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Abstract
We present our study on semi-supervised Gaussian mixture

model (GMM) hidden Markov model (HMM) and deep neural
network (DNN) HMM acoustic model training. We analyze the
impact of transcription quality and data sampling approach on
the performance of the resulting model, and propose a multi-
system combination and confidence re-calibration approach to
improve the transcription inference and data selection. Com-
pared to using a single system recognition result and confidence
score, our proposed approach reduces the phone error rate of the
inferred transcription by 23.8% relatively when top 60% of data
are selected.

Experiments were conducted on the mobile short message
dictation (SMD) task. For the GMM-HMM model, we achieved
7.2% relative word error rate reduction (WERR) against a
well-trained narrow-band fMPE+bMMI system by adding 2100
hours of untranscribed data, and 28.2% relative WERR over a
wide-band MLE model trained from transcribed out-of-domain
voice search data after adding 10K hours of untranscribed SMD
data. For the CD-DNN-HMM model, 11.7% and 15.0% relative
WERRs are achieved after adding 1K hours of untranscribed
data using random and importance sampling, respectively. We
also found using large amount of untranscribed data for pre-
training does not help.

Index Terms: semi-supervised acoustic model training, system
combination, confidence re-calibration, importance sampling

1. Introduction
The unlimited live data harvested from deployed systems con-
tains valuable information for acoustic model training for tasks
such as mobile voice search (VS) and short message dictation
(SMD). Transcribing large amount of live data, however, is both
costly and time-consuming. For this reason, much effort has
been devoted to the unsupervised and semi-supervised acoustic
model training [1, 2, 3, 4, 5, 6, 7, 8] to exploit the untranscribed
data. Most of these previous works focus on generating better
quality hypothesis with various offline decoding techniques and
on improving confidence measure for better data selection.

Automatically inferred transcription is never perfect. It is in
general believed that discriminative modeling techniques tend
to be more sensitive to transcription errors than the generative
modeling techniques. However, we have not seen any previous
work reporting quantitative comparison results. Our simulation
results in this paper show that the sensitivity to label quality is
highly correlated with the discriminability of the model itself.
This analysis result is used as a reference operating point for
transcription inference and data selection in our study.

We further propose a ROVER-based multi-system combi-
nation and committee-based confidence re-calibration approach

to improve the transcription inference and data selection. Com-
pared to using a single system recognition result and confidence
score, our approach reduces the phone error rate (PER) of the
inferred transcription by 23.8% relatively when the top 60% of
data are selected.

Typical data selection in semi-supervised training strives
to select the data with the most accurate inferred transcrip-
tion. From the active learning point of view, these data are
usually less valuable [9, 10, 11]. The main challenge here is
how to select the most valuable data with good quality tran-
scription and without skewing the prior distribution. This is
especially important in optimizing the semi-supervised deep
neural network (DNN) acoustic model training with gigantic
amount of available untranscribed data. We investigate the im-
portance sampling technique based on the re-calibrated confi-
dence in the Gaussian mixture model (GMM)-hidden Markov
model (HMM) and apply the result to the context dependent
(CD)-DNN-HMM [12] semi-supervised acoustic model train-
ing.

The rest of this paper is organized as follows: Section 2 an-
alyzes the impact of transcription quality to the resulting model
performance. Section 3 introduces the multi-system combina-
tion and confidence re-calibration approach for transcription in-
ference and data selection. Importance data sampling approach
is discussed in Section 4. Section 5 presents the experimen-
tal results of using untranscribed data in GMM-HMM and CD-
DNN-HMM training. Section 6 concludes this paper.

2. Analysis on the Impact of Transcription
Quality to Model Performance

In order to understand the impact of transcription quality on
the resulting model performance, we conducted a simulation to
investigate how different modeling approaches are affected by
erroneous transcription.

Specifically, five versions of transcription for 100 hour tran-
scribed voice search data are simulated at 2%, 4%, 6%, 12%,
and 16% PER level using a recognition system with differ-
ent decoding configurations. The 100 hour voice search data
with six versions of transcription including the human transcrip-
tion are used to train MLE (maximum likelihood estimation),
fMPE (feature-minimum phone error) [13], and fMPE+bMMI
(boosted maximum mutual information) [14] models separately.
In particular, the following treatments were adopted to guaran-
tee the rigor of the comparison: First, all MLE models trained
from erroneous transcription share the same model structure
and model size as the model trained from the human transcrip-
tion; Second, this MLE model is also used as the common MLE
seed model for all discriminative training in this experiment.

It is to be noted that the human transcription is not perfect
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Figure 1: Relative model performance increase versus tran-
scription quality as compared to the model trained from the hu-
man transcription in MLE, fMPE, and fMPE+bMMI.

either. Here we just treat it as a reference, which is used to
measure the quality of all simulated transcription.

Fig. 1 presents the relative WER increase of the models
trained from transcription at different quality level compared to
the model trained from the human transcription. It can be seen
that the sensitivity to the label quality is highly correlated with
the discriminability of the model itself. We further observe:

• At the 6% transcription PER level, the fMPE+bMMI
model has about 7% relative WER increase comparing
to the human transcription, while the MLE model has
only about 1% relative WER increase.

• We are mostly interested in transcription quality at 6%
PER level. This is our typical data operating points
for untranscribed data in our interested tasks. About
5∼7% WER increase is expected at this range for the
fMPE+bMMI models as compared to the manual tran-
scription. We use Fig. 1 as a reference to choose data
selection operating point for different semi-supervised
acoustic model training.

3. Transcription Inference and Data
Selection

Generally speaking, the higher quality the transcription, the
smaller is the gap between semi-supervised training and super-
vised training as suggested in Fig. 1. Generating and selecting
high quality transcription are the two fundamental issues in us-
ing untranscribed data for acoustic model training. Here, we
propose an approach with ROVER-based multi-system combi-
nation followed by committee-based confidence re-calibration
for transcription inference and data selection.

First, three ASR systems with different acoustic models and
language models are used to generate initial hypothesis with
word and sentence level confidence. The ROVER-based sys-
tem combination is used to generate improved new hypothesis
with new word and sentence level confidence. We use a lin-
ear interpolation of the confidence scores from the original sys-
tems and the degree of agreement on the hypothesis to generate
word-level confidence after ROVER, which is further used to
calculate the sentence level confidence. This is the standard
ROVER-based system combination approach [15].

Next, a committee system consisting of a major system
and three supplementary systems are formed to re-calibrate the
confidence. Unlike the traditional committee approach, which
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Figure 2: Transcription phone error rate (PER) via system com-
bination and confidence re-calibration.

treats each system equally in voting, our committee is com-
pletely biased in the following way: only the hypothesis from
the major system is considered as a potential candidate, the sup-
plementary systems are only used to re-calibrate the confidence
of the major system.

Formally, let {Si(hi, ci), i = 1, · · · , N} denotes the com-
mittee with N systems, where i is the index of the system, N is
the total number of systems in the committee, hi is the hypoth-
esis generated from the i-th system, and ci is the confidence of
the corresponding hypothesis. S1(h1, c1) is the primary system
and the rest are supplementary systems. We denote the decision
of the committee as S(h, c), where h always equals to h1 since
only the hypothesis from the primary system is considered as
a potential final hypothesis. c is calculated via a re-calibration
process as

c =

⎧⎪⎨
⎪⎩

c
β
n
1 , if n > 0;

c
γ

∑N
i=1 ci
c1

1 , if n = 0,

⎫⎪⎬
⎪⎭

, (1)

where β and γ are the warping factors used to adjust the re-
calibrating rate. n is the number of supplementary systems
which agree with the primary system. No special tuning is per-
formed on β and γ in our experiments, which are set to 1.

The original three systems and the system after ROVER
form a committee. In the third step, we run the committee at
word and sentence level in a round-robin fashion, i.e. each sys-
tem gets a chance to be the primary system and uses the com-
mittee to re-calibrate its own confidence. The ROVER system
is assigned to be the primary system in the last committee run,
when the confidence of all three original systems have been re-
calibrated. The ROVER hypothesis with the re-calibrated con-
fidence in the last committee run is used for data selection.

Fig. 2 presents the performance comparison results of 1-
system confidence, 3-system ROVER, and committee-based
confidence re-calibration after ROVER at different data selec-
tion operating points. At 40-percentile selection point (top
60%), 11.1% PER reduction is obtained using the ROVER hy-
pothesis and the ROVER confidence compared to one system
recognition results and one system confidence. After running
the committee-based confidence re-calibration, the overall PER
is not changed compared to ROVER. But at 40-percentile selec-
tion level, further 12.7% PER reduction is obtained compared
to using the ROVER confidence. In total, 23.8% relative PER is
obtained comparing to using one system recognition results and
confidence.
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Figure 3: Data sampling via re-calibrated confidence in MLE,
fMPE, and fMPE+bMMI.

4. Importance Data Sampling
Effective data sampling is important in optimizing the semi-
supervised acoustic model training with nearly unlimited
amount of available untranscribed data. The importance sam-
pling here involves three different but related factors: the value
of each datum to the model training, the label quality, and the
change of prior distribution. We investigate the importance data
sampling using re-calibrated confidence in MLE, fMPE, and
fMPE+bMMI.

10M SMD utterances are first auto-transcribed and se-
lected using the methodology described in Section 3. They
are then partitioned into 1M utterances per partition based
on the re-calibrated confidence. The partition with the low-
est re-calibrated confidence is dropped. MLE, fMPE, and
fMPE+bMMI models are trained using each one of the nine
partitions. For fair comparison, the model structure and model
size are kept the same across all MLE models; fMPE and
fMPE+bMMI models also share the same MLE seed model.

Fig. 3 depicts the data sampling effects in MLE, fMPE, and
fMPE+bMMI models:

• The resulting model performance exhibits clear ”U”
shaped pattern with respective to sampling effects for all
three training criteria. The model trained from the 5th
10th-percentile partition outperforms the model trained
from the 1st and 9th 10th-percentile by around 10% rel-
ative. The mid partitions result in better performed mod-
els compared to the two end partitions.

• It is interesting to observe that MLE and fMPE show
very similar pattern of performance versus data sam-
pling, while in our previous discussion on transcription
quality factor, they exhibit distinct patterns. The prior
change and the distinction of the value of each partition
seem to be the dominant factors here.

We apply the importance sampling approach to select mid-
partition (1M utterances) from the 10M utterances for semi-
supervised DNN model training and the comparison results
with the random sample will be discussed in Section 5.4.

5. Experiments and Results
Our semi-supervised training experiments were conducted on
the mobile SMD task. 10K hour live SMD data collected from
deployment is auto-transcribed and selected based on the multi-
system combination and confidence re-calibration approach de-
scribed in Section 3.
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Figure 4: Results of semi-supervised MLE model on a wide-
band SMD task. 28.2% WERR is achieved after adding 10K
hours live SMD data compared to the baseline MLE model
trained from 400 hours of out-of-domain mobile VS data.

The results of using untranscribed live data to further im-
prove the baseline MLE, fMPE+bMMI, and CD-DNN-HMM
systems trained from transcribed live data and/or engineered
data with various amount will be presented in the rest of this
section. We will also report results on an SMD language expan-
sion task, which indicates the proposed approach is applicable
to different languages.

5.1. Semi-supervised MLE model results on a wide-band
SMD task

Starting from a wide-band MLE model with 16kHz sample fre-
quency trained from 400 hours of out-of-domain mobile voice
search data, we incrementally add selected untranscribed live
SMD data in the MLE model training. The model size is in-
creased as more data is added. The baseline model and the
semi-supervised MLE modes are evaluated using four different
live test sets collected during different months of the year.

As shown in Fig. 4, when the first 700 hours untranscribed
data are added, since this is the first time the model is exposed
to the in-domain SMD data, we observe the largest performance
jump with 22.0% WERR. When we incrementally add more un-
transcribed data in the amount of 1400, 3000, and 5000 hours,
the performance keeps on improving but with much slower
pace. When the total 10K hour untranscribed data is added,
28.2% WERR are achieved averaged among the four test sets.

We note that in addition to the wide-band model itself,
two narrow-band models with significantly better initial perfor-
mance are also used as seed models for the transcription gen-
eration. The seed models used in transcribing the four batches
of untranscribed data are dynamically updated with improved
acoustic models from the previous round. The combined sys-
tem effectively speeds up the performance ramping up for the
wide-band model. When significant amount of untranscribed
data are added, the performance gap between the two models
noticeably shrinks.

5.2. Semi-supervised fMPE+bMMI model results on a
narrow-band SMD task

In this task, we start with a baseline narrow-band SMD
fMPE+bMMI model with 8kHz sample frequency well-trained
from large amount of transcribed data. After adding two batches
of untranscribed data in the total amount of 2100 hours in
the fMPE+bMMI training directly, we achieve 7.2% average
WERR with the detailed results summarized in Table 1.
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Table 1: Results of semi-supervised fMPE+bMMI model on
a narrow-band SMD task. 7.2% average WERR is achieved
against a well-trained fMPE+bMMI baseline model after
adding 2100 hours untranscribed live SMD data .

Test Set Word Count WERR

Test-A 22809 7.9%

Test-B 16028 5.4%

Test-C 38874 6.7%

Test-D 41031 7.2%

Ave WERR 134735 7.2%
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Figure 5: Results of semi-supervised training on five European
languages in the SMD language expansion task. Here each bar
represents the WERR on a test set.

It is to be noted that further performance gain is expected if
we re-train the MLE model especially when significantly more
untranscribed data is added. We are currently experimenting
with a full model update using the 10K hour untranscribed data.
Normal practice such as increasing model size and Gaussian
component will be applied.

5.3. Semi-supervised training in SMD language expansion

Besides EN-US, we also applied the similar semi-supervised
training approach to five European languages in the SMD lan-
guage expansion task. The baseline models are fMPE+bMMI
models trained from in-domain transcribed live data and engi-
neered data. After adding 200 ∼1000 hours untranscribed live
data, 5 ∼10% WERRs are obtained as summarized in Fig. 5.

The results indicate that the proposed approach is language
independent and can be directly applied to non-English lan-
guages. It is particularly valuable for low resource languages,
though a few more iterations of semi-supervised training and
transcription re-generation may be needed due to lack of good
seed models.

5.4. Semi-supervised training in CD-DNN-HMM on an
SMD task

The baseline CD-DNN-HMM system is trained using 60K tran-
scribed SMD utterances with 36K Gaussian components and
1812 senone states. The topology of the DNN net is 468-2048-
2048-2048-1812 with three 2048-demension hidden layers. The
neural net input is a 468-dimension feature vector formed by
52-dimension MFCC with 9-frame context windows.

1M supervised untranscribed SMD utterances are selected
from 10M utterances either by random sampling or by impor-
tance sampling based on re-calibrated confidence as described
in Section 4. These two sets will be referred to as ”1M.Random”
and ”1M.Sample” in the rest of this section. The senone state
alignment for both transcribed and untranscribed data are gen-

erated using the same MLE seed model trained from 60K tran-
scribed SMD utterances. The model size is not increased as sig-
nificantly more untranscribed data is added for DNN training.
With a pre-trained DNN using 60K transcribed utterances, we
conduct model refinement using the baseline 60K transcribed
utterances, ”1M.Random”, and ”1M.Sample” separately.

Table 2 presents the performance comparison results of the
baseline model (”DNN.60K”) and the semi-supervised DNN
models trained by adding 1M untranscribed utterances by ran-
dom sampling (”DNN.60K+1M.Random”) or by importance
sampling (”DNN.60K+1M.Sample”). After adding 1M ran-
domly selected utterances to the baseline 60K transcribed data
in the model refinement, we obtain 11.7% WERR. In compar-
ison, adding 1M utterances using importance sampling results
in 15.0% WERR. Importance sampling generates 3.6% further
relative performance gain compared to random sampling.

Table 2: Results of semi-supervised DNN model training in an
SMD task. 11.7% and 15.0% relative WERRs are achieved after
adding 1K hours of untranscribed data using random sampling
or importance sampling, respectively.

Model Test-A WERR

DNN.60K (Baseline) 25.1% NA

DNN.60K+1M.Random 22.2% 11.7%

DNN.60K+1M.Sample 21.4% 15.0%

The results indicate that the importance sampling analysis
results on GMM-HMM model as discussed in Section 4 is appli-
cable to the DNN model. It would be interesting to see whether
the DNN model will present the similar ”U”-shaped curve as
shown in Figure 3, which can helps us understand how different
modeling approaches are affected differently by the change in
the prior distribution, the value of the data, and the label quality.

Besides semi-supervised DNN training, we also experi-
mented with large amount untranscribed data in DNN pre-
training. We found it helps neither in improving the resulting
model performance nor in speeding up the convergence rate.

6. Conclusions
In summary, we proposed a multi-system combination and con-
fidence re-calibration approach to improve the transcription in-
ference and data selection. Compared to using a single system
recognition result and confidence score, when top 60% of data
are selected, our proposed approach reduces the phone error rate
of the inferred transcription by 23.8% relatively. The impact of
transcription quality and data sampling approach on the perfor-
mance of the resulting model was also analyzed.

For the GMM-HMM model, we achieved 7.2% rela-
tive word error rate reduction (WERR) against a well-trained
narrow-band fMPE+bMMI system by adding 2100 hours of
untranscribed data, and 28.2% relative WERR over a wide-
band MLE model trained from transcribed out-of-domain voice
search data after adding 10K hours of untranscribed SMD data.
We also proved the proposed approach can be applied to other
non-English languages as well.

For the CD-DNN-HMM model, 11.7% and 15.0% relative
WERRs are achieved after adding 1K hours of untranscribed
data using random sampling or importance sampling, respec-
tively. We also found using large amount of untranscribed data
for pre-training does not help.
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