiled, and executed as the programmer edits.

UI-Code Navigation. The environment maintains navigable bi-
directional connections between rendered elements in the live
view and code that created these elements in the code view. If
the user taps a UI element, which we call a box, in the live
view, the editor on the right selects the boxed statement in the
code view that created the UI element (Figure 2). Likewise, if
the user selects a boxed statement in the code view, the corre-
sponding box (or boxes) is selected in the live view. Note that
a selected boxed statement appearing inside a loop corresponds
to multiple boxes in the display, which are collectively selected
in the live view (Figure 2).

Direct Manipulation. Combining both live editing and UI-
code navigation, the programmer can directly change the at-
tributes of a box in the live view, where the code view is updated
automatically to reflect these changes (known as direct manip-
ulation in [24]). For example, to insert a command to change



the size of a margin, the programmer can first select the cor-
responding box in the live view and then choose the margin
property from a button menu, which inserts (if not present) a
command in the code and positions the code cursor on the mar-
gin number. The programmer can then edit this number while
observing the result in the live view.

Although one may imagine an implementation that provides some
or all of these features without any changes to the programming
language, such as by using deterministic replay or program analy-
sis, we focus here on the programming language design rather than
heroic tool construction. Thus, our main contribution is to demon-
strate how to enable a simple and transparent implementation of a
live experience by specializing the programming model.

We take concepts from UI programming—event-based pro-
gramming, model-view separation, box-based layout, and page-
stack navigation—and bake them directly into the execution model,
language, and type system. We first present an example-based de-
scription of this model; an in depth description of the programming
model appears in Section 4.

As usual, programmers can define global procedures and vari-
ables in TouchDevelop. In addition, programmers can now define
pages that take arguments like procedures (an idea we borrowed
from the Mobl programming language [13]). The TouchDevelop
code for the start page of our example program in Section 2 is
shown in Figure 3. Unlike procedures, pages have two bodies rather
than one:

– The initialization body is executed before the page is rendered
for the first time. It can update global variables, but it cannot
create any UI elements (boxes). The initialization body for the
startup page is the init code at the top in Figure 3. It downloads
the list of properties for sale and stores it in the variable listings.

– The render body is called to build or refresh the display with
interactive UI elements known as boxes; the render body in
Figure 3 defines two top-level vertically-stacked boxes1. The
first top-level box is the header. It contains two boxes of text
laid out horizontally. The second top-level box contains all
listings, where a box for each entry is created by iterating
over each listing stored in the listings variable. Note that, while
render code can read global variables, such as listings, it cannot
write global variables. The only effects of render code are the
construction of UI elements through boxed constructs.

In model-view terminology, the view of the program is thus de-
fined by the render body of a page, while the model is expressed
as the program’s global variables. The render body is re-executed
in response to changes to the model or to code called during ren-
dering. The latter guarantees that the live view is always consis-
tent with the current code. Since render code cannot modify global
variables, re-execution of a render body preserves the model (val-
ues of global variables). Initialization of the model must occur in
the initialization body, which is not automatically re-executed and
therefore cannot undergo live programming.

Boxes, which are TouchDevelop’s UI elements, are defined in
a page as nested boxed statements in much the same way that
DOM elements are defined in HTML. We refer to them collectively
as a page’s box tree. Unlike widgets in conventional UI libraries,
boxes are not first-class values in TouchDevelop, meaning code
does not manipulate the box tree structure directly. Instead, the
box tree is created as a “side effect” of the execution weaving in
and out of boxed statements. This execution is free to use loops,
arbitrary conditionals, and procedure calls. For example, the last
boxed statement in the code of Figure 3 is embedded in a for-loop,

1 Vertical stacking is the default.

Figure 3. The source code for the start page of our mortgage calculator
example, whose rendering was shown on the left of Figure 1 in Section 2.
Note on syntax: attributes and methods are accessed via → rather than
the typical .; global functions calls are preceded by .; and global variable
references are preceded by a square symbol.

producing a number of boxes equal to the number of items in the
listings variable. Additionally, it creates nested boxes by calling
the display listentry procedure. Boxes have attributes that include
layout parameters (margins, size, layout direction, font sizes), and
event handlers.

Event handlers can be registered on boxes using the on state-
ment to respond to interactions such as tapping or editing by the
user. To respond to an event, event handlers can modify global vari-
ables as model state, or perform page nagivation such as popping
the current page or pushing a new page. Handlers are not part of
render code and are never executed as part of rendering. The last
two lines in Figure 3 define a tapped event handler for each list-
ing entry. When activated, it pushes the “detail” page for that entry,
whose code is defined in Figure 4.

To maintain a clean separation between the model (global vari-
ables) and the view (boxes and render code) and to guarantee that
the view is a well-defined function of the model, we enforce the
following rules:

– The view is stateless: the display content (the box tree, includ-
ing attributes and handlers) cannot be read by the code, and
is discarded as soon as it becomes stale. Boxes are second class
values and so cannot be referenced (aka aliased) outside render-
ing code. Attributes of a box can only be modified by statements
inside the dynamic scope of the corresponding boxed statement.

– Render code can only read, but not modify global variables
(model state).

– Non-render code, such as initialization bodies and event han-
dlers, can modify global variables, but cannot produce boxes.

We show in Section 4 how we enforce these rules at compile time
using a type and effect system.



Figure 4. The source code of the detail page.

This separation between model and view is sufficient for achiev-
ing the live editing feature of TouchDevelop’s live programming
experience. Code-execution reification and direct manipulation in
turn are supported by TouchDevelop’s simple box model, which al-
lows the environment to easily keep track of code/box mappings.
Our enhanced programming model also helps to keep UI code con-
cise and readable. Although the code in Figure 3 looks a bit like
declarative code, it executes just like any other procedural code: it
is free to use loops to create multiple boxes, procedural abstraction
to keep the code organized, and conditional statements to customize
the display based on arbitrary conditions.

3.1 Example Improvements
We now discuss how the three improvements (I1–I3) described
at the beginning of Section 2 are applied by the programmer in
the live programming enhanced version of TouchDevelop. The
programmer starts the program and begins editing our example
program’s startpage, whose code is shown in Figure 3. The first
improvement made is to tweak the margins of the page (I1), which
is done through direct manipulation: one simply selects the box to
modify in the output display which brings up a menu on the code
side to change it.

When the programmer taps an entry on the start page, its detail
page opens (Figure 2) and the code view shows the code in Figure 4.
The monthly amortization table of this page is generated by calling
the display amortization function defined in Figure 5. Selecting one
of the “balance” cells in the detail page selects the corresponding
boxed statement in the code view (last boxed in Figure 5. Changing
this statement to:

boxed
var dollars := math→ floor(balance)
var cents := math→ round((balance - dollars) * 100) || ""
if cents→ count < 2 then

cents := "0" || cents
("balance: $" || dollars || "." || cents)→ post

will cause the balance to print correctly in dollars and cents, im-
plementing our I2 improvement; balance printing is updated for all
amortization table rows as soon as we complete the last line of this
modification.

The last improvement, high-lighting every fifth year of the
amortization in another color (I3), involves selecting an amorti-
zation row in in the live view, which causes the first top-level box

Figure 5. The procedure to display the amortization schedule.

of Figure 5 to be selected in the code view. The programmer can
add the code

if math→mod(i, 5) == 4 then
box→ set background(colors→ light blue)

to set the background of every fifth row to a light blue color. This
improvement demonstrates how our live programming improves
on UI editors that operate over purely declarative languages. E.g.,
HTML/CSS has special support for even-odd coloring, but cannot
go beyond that without the loss of live feedback.

4. Formal Model
In this section, we develop a formal operational model. This model
removes any ambiguities that are often a source of confusion in re-
active systems, where user actions (back button, box tapping, code
updates) are interleaved with program execution (event handling,
rendering). It also clarifies how we avoid some typical problems,
such as (1) the programmer unintentionally violating the view-
model separation, or (2) strange failures due to inconsistencies be-
tween various versions of the code. We start with the syntax for
writing code (Section 4.1). Then, we present an operational model
that defines how the system state (which includes the code) evolves
when handling user events, receiving code updates, or performing
execution steps (Section 4.2). Finally, we present and discuss our
type and effect system (Section 4.3). We do not formalize the visual
layout of box trees.

4.1 Expression Syntax
We show the expression syntax in Fig. 6. It is based on the simply
typed lambda calculus with the following additions:

– We use tuples to simplify the passing of multiple values to
functions and page code. Also, empty tuples serve as the unit
value, which we use heavily (since many of our operations are
imperative in nature).

– We use global variables (representing the model state) and
global function definitions (representing the current code). This



Identifiers:
g ::= ... global variables
f ::= ... global functions
p ::= start | ... page names
a ::= ontap | margin | ... box attributes
µ ::= p | r | s pure, render, state effect

Types:
τ ::= number (number)

| string (string)
| (τ1, ..., τn) (tuple), (n ≥ 0)

| τ
µ→ τ (function)

Environment:
Γ ::= ε

| Γ, x : τ (variable type)
| Γ, a : τ (attribute type)

Values:
v ::= n (number literal)

| s (string literal)
| x (variable)
| (v1, ..., vn) (tuple)
| λ(x : τ). e (lambda)

Expressions:
e ::= v (value)

| e1e2 (application)
| f (function)
| (e1, ..., en) (tuple), (n ≥ 0)
| e.n (projection), (n ≥ 1)
| g (read global)
| g := e (write global)
| push p e (push new page)
| pop (pop page)
| boxed e (create box)
| post e (post content)
| box.a := e (set box attribute)

Evaluation Contexts:
E ::= [] | E e | v E

| (v1, ..., vi, E, ej , ..., en) | E.n | g := E
| push p E | post E | box.a := E

Figure 6. The syntax of types, values, expressions, and evaluation con-
texts.

separation is important during code updates, when we need to
fix up the model state and purge stale code.

– We use page names to identify pages, and we support operations
for pushing a new page (passing a parameter) and popping the
current page.

– We support boxed statements to create a box, post e to add
content to the current box, and box.a := e to modify an
attribute of the current box.

Our calculus is intentionally kept concise even though our exam-
ples use a higher level syntax. Loops are expressible in our calcu-
lus via recursion through global functions, conditionals via lambda
abstractions and thunks. Handlers on boxes are simply attributes
that can be set to lambda expressions. These differences are purely
syntactic and no expressivity is lost.

System State:
σ ::= (C,D, S, P,Q)

System Components:
C ::= ε | C d (program code)
D ::= ⊥ | B (display)
S ::= ε | S[g 7→ v] (store)
P ::= ε | P (p, v) (page stack)
Q ::= ε | Q q (event queue)

Program Definitions:
d ::= global g : τ = v (global)

| fun f : τ is e (function)
| page p(τ) init e1 render e2 (page)

Box Content:
B ::= ε (empty)

| B v (leaf content)
| B [a = v] (box attribute)
| B 〈B〉 (nested box)

Events:
q ::= [exec v] (execute thunk)

| [push p v] (push new page)
| [pop] (pop page)

Figure 7. Definitions for system states, programs, box content, and
events.

4.2 System Model
Our operational model is defined by a set of system states and a
set of system transitions. A system state is a tuple (C,D, S, P,Q)
as defined in Fig. 7. Note that for simplicity, we represent our
data structures as sequences (with ε being the empty sequence),
though an actual implementation would use specialized data struc-
tures such as maps, sets, queues, and so on. The meaning of the
components is as follows:

– C represents the code (i.e. the program). It contains (1) global
variable definitions that specify a name, a type, and an ini-
tial value, (2) function definitions that specify a name, a func-
tion type, and a lambda expression, and (3) page definitions
that specify a page name, the type of the argument passed to
the page on construction, and two functions to respectively be
called on initialization and rendering. To save space, we write
C(p) = (fi, fr) as a shorter form for
(page p(τ) init fi render fr) ∈ C.

– D represents what is currently displayed to the user. It contains
either box content B (recursively defined as a sequence of
layout attributes, values, and nested boxes), or the special value
⊥ to indicate that the display is stale and needs to be refreshed.

– S represents the store (i.e. the values of global variables). We
represent S as a sequence of key-value pairs [g 7→ v]; the right-
most occurrence of a key g defines its current value, denoted
S(g).

– P represents the page stack. It is a sequence of pairs (p, v)
where p is a page identifier and v is the argument value that
was supplied when the page was created. We add and remove
entries at the end of the sequence.

– Q represents the event queue. It contains three kinds of events:
[exec v], [push p x], [pop]. We enqueue by adding elements



Pure execution steps:

(EP-FUN)
(fun f : τ is e) ∈ C

(C, S,E[f ])→p (C, S,E[e])

(EP-APP)
(C, S,E[λ(x : τ).e) v])→p (C, S,E[e[v/x]])

(EP-TUPLE)
((C, S,E[(v1, ..., vm).n])→p (C, S,E[vn])

(EP-GLOBAL-1)
S(g) = v

((C, S,E[g])→p (C, S,E[v])

(EP-GLOBAL-2)
g /∈ domS global g : τ = v ∈ C

((C, S,E[g])→p (C, S,E[v])

Execution steps for standard mode:

(ES-PURE)
(C, S, e)→p (C, S, e′)

(C, S,Q, e)→s (C, S,Q, e′)

(ES-ASSIGN)
(C, S,Q,E[g := v])→s (C, S[g 7→ v], Q,E[()])

(ES-PUSH)
(C, S,Q,E[push p v])→s (C, S, [push p v] Q,E[()])

(ES-POP)
(C, S,Q,E[pop])→s (C, S, [pop] Q,E[()])

Execution steps for render mode:

(ER-PURE)
(C, S, e)→p (C, S, e′)

(C, S,B, e)→r (C, S,B, e′)

(ER-POST)
((C, S,B,E[post v])→r (C, S,B v,E[()])

(ER-ATTR)
((C, S,B,E[box.a := v])→r (C, S,B [a = v], E[()])

(ER-BOXED)
(C, S, ε, e)→∗r (C, S,B′, v)

(C, S,B,E[boxed e])→r (C, S,B 〈B′〉, E[v])

Figure 8. Expression evaluation steps are defined by →p, →s and →r

for pure mode, standard mode, and render mode, respectively. →∗µ is the
reflexive transitive closure of→µ.

to the left of the sequence, and dequeue by removing elements
from the right end of the sequence.

At the heart of our operational semantics are the small expres-
sion evaluation steps, defined in Fig. 8. We distinguish three differ-
ent steps based on their effects. Pure steps are side-effect free, but
may depend on the code C and the current global state S, thus they
are of the form (C, S, e) →p (C, S, e′). Standard execution steps
are of the form (C, S,Q, e) →s (C, S′, Q′, e′); they may modify
the state S or add elements to the event queue Q. Render steps are
of the form (C, S,B, e) →r (C, S,B′, e′); they may be pure, or
can append an element to the current box content B.

Our evaluation rules enforce that render functions have no side
effects other than updating the display, and that the display cannot
be accessed by any other user code. This is important, because it
is otherwise much too easy for programmers to (intentionally or
unintentionally) break the principles of our model-view separation,
with highly confusing consequences.

At the system level, We define the system step relation →g as
a binary relation on system states in Fig. 9. We call a system state
stable if the event queue is empty, and the page stack is non-empty.
In stable states, the system is waiting for user actions such as (TAP)

Three rules that enqueue events:

(STARTUP)
(C,D, S, ε, ε)→g (C,⊥, S, ε, [push start ()])

(TAP)
[ontap = v] ∈ B

(C,B, S, P,Q)→g (C,⊥, S, P, [exec v] Q)

(BACK)
(C,D, S, P,Q)→g (C,⊥, S, P, [pop] Q)

Three rules that handle events:

(THUNK)
(C, S,Q, v ())→∗s (C, S′, Q′, ())

(C,D, S, P,Q [exec v])→g (C,⊥, S′, P,Q′)

(PUSH)
C(p) = (fi, fr) (C, S,Q, (fi v))→∗s (C, S′, Q′, ())

(C,D, S, P,Q [push p v])→g (C,⊥, S′, P (p, v), Q′)

(POP)
P = P ′(p, v) or P = P ′ = ε

(C,D, S, P,Q [pop])→g (C,⊥, S, P ′, Q)

One rule to refresh the display:

(RENDER)
C(p) = (fi, fr) (C, S, ε, (fr v))→∗r (C, S,B, ())

(C,⊥, S, P (p, v), ε)→g (C,B, S, P (p, v), ε)

One rule to change the program code:

(UPDATE) C′ ` C′ C′ : S . S′ C′ : P . P ′

(C,D, S, P, ε)→g (C′,⊥, S′, P ′, ε)

Figure 9. System steps are defined by→g.

for tapping a box in the display, (BACK) for hitting the back button,
and (UPDATE) for code updates.

We define the initial system state to be (C,⊥, ε, ε, ε), which is
unstable. While the system state is unstable, one of the following
transitions is always enabled:

– If the page stack is empty, we can perform the transition
(STARTUP) which enqueues an event [push start ()] causing
the system to create the start page.

– If the event queue is not empty, we can dequeue the next ele-
ment with one of the following transitions:

(THUNK) dequeues [exec v] and executes the thunk v
(which is a lambda function that takes a unit value and
returns a unit value). It executes v in standard execution
mode, taking as many small steps as necessary to reduce the
expression v () to a value.

(PUSH) dequeues [push p v], pushes a new page (p, v) onto
the page stack, and executes the page initialization code
(passing v as the argument), in standard execution mode. It
takes as many small steps as necessary to reduce to a value.

(POP) dequeues [pop], and either pops the top page, or does
nothing (if the page stack is already empty).

Some of these transitions can enqueue more events onto the
queue (for example, executing a push or pop expression in user
code enqueues a push or pop event). This can lead to an infinite
loop of pushing new pages. Also, the execution of user code may
of course diverge. Apart from those nonterminating cases, however,
we eventually reach a stable state (we never get stuck, as discussed
in Section 4.3). Thus the system is always live, either in an active
state (executing some user code), or in a stable state (ready to
handle user events or code updates).



All global transitions, except for (RENDER), also invalidate
the display (set it to ⊥). The display remains invalid until we do
the (RENDER) transition. This transition executes the render code
for the page that is currently at the top of the stack, in render
mode, taking as many small steps as necessary. This mechanism
guarantees that the display is never stale, but either invalid or
current with respect to the model state and the code. In particular,
it is not possible to activate tap handlers on a stale display: the
prerequisite of the rule (TAP) can only be satisfied if the display is
valid, which also implies that Q is empty.

In a stable state, the transition (UPDATE) allows the user to
update the code (swap new code C′ for old code C). Its first
prerequisite (to be formally defined in Section 4.3) is C′ ` C′,
which means that C′ must be well-typed and satisfy a number
of sanity conditions. Note that there is no requirement that C′

is related in any way to C. Instead, our transition performs a
fix-up of the global state (defined by the relations C′ : S . S′

and C′ : P . P ′ which we discuss in Section 4.3). Supporting
arbitrary code changes is important in practice: limiting the changes
a user can make is both complex to implement and explain, and
unpleasant for the user.

Another important guarantee we make is that after a code up-
date, the system contains no stale code (such as closures taken in
earlier versions). The reason is that after applying rule (UPDATE),
the display and the event queue are empty. Since neither global
variables nor the page stack contain function values (we enforce
this using the type system), the state contains no code.

4.3 Typing of Expressions and States
Fig. 10 shows how we type expressions. Our judgments have the
formC; Γ `µ e : τ , meaning that we can type e as τ given the code
C, context Γ, and effect µ (which is one of p, s, r for pure, state, or
render). We define an attribute environment Γa that contains types
for box attributes, such as ontap : ()

s→ () and margin : number.
Note that our model has an implicit top-level box, so render code
can set attributes even outside a boxed statement.

The rules in Fig. 10 are mostly standard [15]. Rules indexed by
effect variable µ can be instantiated to all three effect modes p, s, r.
The types relate to the operational semantics in that an expression
e typable under effect µ reduces to a value under →∗µ, thereby
guaranteeing that render code can be reduced by→r rules, and that
stateful code can be reduced by→s rules.

Fig. 11 shows how we type system states. Not surprisingly, it
involves separate typing judgements for almost all system compo-
nents. The top rule (T-SYS) ensures that there is a definition for
the start page (otherwise we would be stuck before execution even
starts). The typing judgments C ` D, C ` S, C ` P , and C ` Q
are straightforward typings for the display, global variables, page
stack, and event queue. The typing judgments C ` C enforce that
no name is defined twice, and that definitions use correct typings. In
particular, global variables must have function-free types (notated
as →-free), functions must be typable with the type they declare,
and the render and init functions must be typeable under the corre-
sponding effect.

Preservation. All small evaluation steps preserve the type of
the evaluated expression (i.e. if e →µ e

′, we can type e′ with the
same type and effect as e), and leave the store and the queue well
typed. This is a simple consequence of our type and effect system
(we are using a widely known standard construction). System steps
also preserve the typeability of the system state. This is mostly
a simple consequence of manipulating the state correctly, and of
the preservation guarantee for small evaluation steps. However, the
(UPDATE) rule is interesting since it completely replaces the code.
In this case, to ensure typeability of the state, we need to fix up the

(S-EMPTY)
C : ε . ε

(S-SKIP)

C : S . S′

g 6∈ C ∨ (C; ε 6`s v : τ)

C : S [g 7→ v] . S′

(S-OKAY)
C : S . S′ global g : τ =∈ C C; ε `s v : τ

C : S [g 7→ v] . S′ [g 7→ v]

(P-EMPTY)
C : ε . ε

(P-SKIP)

C : P . P ′

p 6∈ C ∨ (C; ε 6`s v : τ)

C : P (p, v) . P ′

(P-OKAY)

C : P . P ′ C; ε `s v : τ
page p(τ) init e1 render e2 ∈ C

C : P (p, v) . P ′ (p, v)

Figure 12. Rules for fixing up the globals and the page stack.

global state and page stack. The algorithm for this fix-up is shown
in Fig. 12. Essentially, it just deletes whatever does not type.

Progress. Any expression e that is not a value and that types
as C; Γ `µ e : τ , with µ = p or µ = s, can take a step
e →µ e′. However, if µ = r, progress may be only indirect: if
e = E[boxed e′] and e′ has a diverging computation, then it is only
e′ that makes progress, but not e. At the system level, progress is
also guaranteed with some restrictions. In a stable system state, the
system makes no progress unless there are user-initiated actions.
In unstable states, the system can always make progress except if
there is a diverging expression evaluation (again, progress in that
case is indirect: the expression evaluation makes progress, but the
system as a whole does not).

5. Experience
We now present our experiences in designing, building, and using
an enhanced version of TouchDevelop, along with a discussion of
the various tradeoffs we had to make to achieve a reasonable live
programming experience. TouchDevelop is public, free to use, and
runs in most browsers on any device; we encourage the reader to
check it out [1]. We have also produced an 8-minute video that
demonstrates the live programming feature.2

Much of our work was focused on improving the user experi-
ence for the programmer. Our key finding here was to place the live
and code view side by side while making elements in each view
navigable to elements in the other view. The live view is automat-
ically scaled down to fit on a smaller portion of the screen, but we
support interactive zooming to allow programmers to inspect the
effect of detail adjustments (such as margins and font sizes). Also,
because nested boxes often cover their containers completely, we
support a nested selection mode where the user can tap the same
box multiple times to select enclosing boxes.

One limitation of our system is the representation of a UI pro-
gram’s model as a collection of global variables, where the view
itself cannot retain any state. For example, the value of a slider
widget must be defined as a global variable, which is then passed
into render code to be read and manipulated. Our strict separation
of model and view thus conflicts with the encapsulation principle.
How to support encapsulation of state in view elements, and how
to deal with tricky initialization semantics, remain to be addressed
by future work.

Live programming can be an alternative to step-wise debuggers,
given the easy navigability between code and rendered UI artifacts.

2 http://bit.ly/itsalive13 or directly http://youtu.be/
XnWgX6cORJM. Please use HD quality setting.

http://bit.ly/itsalive13
http://youtu.be/XnWgX6cORJM
http://youtu.be/XnWgX6cORJM


(T-INT)
C; Γ `µ n : number

(T-STRING)
C; Γ `µ s : string

(T-VAR)
C; Γ, x : τ `µ x : τ

(T-TUPLE)
C; Γ `µ ei : τi

C; Γ `µ (e1..en) : (τ1..τn)

(T-LAM)
C; Γ, x : τ1 `µ1 e : τ2

C; Γ `µ2 λ(x : τ).e : τ1
µ1→ τ2

(T-SUB)
C; Γ `µ e : τ1

p→ τ2

C; Γ `µ e : τ1
µ2→ τ2

(T-APP)

C; Γ `µ e1 : τ1
µ→ τ2

C; Γ `µ e2 : τ1

C; Γ `µ e1e2 : τ2

(T-FUN)
fun f : τ1

µ2→ τ2 is e2 ∈ C

C; Γ `µ f : τ1
µ2→ τ2

(T-BOXED)
C; Γ `r e : τ

C; Γ `r boxed e : τ

(T-POST)
C; Γ `r e : τ

C; Γ `r post e : ()

(T-ATTR)
Γa(a) = τ C; Γ `r e : τ

C; Γ `r box.a := e : ()

(T-GLOBAL)
global g : τ = v ∈ C

C; Γ `µ g : τ

(T-ASSIGN)
global g : τ =∈ C C; Γ `s e : τ

C; Γ `s g := e : ()

(T-PUSH)
C(p) = (e1, e2) C; Γ `s e : τ

C; Γ `s push p e : ()

(T-POP)
C; Γ `s pop : ()

(T-PROJ)
C; Γ `µ e : (τ1..τn)

C; Γ `µ e.i : τi

Figure 10. Expression type rules.

(T-SYS)

C ` C C ` D C ` S
C ` P C ` Q
page start().. ∈ C
` (C,D, S, P,Q)

(T-EMPTY)
C ` ε

(T-D-INV)
C ` ⊥

(T-B-VAL) C ` B
C ` B v

(T-B-ATTR)

C ` B Γa(a) = τ
C; ε `p v : τ

C ` B [a = v]

(T-B-NEST)
C ` Bi

C ` B1 〈B2〉

(T-C-GLOBAL)

C ` C′ g /∈ Defs(C′)
τ is→-free
C; ε `p v : τ

C ` C′ global g : τ = v

(T-C-FUN)

C ` C′ f /∈ Defs(C′)
C; ε `p e : τ1

µ→ τ2

C ` C′ fun f : τ1
µ→ τ2 is e

(T-C-PAGE)

C ` C′ p /∈ Defs(C′)
τ is→-free
C; ε `s e1 : τ

s→ ()

C; ε `s e2 : τ
r→ ()

C ` C′ page p(τ) init e1 render e2

(T-S-ENTRY)
C ` S C; ε `p v : τ

C ` S [g 7→ v]

(T-R-ENTRY)

C ` P C; ε `p v : τ
page p(τ) init e1 render e2 ∈ C

C ` P (p, v)

(T-Q-EXEC)
C ` Q C; ε `p v : ()

s→ ()

C ` Q [exec v]

(T-Q-PUSH)

C ` Q C; ε `p v : τ
page p(τ) init e1 render e2 ∈ C

C ` Q [push p v]

(T-Q-POP)
C ` Q

C ` Q [pop]

Figure 11. System state type rules.

However, not all aspects of program execution may be sufficently
visible in the view. Also, the code in event handlers and initializa-
tion bodies is not debuggable via live programming. Thus, a step-
wise debugger is still useful and future work may look at how live
programming and step-wise debugging can work together. Alterna-
tively, we may explore enhancing the programming model so that
even state-changing code can be debugged through live program-
ming, as in the Subtext language [7]. One avenue to explore is the
use of boxed statements to produce debugging output in batch com-
putations.

Our model re-executes the render code of the current page being
viewed, whenever this render code or the program’s model changes.
Recreating the entire box tree on a redraw can become slow if
there are many boxes on the screen. We are currently working
on a simple optimization where we can reuse box tree elements
that have not changed. An intriguing avenue for future work is the
application of research on self-adjusting computation [2], which
would allow redundant parts of the render computation to be elided
automatically.

6. Related Work
As mentioned previously, visual programming languages have long
supported live programming. Burnett et al. [5] survey these lan-
guages and detail how they can support live programming effi-

ciently. In contrast, we describe how live programming can be sup-
ported in the context of a fully expressive textual, imperative lan-
guage with standard control flow constructs.

Superglue [17] is a textual language that adopts a model inspired
by dataflow visual languages; live programming is indeed achieved,
but many programs are hard to express with dataflow alone.

Flogo II [11] is another textual live language that supports live
text, where the state of an executing program is presented as graph-
ical annotations in the code. Rather than annotating code with ex-
ecution details, our work focuses on making the connection navi-
gable between code and the program’s execution (as the rendered
UI).

Live programming depends on a “model” that persists be-
tween program edits, which originates from Smalltalk’s support
for image-based persistence [9]. Although Smalltalk supports “fix-
and-continue,” it does not provide live programming as code edits
and execution are independent. Self [26] with its Morphic [16] UI
library gets around this limitation by supporting the direct manip-
ulation [24] of object run-time structures, although such edits only
persist and do not affect the object’s code. In contrast, our work is
able to support liveness through a deep connection between code
and program execution as well as direct manipulation whose effects
are enshrined in code.



Going beyond live programming, Subtext [7] explores how code
and program execution can be represented using the same encod-
ing; code in Subtext is not so much executed as it is copied. Our
goal is less ambitious: we view live programming as a promising
next step in bridging the gap between code and program execution.

Mobl [13] is a programming language for mobile devices. It
provides page stack navigation and view-model separation (using
data binding), but no live programming. HyperCard [4] provides an
overall experience that is quite similar to ours (page stack naviga-
tion, persistent state, event handling, and quick switching between
editing the code and interacting with the program). However, pro-
gramming is not live, as code does not automatically reexecute, nor
is there any support for writing specialized code to express the re-
lationship between view and state.

Live programming is also related to the hot swapping of code,
introduced by Fabry [8], an important capability of the Erlang lan-
guage [3], both of which allow the code of an executing program to
be updated without losing its state and context. However, live pro-
gramming is concerned with program development while code hot
swapping is concerned with updating programs already deployed.
The former focuses more on navigable connections between code
and execution, while the latter focuses more on uptime and robust-
ness.

Hicks et al. [12] propose live software updating via state snap-
shots, state transformations, and re-starting of the changed pro-
gram. The reconstruction of the call-stack and application of data
transformation is the responsibility of the programmer, rather than
an automated system. This provides maximum flexibility, while
making it unsuitable for live programming.

7. Conclusion
Live programming is an idea whose time has come: emerging in-
teractive programming systems [10, 22, 27] capture the imagina-
tion of today’s programmers and promise to narrow the temporal
and perceptive gap between program development and code exe-
cution. This paper has shown how live programming can be con-
ceptualized and realized in an expressive procedural language, by
tightly integrating UI construction techniques (model-view separa-
tion and page-stack navigation) with programming language tech-
niques (syntactically nested boxes and a type and effect system).
By providing a formal model, we have established a foundation
for critical discussions at a technical level. Future work on live
programming may explore improvements in expressiveness, such
as support for state encapsulation in the view, or improvements in
performance, such as optimizations that help to scale to larger and
more complex user interfaces.
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