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1 Introduction

Gaius Octavius Thurinus (aka Augustus Caesar) was put in charge of Roman roads (viae) in
20 BC. Formally, all viae began at the Temple of Saturn in Rome. Milestones gave distances
to the Forum in Rome. According to the Cosmographia Julius Honorius, Consuls Julius Caesar
and Mark Anthony sent out four scholars to map the world: Nicodemus, Didymus, Thodotus,
and Polycletes. This task took them 32 years, one month, and twenty days. The Roman map,
however, is tiny by modern standards.

The volume of available data on road networks is much higher today, and computing shortest
paths is still not trivial. Dijkstra’s algorithm [28] allows us to answer point-to-point shortest path
queries on anynetwork with nonnegative arc lengths in essentially linear time, both in theory and
in practice (see e.g. [32, 36]). Unfortunately, this is too slow for common applications on large
road networks, such as those of North America or Europe, where Dijkstra’s algorithm takes a few
seconds on a modern server. For example, a modern system for on-line driving directions must
support thousands of queries per second. Alternatively, an application running on a GPS device
with limited RAM stores graph data in external memory, resulting in a slowdown of several orders
of magnitude.

Motivated by computing driving directions, several algorithms use a two-stage framework.
In a preprocessing stage, they compute auxiliary data, such as additional edges (shortcuts) and
labels or values associated with vertices or edges. The auxiliary data is then used to accelerate
point-to-point (s—t) shortest path queries, typically by pruning or directing Dijkstra’s algorithm.
Algorithms within this framework are based on a wide variety of ideas, such as arc flags [49,
42, 12], A* search with landmarks [37], separator-based multi-level graphs [43, 22, 25], highway
hierarchies [56], reach [41, 38], transit nodes [10], contraction hierarchies [34], and hub labeling [3,
4]. In experiments using real-world data, these algorithms achieve amazing speedups over plain
Dijkstra: visiting a few hundred vertices is enough to answer a random query on road networks
with tens of millions of intersections. These methods are exact: they are guaranteed to find the
actual shortest path, not an approximation. Moreover, preprocessing is practical and produces a
modest amount of auxiliary data.

Unfortunately, these excellent practical results have been purely experimental, with no prov-
ably good time guarantees. In fact, it is not hard to construct inputs for which these algorithms
fail to achieve any meaningful speedup. No analysis of the algorithms on any nontrivial graph
classes was known. Furthermore, there was no theoretical understanding of which properties of
road networks make the algorithms work well; previous work in this direction has been mostly
experimental [14]. Eppstein and Goodrich [30] take an orthogonal approach and model road
networks as graphs with small separators.

The lack of theoretical understanding of the practical hierarchical shortest path algorithms
suggests the following natural questions, which are the subject of this paper. Can one prove
sublinear query bounds for these algorithms on a nontrivial class of networks? For what graphs
does the two-stage framework lead to algorithms with provably good performance? Specifically,
what properties of road networks imply provably good performance for the (de facto excellent)
algorithms above? Finally, is there a plausible explanation as to why real road networks actually
satisfy such conditions?

Note that previously studied graph properties such as planarity and small doubling dimension
do not explain the observed algorithm performance. In fact, [30] argue that road networks are



nonplanar. Furthermore, the recent algorithms perform worse on two-dimensional grids with
uniformly random edge weights than they do on road networks [38, 14, 13].

To explain these empirical observations, we introduce the notion of highway dimension. Our
motivation for the definition of highway dimension are the experiments performed by Bast et al. [9],
who exploited a very intuitive observation: when driving on a shortest path from a compact region
of a road network to points that are “far away,” one must pass through one of a very small number
of access nodes. Intuitively, a graph has highway dimension h if, for every scale r > 0 and for
every vertex v, there is a set of at most h vertices that hits all shortest paths within distance O(r)
from v that are longer than r. We show that our definition of highway dimension strengthens the
notion of doubling dimension [40]. In particular, a graph with highway dimension h has doubling
dimension log h'; the doubling dimension of (the shortest path metric of) a graph is defined in
Section 9.

We show that low highway dimension gives provable guarantees of efficiency for the reach
(RE), contraction hierarchies (CH), and transit nodes (TN) algorithms, which were originally
developed with road networks in mind. We prove even better bounds for the hub labeling (HL)
algorithm [20, 33|, which was initially proposed (in a theoretical setting) for general graphs, but
had never been tested on large road networks. However, recent work (motivated by a conference
version of this article [6]) shows that HL is indeed extremely fast on such graphs [3, 4].

More precisely, given a connected, simple graph with n vertices, m edges, highway dimension
h, integral positive edge weights, and diameter D, we prove the following;:

e Preprocessing takes time polynomial in m (and n), h and log D.
e The auxiliary data it produces has size linear in m and polynomial in logn, h, and log D.
e An s—t query returns the distance from s to ¢ in time polynomial in h and log D.

Our preprocessing algorithm uses a new result on the relationship between shortest paths and
VC-dimension, which shows that collections of shortest paths are simple in a combinatorial sense.
Kleinberg [47] showed that VC-dimension can be useful in the analysis of graph algorithms. We
extend this observation by showing that it can be used to design graph algorithms. To facilitate
this use, the formal definition of highway dimension is based on set systems.

One can view modeling road networks by graphs with low highway dimension as being some-
what analogous to small-world models for social networks [50, 46]. Although real social networks
do not look exactly like small-world graphs, the latter give insight into and allow the asymp-
totic analysis of various routing algorithms. Similarly, while real road networks may have local
features that violate the small highway dimension assumption, the notion of highway dimension
gives insight into and allows rigorous analysis of algorithms that work very well in practice.

As already mentioned, RE, CH, and TN have been developed to be efficient on road networks.
TN is the fastest among these algorithms in practice, winning the DIMACS Challenge on shortest
paths [26]. Our theoretical analysis for TN indeed shows that it should be asymptotically faster
than RE and CH for long-range queries (and equivalent for local ones). Our theoretical bound is
even better for HL, which motivated follow-up work [3, 4] on a practical implementation of HL
that does outperform TN on road networks, with the fastest known point-to-point shortest path
queries.

LAll logarithms in this article have base 2.



Another contribution of this article is a generative model for road networks based on three
assumptions: (i) the road network is embedded in a metric space of small doubling dimension
(such as the Earth’s surface) with a corresponding distance metric; (ii) the speed of vehicles is
higher on longer road segments (i.e., highways are faster than local roads); and (iii) roads are
built in incremental manner over time. We show that the model produces networks with low
highway dimension. These results also allow one to generate synthetic networks with low highway
dimension.

This paper is organized as follows. Section 2 establishes some basic notation, definitions, and
background. Section 3 formally introduces the notion of highway dimension. Section 4 introduces
the related concept of sparse hitting sets (and multiscale variants). Section 5 uses multiscale
sparse hitting sets to obtain provably efficient implementations of HL. and TN, while Section 6
extends the multiscale hitting sets approach to deal with the shortcut-based algorithms CH and
RE. Section 7 shows that shortest paths have a remarkably simple combinatorial structure: they
induce set systems of VC-dimension two. This result is used in Section 8 to show how multiscale
hitting sets can be approximated efficiently, leading to polynomial-time preprocessing for shortest-
path algorithms. Section 9 studies the relationship between highway dimension and doubling
dimension. Section 10 presents our generative model. Section 11 discusses the relationship to
continuous graphs, which gives intuition for our definitions. Section 12 has final remarks, including
an overview of follow-up work enabled by the notion of highway dimension, developed since the
conference versions of our results [6, 1] appeared.

This TR includes the results from two conference papers [6, 1] as well as some additional
contributions. The results have been submitted to a journal.

2 Preliminaries

A network (G,{) consists of a graph G = (V,E) and a length function ¢ : £ — Ry. The
preprocessing phase of a two-stage algorithm takes as input the network (G,¥), and outputs
additional data that can be used in the query phase. In addition, the query takes as input a
source vertex s and a target vertex t and returns the distance dist(s,t) from s to t.

In this paper, we focus on bounds for implementing distance oracles, i.e., we are interested in
finding the shortest path length, not the path itself. The algorithms we analyze can be extended to
find the corresponding shortest paths in time linear or near-linear in the size (number of vertices)
of the path. Although this bound is optimal if we require explicit paths in the output, it may be
exponentially worse than a distance oracle query.

Unless mentioned otherwise, we assume that the graph is undirected and connected, and that
the length function is strictly positive (zero-length edges can be contracted). We also assume that
there are no parallel edges or self-loops. To simplify notation, we scale the lengths so that the
minimum edge length is one. Note that this is not necessary if the input lengths are integral, as
is the case in most practical implementations.

A path is a sequence of vertices P = (vy,...,vy) such that there is an edge (v;,v;y1) € E for
every 1 < i < k. We allow trivial paths with a single vertex. The length of a path is defined
by {(P) = Zf:_ll 0(vi,viy1). In a slight abuse of notation, we will sometimes identify a path
(vi,...,vx), with its set of vertices {v1,...,v;}. Let D = max, ,cy dist(u, v) be the diameter of
the network. We also assume that the shortest path P(s,t) between any two vertices s and t is
unique; since we consider undirected graphs, P(s,t) = P(t,s). This is a common assumption that



can be made without loss of generality, as one can perturb the input to ensure uniqueness with
high probability. Finally, we assume that every edge is a shortest path between its endpoints; we
can delete edges that do not satisfy this condition.

Dijkstra’s algorithm [28] is an efficient implementation of the scanning method for graphs with
nonnegative edge lengths (see e.g. [60]). For every vertex v, it maintains the length d(v) of the
shortest path from s to v found so far, as well as the predecessor p(v) of v on the path. Initially
d(s) =0, d(v) = oo for all other vertices v, and p(v) = null for all v.

Dijkstra’s algorithm maintains a priority queue of unscanned vertices with finite d values.
At each step, the algorithm extracts the minimum valued vertex v from the queue and scans
it. To scan v, the algorithm looks at all edges (v,w) € E and, if d(v) + ¢(v,w) < d(w), sets
d(w) = d(v) + £(v,w) and p(w) = v. The algorithm terminates when the target ¢ is extracted,
without scanning it.

The bidirectional version of Dijkstra’s algorithm is similar, but runs a forward search from s
and a backward search from ¢. When an edge (v, w) is scanned by the forward search and w has
already been scanned by the backward search, the concatenation of path s—v, edge (v,w), and
path w—t is a new path P from s to ¢ (the same holds in the backward search). The algorithm
maintains the shortest such path P found during the execution. It terminates when one of the
searches extracts a vertex that has been scanned by the other, at which point the path P is
optimal [53].

3 Highway Dimension

We now formally define the notion of highway dimension using the concepts of r-significant and

(r,d)-close paths. While these concepts may seem somewhat contrived, they are natural in the

context of continuous graphs, as formalized in Section 11. Intuitively, an r-significant path is a

discretization of a continuous path of length greater than r. Similarly, a path (r,d)-close to v is

a discretization of a continuous path of length greater than r whose distance to v is at most d.
Formally, we define an r-significant path as follows.

Definition 3.1 A shortest path P is r-significant if it has an r-witness path (see Definition 3.2).

Definition 3.2 Given a shortest path P = (v1,...,v;) and r > 0, a shortest path P’ is an
r-witness for P if and only if £(P’) > r and one of the following conditions holds:

1. PP =P; or

2. P' = (vg,v1,...,0k); O
3. P'=(v1,...,Vk, Vks1); OT
4. P = (vo,v1, ..., 0k, Vks1)-

In other words, P can be extended by at most one vertex at each end to a shortest path of
length greater than r. Note that, if (v,w) € E and ¢(v,w) > r, then the trivial paths (v) and (w)
are r-significant, since (v, w) is the shortest path from v to w. Also note that if (vq,va,...,vg) is
r-significant then so is (vg, vg—1,...,v2,v1). (See Figure 1).
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Figure 1: Hlustrating the definition of r-significant and (r, d)-close paths.

Let P, denote the set of all r-significant paths. For example, in the graph of Figure 1, for all
0 < r < 3 the set P, consists of all shortest paths (including singleton vertices). For 3 < r < 5
the set P. = P3_. \ {(h)}. For 5 <r <6, P. = Ps_. \ {(9)}. The set of all 19-significant paths,
P9 = {(a,b,c,d),(h,a,b,c,d),(a,b,c,d,e),(h,a,b,c,d,e)} (and the same paths in the reverse
direction). There are no other 19-significant path. The path (h,a,b, ¢, d, e) is the longest shortest
path and has length 19; for any r > 19, P, = 0.

Given a vertex v and a path P, we define the distance from v to P by dist(v, P) = minyep dist(v, w).

Definition 3.3 A shortest path P is (r,d)-close to a vertex v if P is r-significant with an r-
witness path P’ such that dist(v, P') < d.

Note that if P is (r,d)-close to v, then for 0 < ' < r, 0 < d < d/, it follows that P is also
(r',d")-close to v.

To illustrate this definition, consider the graph in Figure 1. For P = (f,c¢) we have that P is
(8,3)-close to e, P is (6,5)-close to a, and P is (8,0)-close to d. To see this consider the shortest
path P' = (d, f,c), which has dist(d, P’) = 0, dist(e, P") = 3. Likewise, for P’ = (¢, f, g), we have
that dist(a, P") = 5.

Given r > 0 and v € V, we define the ball of radius r centered at v, B,(v), to be the set of all
vertices within distance at most r from v. For example, in Figure 1, B4(f) = {c, g}.

Definition 3.4 A network (G, /) has highway dimension (HD) h if h is the smallest integer such
that, for all ™ > 0 and all v € V, there exists a set H C 'V (that depends on v and r) such that
|H| < h and HNP # 0 for all P € P, that are (r,2r)-close to v.



Let the r-neighborhood of v, denoted by S,(v), be
the set of all P € P, that are (r,2r)-close to v. Given
a set of paths P, we say that H C V is a hitting set for
P if every path in P contains a vertex in H. Figure 2
gives an example. Definition 3.4 states that the highway
dimension of a network (G,/¢) is at most h if, for any
r > 0 and any v € V, there exists a hitting set H for
Sy(v) with |H| < h.
The highway dimension of a graph bounds its degree: Figure 2: Example for S,(v). All r-

Lemma 3.5 If (G, /) has highway dimension h, then the significant paths are hit.

degree of any vertex in G is at most h.

Proof. Consider a vertex v and take any 0 < r < 1

(e.g., r = 1/2). Since we assume that every edge is a shortest path and edge lengths are at least
one, for every neighbor w of v the path P’ = (w,v) is an r-witness for the trivial path P = (w).
The distance from P’ = (w,v) to v is zero, hence P = (w) is (r,d)-close to v for all d > 0; in
particular it is (r, 2r)-close to v. This implies that (w) € S,(v), and therefore any hitting set of
Sy(v) must contain w. Thus the cardinality of any hitting set for S, (v) is at least the degree of
v. It follows that the degree of v is at most h. O

4 Sparse Hitting Sets

A notion related to highway dimension is that of a sparse shortest-path hitting set (SPHS), which
we need to prove our bounds for HL, TN, CH, and RE in Sections 5 and 6.

Definition 4.1 For r > 0, an (h,r)-SPHS is a hitting set C C V for P, such that Yv €
V, |Ba,(v) N C| < h.

SPHS and HD are closely related.

Theorem 4.2 If the highway dimension of (G,{) is h, then for any r > 0, a minimum hitting
set for Py is an (h,r)-SPHS.

Proof. Let H be a minimum hitting set for P, and suppose for contradiction that for some u, the
set U = H N By, (u) is such that |[U| > h. Note that U hits only those paths in P, that belong to
S (u). By the definition of h, there is a hitting set U’ for S,(u) with |U’| < h. By the definition
of §;(u), U’ hits all shortest paths in P, hit by U. Therefore H' = (H \ U) U U’ is smaller than
H and hits all shortest paths in P,, contradicting the optimality of H. O

A multiscale SPHS of (G, {) is a collection of sets C; for 0 < i < [log D], where each C; is a
(h,2¢=1)-SPHS. In particular, note that Cy = V, since every vertex is an (1/2)-significant path.
The notion of multiscale SPHS is a basic building block of our preprocessing algorithms.

An important property of multiscale SPHS is that the sequence of set sizes (|C;|) does not
have big gaps. To prove this, we need the concept of v-closed sets. For a fixed r, we say that a
set S C P, is v-closed if either S = ) or (i) v is an endpoint of some path in S and (ii) for any
path P € S with endpoint v, every subpath P’ € P, of P that has v as an endpoint also belongs
to S. In particular, note that S, (v) is v-closed.



Lemma 4.3 Let C be a hitting set for a v-closed set S C P,.. Then, for any P € S that has v as
an endpoint, there is a verter w € C N P such that dist(v,w) < r.

Proof. The lemma is obvious if /(P) < r because for any w € P, we have dist(v, w) < r. Assume
that ¢(P) > r. There is an edge (x,y) on P such that dist(v,z) < r and dist(v,y) > r. Let P’ be
the subpath of P between v and x; then ¢(P") < r. Since S is v-closed, P’ € S, so P’ is hit by a
vertex z € C. Since z is on P, we have dist(v, z) < r, completing the proof. O

With this result, we can prove that the sequence of set sizes of a multiscale SPHS does indeed
have small gaps.

Lemma 4.4 If the highway dimension of (G,{) is h, then there exists a multiscale SPHS such
that ‘C[logD]‘ < h and ‘Cz‘ < h’Cz'-i-l‘ for 0 <i< “0gD~|.

Proof. Toprove the first claim, pick a vertex v. Because the graph is connected, all vertices are
within distance D from v. Therefore Syios p1-1(v) contains all (2/°8 P1=1)_significant paths. The
hitting set H for Sypog p1-1(v) hits all these paths and |H| < h. Thus Cfjoe p1 = H is the desired
set.

For i < [log D], we build C; from C;4; in decreasing order of 7, as follows. Let H be the union
of the hitting sets for Syi—1(v) for all v € Cjtq1; obviously |H| < h|Cjt1]. By Lemma 4.3, every
vertex w € V is at distance at most 2¢ from some vertex in C;1, and therefore H is a hitting set
for Pgi-1.

Let h be the minimal value of z < n such that H is an (z,2071)-SPHS.If h < h, we are done.
Otherwise, if h < h, then there must exist some u € V such that U = H N By,(u) has |U| = h > h.
Because the highway dimension of (G, /) is h, there is a hitting set U’ for the set S, (u), where
|U'| < h. As in the proof of Theorem 4.2, we replace U with U’.The new set H' is also a hitting
set for Pyi—1, and has fewer vertices. So after at most n iterations, the resulting set is a hitting
set for Pyi—1 and is (h,271) sparse. O

Although Theorem 4.2 guarantees the existence of good hitting sets, no polynomial-time al-
gorithm is known for computing the minimum hitting set H used in the proof. As a result, no
polynomial-time algorithm is known for computing an optimum multiscale SPHS, which are im-
portant building blocks of the preprocessing phase of the algorithms we analyze in Sections 5 and 6.
For clarity, in these sections we analyze the query times assuming optimum (exponential-time)
preprocessing.

Section 8 discusses polynomial-time approximation algorithms for SPHS computation, which
enable polynomial-time preprocessing with a slight degradation of the query bounds. Although
still impractical for large road networks, these polynomial-time preprocessing routines provide
some justification for practical variants based on heuristics.

5 Analysis for Hub Labels and Transit Node Routing

This section analyzes the hub labeling (HL) and transit node routing (TN) algorithms. In both
cases, we assume that we have computed a multiscale SPHS as the initial step of the preprocessing
stage.



5.1 Hub Labels

In this section we study the hub labeling algorithm in the context of undirected graphs. During
preprocessing, a labeling algorithm [52] computes a label for each vertex of the graph such that
dist(s,t) can be computed from the labels of s and ¢ only, without looking at the graph. The hub
labeling (HL) algorithm [33] is a special kind of labeling algorithm. For each vertex v € V', HL
builds a label L(v), which consists of a set of vertices (the hubs of v), together with the distances
dist(v, w) for each w € L(v). The labels obey the cover property: for any two vertices s and t,
L(s) N L(t) contains at least one vertex on the shortest s—t path. For an s—t query, among all
vertices w € L(s) N L(t) we pick the one minimizing dist(s,w) + dist(w,t) and return this sum.
If the entries in each label are sorted by hub ID, this can be done with a coordinated sweep over
the two labels, as in mergesort.

We say that the label size of v, |L(v)|, is the number of hubs in L(v). The runtime of an s—t
query is O(|L(s)| + |L(t)|), or O(M) if M is the maximum label size. The labeling L is the set
of all labels; we denote its size by |£| =), (|L(v)]).

Although hub labels can be quite large in general, they are provably small for some graphs [33].
Computing labelings with the smallest total size or minimizing the size of the biggest label may
be difficult, however. Cohen at al. [20] give a polynomial-time algorithm to approximate the
smallest labeling size within a factor of O(logn) (see also [48]). In addition, Babenko et al. [8]
give an O(logn) approximation algorithm for the maximum label size and discuss simultaneous
approximation of the total and maximum label size.

Next we prove the following result:

Theorem 5.1 If (G,¥{) has highway dimension h, then it has a hub labeling with mazimum label
size O(hlog D).

Proof. Consider a multiscale SPHS {C; : i = 0,...,[log D]}, with C; as in Theorem 4.2. We
define the label of a vertex v by

[log D]
Lv)={v}u |J (CinBy(v)).

1=0

By the definition of SPHS, |L(v)| = O(hlog D). Next we show that L has the cover property.
Consider two vertices s and t. Let P be the shortest path from s to ¢t and consider the smallest ¢
such that /(P) < 2°. Then P € Pyi-1 and there exists a vertex x € PN C;. By the definition of
P, x € Byi(s) and = € Byi(t), so x must be in L(s) N L(t). O

Corollary 5.2 HL queries take O(hlog D) time.

The actual shortest path can be extracted in time linear in the number of edges on the path.
This requires some changes in the preprocessing to produce an additional data structure [2].

5.2 Transit Nodes

The transit node (TN) algorithm [10, 9, 55] motivated our definition of highway dimension. TN
is based on the observation that anyone driving (on an optimal path) from a small region to a
faraway destination must pass through one of a small number of access nodes. The union of all



access nodes constitutes the set of transit nodes. The preprocessing algorithm for TN finds a set
of transit nodes that is not too large and locally sparse, i.e., any vertex v has a small set A(v) of
access nodes contained in the set of transit nodes. For each vertex v, the algorithm outputs A(v)
and dist(v, w) for each w € A(v). Finally, it computes and outputs a table of distances between
all pairs of transit nodes; the size of the table is quadratic in the number of transit nodes.

The algorithm looks at all three-hop paths of the form s—s'—t'—t, where s’ € A(s) and t’ € A(t).
If the s—t distance is large enough (global query), then the shortest such path is the shortest path
from s to t. As we precomputed distances between vertices and their access nodes and between
all pairs of transit nodes, the global query time is O(]A(s)|-|A(t)]). To distinguish between global
and local queries, the algorithm uses a fast locality filter that estimates how close s and ¢ are. For
local queries, an alternative algorithm is used to find the shortest path: in particular, Dijkstra-
based algorithms with pruning, such as CH, are relatively fast when s and ¢ are close. Optionally,
additional levels of transit nodes can be used to handle medium-range queries [55].

We will describe CH, another algorithm for the shortest path problem, in Section 6.1. For
the discussion in this section, we only use the fact that CH orders vertices by importance during
preprocessing.

The most efficient variants of TN [34, 7] use CH in two ways, to choose transit nodes and to
run local queries. For the former, if 7 is the desired number of transit nodes, the 7 most important
vertices in the CH ordering are chosen as transit nodes. In practice, global queries are remarkably
fast, much more so than the CH-based local queries.

In this section, we propose T'N-MS, an analyzable implementation of TN based on multiscale
SPHS, and derive sublinear time bounds for it. The implementation is similar in spirit to those
of [34] and [7]. We first compute a multiscale SPHS with elements C; as in Theorem 4.2, then
pick a bound 7 on the number of transit nodes. With a bigger value of 7, more queries are global.
Choosing 7 = O(y/m) guarantees that the additional memory requirements are bounded by the
input graph size. We define the set of 7' of transit nodes to be C,, where ¢ is the smallest number
such that |Cy| < 7. Note that Lemma 4.4 implies that |T'| > 7/h, i.e., T' is not much smaller than
the target size .

To compute the access nodes A(v) for a vertex v, we build the shortest path tree D, rooted
at v and add a vertex w € T to A(v) if w is the first node of T" on the v—w path in D,. (If w € T,
then A(w) = {w}.) For each access node w of v, we store dist(v, w).

The output of the TN-MS preprocessing algorithm is the value of ¢, the set T, the table
of pairwise distances for vertices in 7', and the distances between every vertex and its access
nodes. The local query algorithm may need additional information; Section 6.1 will explain the
requirements of CH.

For comparison, the algorithm of Geisberger et al. [34] takes the top 7 vertices in the CH
ordering as transit nodes, while our algorithm takes those in C,. Although these two sets of
transit nodes should be quite similar, they are not identical.

A TN-MS query from s to t is quite simple. We first run a global TN query. If s and ¢ are far
enough, we return the corresponding distance; otherwise, we run a local query. More precisely,
we run the global TN query by computing, for all pairs (vs, vy) of access nodes of s and t, the
length of the path s—vs—v;—t. Let the minimum such length be g(s,t). If g(s,t) > 52971 we
return g(s,t). Otherwise, the query may be local, so we run a local (CH-based) s—t query and
return the value it finds.

To prove that this algorithm is indeed correct, we need to establish a few lemmas. First, we



note that access nodes are close to the corresponding vertex.
Lemma 5.3 For allv € V and all w € A(v), dist(v,w) <2471,

Proof. Assume there exists a vertex v € V and a vertex w € A(v) such that dist(v,w) > 2971
Then, by Lemma 4.3 (applied to Cy), the shortest path from v to w must contain a vertex u € C,
with dist(v,u) < 2971, But this implies w ¢ A(v), a contradiction. O

For large distances, global queries are correct.
Lemma 5.4 If dist(s,t) > 2971, then g(s,t) = dist(s,t).

Proof. Consider the shortest path P from s to t. If dist(s,#) > 297!, then P contains at least
one vertex of C; = T'. Let v be the first vertex of 7" on P and let v; be the last vertex. By
construction, vs € A(s) and vy € A(t), which implies the lemma. O

As we do not know dist(s, t), we need the following lemma to decide when to run a local query.
Lemma 5.5 If dist(s,t) < 2971, then g(s,t) < 52471

Proof. Let the path corresponding to g(s,t) be s—s'—t'~t. We know that dist(s’,¢') < dist(s’, s) +
dist(s, ) + dist(¢, ') < 2971 42471 4 2971 = 3. 2971 By triangle inequality, g(s,t) < dist(s,s’) +
dist(s’,#') + dist(#,t) < 2-297! + dist(s',¢') < 52971, O

TN-MS has a natural locality filter: if the global query result is too big, run a local query. In
contrast, locality filters in most previous TN implementations [9, 55, 34| require vertex coordinates
and use Euclidean distances. The only exception is the recent algorithm of Arz et al. [7], which
uses partial hub labels for local queries.

To analyze the running time of our algorithm, we first need to bound the number of access
nodes.

Lemma 5.6 Ewvery vertex v has O(h) access nodes.

Proof. If v € T, then A(v) = {v} by construction, so assume v ¢ T. By Lemma 5.3, for any
vertex w € A(v) we have w € By.gq-1(v). The fact that T is a (2971, h)-SPHS completes the proof.
O

Theorem 5.7 TN-MS can be implemented so that global queries take O(h?) time.

Local queries have the same (higher) bound as CH, which we discuss next.

6 Shortcut-Based Algorithms

Neither HL nor TN need the actual input graph at query time (ignoring local queries for TN);
instead, they operate only on the precomputed auxiliary data. In this section, we turn our
attention to two important graph-based algorithms, CH and RE.
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6.1 Contraction Hierarchies and Shortcuts

Both CH and RE use the notion of shortcuts [57]. Shortcuts are especially natural in the context
of CH, which we describe in this section.

Given two vertices u,w € V', a shortcut is a new edge e = (u,w) with length dist(u,w). The
shortcut operation [34] deletes a vertex v from the graph and adds edges between its neighbors
to maintain the shortest path information. In particular, for any neighbors v and w of v such
that the concatenation of (u,v) and (v, w) is the unique shortest u—w path, we add (u,w) with
l(u,w) = L(u,v) + £(v,w). The addition of shortcuts breaks the invariant that shortest paths are
unique; in the augmented graph, they are not. Breaking ties by favoring paths with fewer edges
is sufficient for our purposes, even though it does not eliminate all ties.

Given the notion of shortcuts, CH preprocessing is straightforward: define a total order among
the vertices and shortcut them sequentially in this order, until a single vertex remains. The output
of preprocessing is the set ET of shortcut edges and the vertex order. We denote the position of
a vertex v in the ordering by rank(v).

An s—t CH query runs a pruned bidirectional Dijkstra search on the graph Gt = (V, FUE™).
When scanning v, only the edges (v,w) with rank(v) < rank(w) are examined. The search may
safely terminate when the priority queues for both search directions become empty. (A tighter
criterion is to stop each search when the top element of its priority queue is greater than the
shortest path seen so far.) At this point, each vertex v has estimates ds(v) and d¢(v) on distances
from s to v and from v to t. (Unlike in Dijkstra’s algorithm, these estimates may be greater than
the actual distances for some vertices; in particular, they will be infinity for unvisited ones.) As
proven by Geisberger et al. [34], a vertex u minimizing ds(u) + di(u) is guaranteed to be on a
shortest path from s to ¢, given by the concatenation of the s—u and u—t paths.

Although queries are correct for any vertex ordering, their running times and the size of
the auxiliary data required may vary greatly. An on-line ordering heuristic that works well in
practice [34] selects the next vertex to shortcut based on its current degree and the number of
new edges added to the graph, among other factors.

Note that the query returns a path in the augmented graph (and its length). In applications
where the corresponding original path is required, we must translate each shortcut into a sequence
of original edges. This can be done in time linear in the size of the sequence [34], as long as
we remember (as part of the auxiliary data) which were the two elements (edges or shortcuts)
combined to create each shortcut added during preprocessing. This requires O(|E™|) space.

This remarkably simple algorithm is surprisingly efficient on road networks. On a standard
benchmark instance representing the road network of Western Europe [54, 26], random queries
visit fewer than 500 vertices (out of 18 million) on average. Moreover, preprocessing adds fewer
shortcuts than there are original edges.

6.2 Shortcuts via Multiscale SPHS

We now describe an algorithm to order vertices and add shortcuts using multiscale SPHS {C; :

i=0,...,[logD]}. For 0 <i < [logD], let Q; = C; \ Ugﬁf_ﬂ] C; be the set of vertices that
appear in C; but no higher. The sets Q); partition V into levels. Define a contraction order as
follows: for every i, the vertices in (); come before those in @Q;41; within each @;, the order is
arbitrary.

Next we prove some bounds for the shortcuts resulting from this order.
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Lemma 6.1 For fized v and j, the number of edges (v,w) € ET with w € Q; is at most h.

Proof. Suppose v € Q; and let v = min{i, j}.The shortcut (v, w) is created when we remove the
last internal vertex z on the shortest path P = (v = uy,ug,...,u; = w) between v and w in the
underlying graph. Therefore, z € @, for some z < ~.

Suppose for contradiction that ¢(P) > 27. Note that since (v,w) is a shortcut we add,
(v,w) € E, so P contains more than one edge. Let P’ be the path obtained by deleting (v, us) if
rank(v) > rank(w) and deleting (u;—1,w) otherwise. Since P’ is an ¢(P)-significant path, it must
contain a vertex u € @, for y > . But this is impossible, so £(P) < 27. Therefore w € Ba+(v).
Also, recall that w € Q; C C; for j > ~. Since |Q; N Bay(v)| < |Cj N Bav(v)| < |Cj N Byj(v)| < h,
the lemma follows. O

Combined with the results of Section 3, these lemmas imply the following bounds on prepro-
cessing:

Theorem 6.2 If (G,¢) has highway dimension h, then preprocessing based on multiscale SPHS
produces a set of shortcuts ET such that degree of every vertex in G(V,E U E™) is at most
h + h[log D] and |E*| = O(nhlog D).

6.3 Remarks on Dijkstra’s Algorithm

In Sections 6.4 and 6.5, we study pruned variants of the bidirectional Dijkstra’s algorithm on the
graph G(V, E U E™) and show that they examine O(hlog D) vertices. By Theorem 6.2, vertices
in this graph have degree O(hlog D) as well. The following lemma bounds complexity of the
algorithm (excluding the computation related to pruning, which will be amortized.)

Lemma 6.3 An ezecution of Bidirectional Dijkstra’s algorithm that scans O(hlog D) wvertices
on a graph with mazimum degree O(hlog D) runs in O((hlog D)? + hlog Dlogn) time if £ is
real-valued and in O((hlog D)?) time if £ is integral.

Proof. The implementation of bidirectional Dijkstra’s algorithm using Fibonacci heaps [32] runs
in time O(m’ + n'logn), where n’ is the number of vertices scanned by the algorithm and m’ is
the number of edges adjacent to these vertices. This gives the O((hlog D)2+ hlog D logn) bound.
When edge lengths are integral, the multilevel bucket data structure [27] yields an O((hlog D)?+
hlog Dlog C') bound, where C is the maximum edge length. Since we assume that every edge is
a shortest path, we have D > C, which implies the O((hlog D)?) bound. O

To simplify the statements of Theorems 6.4 and 6.6 below, we will only consider integral
lengths. For real-valued lengths, the theorems hold with an additional additive factor of O(hlog(D)logn)
in the bounds.

6.4 CH Query Analysis

To analyze a CH query on a graph with highway dimension h, we would like to show that it visits
at most O(h) vertices in each level @;. It would be sufficient to show that all vertices visited
by the forward search at level Q; are within distance at most 2¢ from the source s (a similar
argument would hold for the backward search). This is almost true. If a vertex v € Q; is such
that £(P(s,v)) > 2°, then there must be a vertex u € @; (with j > i) on P(s,v). This means
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that rank(u) > rank(v), so the forward CH search would never follow path P(s,v) in its entirety.
Because of pruning, however, not every branch of the search tree followed by CH is a shortest
path. Conceivably, the search could find an alternative (not shortest) path of increasing ranks
from s to v.

A simple way to avoid this issue is to add range optimization to CH: when scanning an edge
(v,w) with w € @y, if the candidate label for w from the scan is d(w) > 27/, we prune the
search by not adding w to the the priority queue. (Because a shortest path of length greater
than 2/ must pass through a vertex in Qj+1, we know the current path to w is not the shortest.)
This modification requires knowing the level of a vertex (in the multiscale SPHS), which can be
implemented with a constant overhead per vertex at query time. The stall-on-demand pruning
technique [34] can be viewed as a heuristic solution to the same problem.

We get the following time bound.

Theorem 6.4 For (G, () with highway dimension h and integral £, there is an ordering of vertices
such that a CH query with range optimization takes O((hlog D)?) time.

Proof. It is enough to show that bidirectional Dijkstra’s algorithm scans O(nlog D) vertices; we
can then apply Lemma 6.3. Consider the forward search from s (the reverse search is similar).
Because of range optimization, the search scans w € @; only if d(w) < 27 and therefore dist(s, w) <
27, Since Q; C C; and |C; N Bi(s)| < h, for a fixed 4, the number of scanned vertices from Q; is

at most h, and the total over all i is O(hlog D). O

6.5 The Reach Algorithm

The RE algorithm [38] is based on the notion of reach [41]. Given a path P and a vertex v € P that
divides P into P; and P», the reach of v w.r.t. P is rp(v) = min{¢(P;),¢(Ps)}. Let P(v) be the set
of shortest paths containing v. The reach of v (w.r.t. the entire graph) is r(v) = maxpcp(y) 7p(v).
Intuitively, a vertex has high reach if it is close to the middle of a long shortest path.

The preprocessing stage of the original RE algorithm heuristically adds shortcuts to the graph
and computes upper bounds r on reaches in the augmented graph. (Because we break ties by
number of edges, adding shortcuts reduces the reaches of bypassed vertices.) An s—t query per-
forms bidirectional Dijkstra search pruned by reach. More precisely, consider what happens when
the forward search labels a vertex v with distance label d(v). If v has already been processed by
the backward search, a new candidate path has been found; the length of the best known path
is updated accordingly. Otherwise, we check if 7(v) is smaller than the minimum of d(v) and b*,
the distance label of the top priority queue element of the backward search. If so, we do not add
v to the priority queue (if v were on the shortest path from s to ¢, its reach would be at least
min{d(v),b*}). Symmetric pruning is done for the backward search.

Bidirectional Dijkstra search will give correct answers irrespectively of when one switches
between forward and backward searches. By default, we consider balanced RE, the variant that
balances the two searches by distance traversed: in each iteration, choose the direction (backward
or forward) whose minimum labeled vertex distance is smaller, breaking ties arbitrarily.

To obtain provably good query times, we use the shortcuts E* induced by the multiscale
SPHS, as described in Section 6.2.

Lemma 6.5 For any v € Q;, r(v) <2 in Gt = (V,EUE™T).
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Proof. Suppose for contradiction that r(v) > 2¢. Then, there is a shortest path P in G between
a vertex r and a vertex y such that (i) P contains v and (ii) both the subpath P; from z to
v and the subpath P, from v to y are longer than 2¢. Note that both P; and P, must contain
vertices v € () for j > i. Among these, let u; and uy be the closest vertices to v on Py and P,
respectively. It follows that all vertices of P between u; and wug (including v) will be shortcut
before u; and ug, which means (u1, u2) must be a shortcut. The z—y path using the shortcut has
the same length as P but a smaller number of hops. Since we break ties by number of hops, we
prefer it over P. This contradicts the assumption that P is the shortest path. O

With these bounds, we can prove the following time bound on RE queries.

Theorem 6.6 For (G, () with highway dimension h and integral ¢, there is an ordering of vertices
such that a balanced RE query takes O((hlog D)?) time.

Proof. For the forward search from s, consider the ball By.qi-1(s). The search does not scan any
v € Q; such that v is outside the ball. This is because r(v) < 2! (by Lemma 6.5), which implies
that v is either scanned by the backward search or not scanned at all. Therefore the search scans
O(hlog D) vertices. A similar argument holds for the backward search. The fact that vertex
degrees are bounded by O(hlog D) completes the proof. ]

Note that RE does not need the vertex ordering but needs the reach bounds. For a vertex
v € Q;, we can store 2° (which can be represented by the exponent) as its bound. The query time
bound also holds for any reach upper bounds that are at least as good as those computed by our
preprocessing. In particular, it holds for optimal reach values in the graph with added shortcuts,
which can be computed in polynomial time.

Recall that the query returns an implicit representation of the shortest path containing short-
cuts. One can use the method outlined in Section 6.1 to expand this path into the underlying
path (using only original edges) in linear time.

7 VC-Dimension and USP Systems

In this section we show a relationship between shortest paths and VC-dimension, a measure of
set system complexity used in learning and computational geometry. Intuitively, we show that
(unique) shortest paths form a simple set system. This result is independent of the concept of
highway dimension. In Section 8, we use this result to obtain better approximation algorithms
for constructing multiscale SPHS for small highway dimension.

A set system (X, R) consists of a base set X and a collection R of its subsets. A hitting set
H is a subset of X that intersects every element of R. Given a set Y C X, let (Y, R|y), where
Ry = {SNYIS € R}, be the set system induced by R. We say that Y is shattered by R if
Ry = 2V (i.e., it includes every subset of Y). The set system (X, R) has VC-dimension d if d is
the smallest integer such that no subset Y C X with |Y| = d 4 1 can be shattered [61].

Some algorithmic problems become simpler on set systems with low VC-dimension. In par-
ticular, while the classical algorithm for the hitting set problem achieves an O(log|X|) approxi-
mation [17], one can do better when the VC-dimension is small, as shown by Clarkson [18, 19]
(randomized version) and Brénnimann and Goodrich [16] (derandomization).
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Theorem 7.1 For a set system with an optimal hitting set of size h and with VC-dimension d,
there is an polynomial-time algorithm to find a hitting set of size O(hdlog(hd)).

This result is based on a boosting-type algorithm from learning theory. Even et al. [31] proposed
an alternative algorithm based on linear programming.

In this paper, we study set systems (V,R) where V is the set of vertices of a graph, and each
element of R corresponds to (the set of vertices of) a shortest path. We refer to such set systems
for graphs with unique shortest paths as USP systems.

The following theorem shows that USP systems have low VC-dimension.?

Theorem 7.2 A USP system (V,R) has VC-dimension at most two.

Proof. We need to show that no 3-vertex set Y = {a, b, c} can be shattered. If there is no path
P € R such that Y C P, Y is clearly not shattered. So assume there exists a shortest path P € R
such that Y C P. Without loss of generality, assume that b lies between a and ¢ on P. Consider
Z = {a,c}. By uniqueness of shortest paths, any shortest path containing a and ¢ must contain
b, so Y is not shattered. ]

In combination with Theorem 7.1, this implies the following result.

Corollary 7.3 For a USP system with an optimal hitting set of size h, there is a polynomial-time
algorithm to find a hitting set of size O(hlogh).

8 Polynomial-time Preprocessing

We do not know how to compute optimal (h,r)-SPHS in polynomial time. In this section we show
how to efficiently construct approximate SPHS, i.e., (h/,r)-SPHS such that b is (slightly) bigger
than h. In particular, we use Corollary 7.3 to get h' = O(hlogh).

Consider a simple greedy algorithm [44], which in each iteration adds to the solution the
vertex that hits the most uncovered paths. We show that this algorithm produces an O(logn)
approximation.

Lemma 8.1 If G has highway dimension h, then for any r the greedy algorithm computes an
(O(hlogn),r)-SPHS.

Proof. Pick v € V and consider By, (v). By the definition of highway dimension, there is a
hitting set H for S,(v) with |[H| < h. We call a path in S,(v) relevant if it is not yet hit by the
set of vertices already picked by the algorithm.

Suppose at some step the algorithm chooses a vertex w in Bg,(v). Every path newly hit by
w must be in S,(v), and by the greedy choice of w and the fact that H is a hitting set of S, (v),
w hits at least 1/h of the relevant paths. As the initial number of relevant paths is O(n?), the
algorithm can choose O(hlogn) vertices in Ba,(v). O

A straightforward implementation of the greedy algorithm computes all pairs of shortest paths in
every iteration and runs in O(n?m) time using linear space. An alternative implementation [4]
runs in O(nm) time but needs ©(n?) space.

*This relationship has been independently discovered by Tao et al. [59].
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Using the results derived in Section 7, we can do even better. We now describe a polynomial-
time algorithm to compute an O(log h) approximation of SPHS, which is a significant improvement
for h < n (e.g., h is polylogarithmic in n). The result is slightly more complicated than a direct
application of Corollary 7.3 because we want to get a sparse hitting set, and not just a small one.

Theorem 8.2 If the highway dimension of (G,f) is h, then for any r > 0 we can compute an
(O(hlogh),r)-SPHS in polynomial time.

Proof. Let ¢ be the constant hidden by the big-“O” notation in Theorem 7.1. By Corollary 7.3,
we can efficiently compute a hitting set of size at most h' = 2hclog(2h) for any S, (u). Our goal
is to build an (b, r)-SPHS.

We maintain a hitting set H' for P,. We can start with any such H' computed in polynomial
time, or simply take H' = V. We show that if H’ is not sparse, then we can replace H' by a
smaller hitting set for Pj, in polynomial time. Iterating this construction, we will stop with a
sparse H' in at most n steps.

While H' is not sparse, there exists a vertex u and a set U such that U = H' N By, (u) and
|U| > B'. Note that U hits only paths in S,(u). We compute a hitting set H for S,(u) with
|H| < h'. Now (H'\ U)U H is a hitting set for P, that is smaller than H'. O

Since computing (h,r)-SPHS is the only non-polynomial part of preprocessing for the variants
of HL, TN-MS, CH and RE for which we obtain good query bounds, Theorem 8.2 allows us to
get variants of these algorithms with polynomial-time preprocessing. However, instead of (h,r)-
SPHSes, we use (O(hlogh),r)-SPHSes, causing some O(h) terms in the query bounds change to
O(hlogh). For completeness, we state the bounds corresponding to those in Theorems 5.1, 5.7,
6.2, 6.4, and 6.6:

Theorem 8.3 For a graph with HD h, we can in polynomial time compute a hub labeling with
mazximum label size O(hloghlog D). For this labeling, an HL query takes O(hloghlog D) time.

Theorem 8.4 For a variant of TN-MS with polynomial-time preprocessing, global queries take
O((hlogh)?) time.

Theorem 8.5 The polynomial-time preprocessing based on multiscale SPHS produces E* such
that degree of every vertex in G(V, EUE™) is at most O(hlog hlog D) and |E™| = O(nhlog hlog D).

Theorem 8.6 With polynomial preprocessing, CH queries with range optimization take O((hlog hlog D)?)
time.

Theorem 8.7 With polynomial preprocessing, a balanced RE query takes O((hlog hlog D)?) time.

9 Relation to Doubling Dimension

We now discuss the relationship between highway dimension and the well-known concept of dou-
bling dimension [40]. A metric space is a pair (M, p)where M is a set and p is a function
M x M — R that, for any z,y,z € M, satisfies (i) pu(x,y) > 0, (i) p(x,y) = 0 iff z = y, (iii)
wx,y) = p(y,z), and (iv) p(x,y) + p(y,z) > wp(x,z). A metric space has doubling dimension
d if every ball of radius 7 can be covered by 2¢ balls of radius /2. Given an undirected graph
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G = (V,F) and a positive length function ¢, it is easy to check that (V,dist) is a metric space.
We define the doubling dimension of (G, ¥) to be the doubling dimension of this metric space.

Constant doubling dimension does not imply constant highway dimension (consider a unit
weight two dimensional grid), but the converse is true.

Theorem 9.1 If (G, /) has highway dimension h, then its doubling dimension is at most log(h +
1).

Proof. Consider any vertex v, and let H be a hitting set for S, (v) with |[H| < h. We show that
the union of the radius-r balls centered at H U {v} covers the ball By, (v). Consider w € Ba,
and assume w ¢ B,(v). Then the shortest path P from v to w is in S,(v) and it is easy to see
that Sy(v) is w-closed. By Lemma 4.3, there is v € P N H such that dist(w,u) < r. Therefore
w € By (u). O

This bound is fairly tight. Consider a star graph with n vertices and all edges of length two. It
is easy to see that the doubling dimension of this graph is logn and the highway dimension is n.

Note that requiring a graph to have low doubling dimension is not enough to explain empirical
observations. Consider a square 2-dimensional grid networks with unit lengths and n vertices,
and perturb arc lengths to make shortest paths unique. Although these networks have constant
doubling dimension, RE, CH, and TN perform much worse on them than on road networks of
similar size [38, 13, 14]. The highway dimension of such grids is ©(y/n), which is relatively large
and more consistent with the empirical results. This example also shows that these algorithms
may have worse performance on general planar graphs than on road networks.

Although we do not require Theorem 9.1 for any of the algorithms or analyses presented
above, it is interesting as it relates HD to previous work and suggests that results holding for
small doubling dimension may be strengthened under the small HD assumption. Furthermore, it
provides intuition for the performance of A* search with landmarks [35] on road networks under
the small HD assumption (which implies small doubling dimension):Kleinberg et al. [45] show
that if the doubling dimension is small, a small number of landmarks yields good distance bounds
for almost all vertex pairs.

10 Emergence of Networks with Low Highway Dimension

The formation of real road networks is a complex process involving geographic, economic, engi-
neering, political, and cultural aspects. In this section we propose a simple model that captures
some of these aspects. We then show that networks formed by this process have low highway
dimension. This provides a plausible explanation for the emergence of low HD networks. We do
not claim our model captures all aspects of road network formation, but the assumptions we make
are enough to yield networks with constant highway dimension.

We would like to capture three properties of road network formation.

1. Roads are built incrementally over time, and each decision is typically done in a local
manner, without necessarily taking into account a centralized global planner. Hence we
consider a decentralized and on-line process of forming a road network.

2. The underlying geometric space on which roads are built has some low-dimensional struc-
ture. To capture this property, we assume that the underlying geometric space has low
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doubling dimension. We denote the distance between two points v and w in this space as
pi(v, w).

3. Longer highways are typically faster than short roads. (For example, interstate highways are
typically faster than state highways, which are faster than local inter-neighborhood roads,
which are faster than small inter-neighborhood roads, and so on.) To formalize this we
introduce a speedup parameter 0 < 6 < 1 and define the traversal time 7(u,v) of a road
segment with endpoints u, v to be p(u,v)!~°. We are interested in computing shortest paths
with respect to .

Considerthe following model, which is similar in spirit to the dynamic spanner construction of
Gottlieb and Roditty [39]. Start with a metric space (M, ) with doubling dimension log a. An
adversary supplies a sequence of distinct points vy,...,v, € M. Let V = {vy,...,v,}. We scale
o so that ming, p1=9) (v,w) = 1. Then we process the vertices from v; to v, in order; when
processing v, we connect it to nearby peers v; : @ < t at appropriate scales. Intuitively, if v; is
a new city, we connect it to nearby cities; if it is a new neighborhood, we connect it to nearby
neighborhoods; and so on. However, as neighborhoods are created farther and farther away from
the city center, there comes a point where we connect a new neighborhood not only to nearby
neighborhoods, but also to nearby city centers.

Formally, let A = max pu(v,w).For each integer 0 < i < log D we maintain a set C; C V
such that any two vertices in C; are at least 2! apart in the metric space. We say that C; is a
2'-packing. The packings we maintain are hierarchical, i.e., if v € Cj, v is in Cj for all j <. All
vertices are in Cy. We say that the level of v is ¢ if 4 is the maximum integer for which v € C;.

The first point (vertex) supplied by the adversary is assigned to level A (i.e., belongs to all
C; sets). The algorithm for processing each subsequent vertex v is as follows:

1. Let i be the largest index such that u(v, C;) > 2°. Add v to Cj for all 0 < j <.

2. For each j such that v € C; add edges from v to all vertices {u € C; | u(u,v) < 6-27}. Note
that this set may contain only v, in which case no edges are added. For each such new edge
e = (u,v), note that 2/ < p(u,v) < 6-27.

3. Add an edge from v to the closest vertex in Cj;1, where i is the level of v (unless i = log A).
Note that the length of such an edge is at most 2! because we have not added v to Cj1.
The length is also greater than 2¢, since the vertex we connect v to is in C; (by our choice
of i and the hierarchical property).

Lemma 10.1 For an edge (v,w), if vertex v has level i, then u(v,w) < 6 - 2%,

Proof. If we process v after w and add (v, w), then either w € C; and p(v,w) < 6-2%, or w € Cj11
and p(v,w) < 2-2" < 6-2° If we process v before w and add (v, w), then either w is at a level
j <iand pu(v,w) <627, or wis at alevel j <i and p(v,w) <2-2/ <20 <62 O

Next we show that the number of edges added in this process is not too large.

Lemma 10.2 Processing of a new point v causes at most a4(logA + 1) edge insertions.
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Proof. We claim that, for each v, we add at most a? edges for each 0 < i < log A. To see this,
we need to prove that the ball of radius 6 - 2° around v contains at most a* vertices in C;. By the
assumption of doubling dimension «, this ball can be covered by o balls of radius 6 - 2% < 2¢=1,
By the definition of C;, each of the balls in the cover contains at most one vertex of C;. [ 0O

Next we prove that the graph created by this process has small highway dimension. Recall
that we have a speedup parameter § € (0,1), so an edge of length p(u,v) (in the metric space)
has traversal time 7(u,v) = p(u,v) . To simplify the analysis, we fix § = 1/4. The proofs below
can be modified to show that Theorem 10.6 holds for any constant ¢ € (0,1).

We shall refer to shortest paths with respect to traversal times 7 as fastest paths. By shortest
paths we will mean shortest paths with respect to p. Given a path P in the graph, we denote by
w(P) the length of the path (i.e., the sum over all edges of distances between endpoints) and by
7(P), the traversal times of the path P.

For the next three lemmas, let z # y € V and i be such that 2! < p(z,y) < 2+,

Lemma 10.3 For § = 1/4, there exists an x—y path P such that 7(P) < 9 - 203/4,

Proof. Consider the following recursive construction of a sequence of vertices x = xg, z1,...,T;.
Given xj_1, let x; be x;j_1 if x;_1 € C}; otherwise, let z; be the vertex in C; we connected x;_1
to when adding it to the graph. Note that u(zj_1,7;) < 2. Therefore there is a path P, from z
to x; € C; of length p(P,) < 22:1 2/ < 2.2'. The transit time 7(P,) is at most

i .
4 o(i+1):3/4 _q 93/4 . .
j3/4 < . 9i-3/4 . 9i-3/4

;12 S oy <23/471 2 < 2.5.2Y9/%,

Similarly, there is a path P, from y to y; € C; with u(P,) < 2-2% and 7(P,) < 2.5 - 2"3/4,

Both z; and y; are in C; and u(zy,v;) < (i, ) + p(x,y) + ply, ;) < 628 Without loss of
generality, assume that y; has been added after z;. Then we added the edge (z;,y;) as well. In
combination with P, and P,, this edge gives an x—y path P with

T(P) < 5213/ 1 63/4203/1 < 9. 913/
using the inequality 6%/% < 4. ([l g

Lemma 10.4 For§ = 1/4, the longest edge a = (u,v) on the fastest s—t path Q satisfies p(u,v) >
9. 20,

Proof. Note that the average speed (distance/time) on @ is at most the speed on a, which
is pu(u,v)"/%. Thus the traversal time of Q is at least 2' divided by the speed, and applying
Lemma 10.3, we get

21 .
a7 <T@ <92

Therefore

2t \* .
w(u,v) > (92”“) — 9491

U U
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Lemma 10.5 For § = 1/4, the fastest x—y path goes through a vertex v € Cy with i — 16 < k;
this implies that the level of v is greater than i — 16.

Proof. Consider the longest edge a = (u,v) as in Lemma 10.4 and without loss of generality
assume that u has been added to the graph after v. The edge has been added because v € Cj,
for some k, and either u € Cj, in which case u(u,v) < 6-2% or u € Cp_;1 and p(u,v) < 281,
In both cases, the former bound applies: 2F < p(u,v) < 6-2%. Using Lemma 10.4, we get
974 .27 < p(u,v) < 6-2F and therefore k > i — 3 — 4(logy 9) > i — 16. O O

Theorem 10.6 For § = 1/4 and a length function T, the highway dimension of a network con-
o(1)

structed as above is o\,
Proof. Consider v € V, 7 > 0, and ¢ such that 2¢ < r < 271, We will show that, for k > i — 17,
H = By, (u) N Cf is a hitting set for S, (u). To bound the size of H, we note that By, (u) can be
covered by alog(*47)/ 271 < 20 balls of radius 20717, Each of the latter balls contains at most one
vertex of Cy, so |H| < o?0.

Recall that S, contains r-significant paths P with 7(u, P) < 2r. It is enough to find a small
hitting set for the set of minimal P such that P is r-significant and 7(u, P) < 2r; this set will hit
all the non-minimal paths as well. Let P be such a minimal path.

If 7(P) < r/2, then since P is r-significant, P can be extended to a fastest path of length
greater than r by adding an edge on one or both ends. Denote the only or the longer of such edges
by (v,w), where v € P. Then 7(v,w) > r/4 and p(v,w) > (r/4)*3. By Lemma 10.1, if k is the
level of v, then 6 - 28 > (v, w) > (r/4)*/3. Therefore k > (4/3)log(r) — 2 — log 6 > (4/3)i — 5 >
i —17. In addition, 7(u,v) < 2r 4+ 7(P) < 2r 4+ r/4 < 4r.

If ¢(P) > r/2, then by Lemma 10.5, P contains a vertex v at level k > log(r/2) — 16 > i — 17.
We have two cases: 7(u,v) < r and 7(u,v) > r. In the latter case, let (w,v) be the last edge on
the u—v portion of P. By the minimality of P, 7(u,w) < r and 7(w,v) < r (otherwise we could
truncate P at w, so P would not be minimal). Therefore 7(u,v) < 2r +r +r = 4r. O O

The theorem shows that a fairly simple model can be used to generate networks with constant
highway dimension. We do not attempt to model the “Steiner” property of real road networks,
where a new vertex may be connected to a point on an existing edge, which corresponds to creating
a new intersection on an existing road segment. We also allow adversarial vertex placement, but
in real life new vertices are usually added close to existing access points. A more sophisticated
model may lead to tighter bounds.

11 Highway Dimension on Continuous Graphs

Our definition of Highway Dimension (Definition 3.1) can be seen as the discrete analogue of a
natural definition for continuous graphs. In this context, the definitions of r-significant and (r, d)-
close paths become natural. Continuous graphs [58] fit real road networks well. Edges correspond
to road segments and vertices correspond to intersections. User positions and addresses need not
be at the intersections; they can be at some point along a road segment. This is captured by
continuous graphs.

As the goal of this section is to provide more intuition into the definition of HD, we treat
continuous graphs somewhat informally. For formal definitions (e.g., of shortest paths), see [58].
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Given a graph G, we define the corresponding continuous graph |G| as follows. To each edge
in G, we assign a unit interval [0, 1]; endpoints of these intervals are glued together at vertices
of G. Note the |G| has infinitely many vertices and that each vertex of |G| corresponds either
to a vertex of G or to an edge (u,v) € F and a number « € [0,1]. If G is a weighted graph
that induces a metric space (V, d), we define a metric space (|G|, d) where the distance d between
two vertices (u,v,«) and (u/,v’,a’) is the shortest path distance between vertices x and 2z’ in
a discrete graph G* = (V U {x,2'}, E U {(u,z), (z,v), (W, 2'), (2',v")}) with £(u,z) = al(u,v),
Uz, v) = (1 —a)l(u,v), l(u,2') = bW v), and £(2',v") = (1 — a/)l(u/,v'); the remaining edges
keep their original lengths.

We are interested in continuous shortest paths in |G|. Suppose that s,t¢ are in the interior of
an edge (v,w) in the continuous graph, with s closer to v than ¢ is. The shortest s—¢ path is the
shorter of the portion of (v, w) between s and ¢, or the portion of (v, w) between ¢ and w, followed
by P(v,w), followed by the portion of (v,w) between v and s. If we can compute P(v,w), we
can compute the shortest path between s and ¢ at a constant additional cost. So we can restrict
our attention to finding shortest paths between vertices that are not in the interior of the same
edge. Each such path contains at least one original vertex. This motivates restricting hitting sets
to subsets of V' in the next definition.

Definition 11.1 We define the Continuous Highway Dimension (CHD) of |G| as h if h is the
smallest integer such that for all r > 0 and for all v € V(|G|), there exists a set H CV such that
|H| < h and HNP # 0, for any continuous shortest path P in |G| with PNV # 0, £;(P) > r,

and d(v, P) < 2r.

Here ¢37(P) is the length of the continuous shortest path (geodesic) P with respect to the
metric d.

Next we bound HD and CHD in terms of each other. We start with a lemma that gives the
intuition for the definitions of r-significant and (r, d)-close (to v) paths in G by showing that the
latter are proxies for the continuous shortest paths in |G| of lengths greater than r and within
distance at most d to v.

Lemma 11.2 For anyv € V and r,d > 0, if P is a shortest path that is (r,d)-close to v in G,
then there is a continuous shortest path P" in |G| such that £z(P") > r, dist(v, P") < 2r, and
P"NV =P (ie., all original vertices on P" are on P).

Proof. By the definition of an (r,d)-close path, there is a shortest path P’ in G (containing P,
with potential one-hop extensions at each end) with ¢(P") > r and dist(v, P") < 2r. If P' = P,
then P” NV = P’ is the desired path. Otherwise, P’ is an extension of P. Let v and w be the
end vertices of P.

Suppose the extension is at one end, and let (z,v) be the extension edge. Pick a sufficiently
small €, e.g., € = min(¢(z,v),{(P") — r)/2. Then the continuous shortest path P” in |G| between
(z,v,€e/l(x,v)) and w is the desired path.

Finally, suppose the extensions are at both ends and let (x,v) and (w,y) be the extension
edges. Set e = min{l(z,v),(w,y),(P") — r}/2. Then the continuous shortest path P” in |G|
between (z,v,€¢/l(x,v)) and (w,y,1 — €/l(w,y)) is the desired path. O

Theorem 11.3 If the HD of G is h and the CHD of |G| is h', then h < h/ < 2h.
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Proof. To prove the first inequality, consider v € V and r > 0. Let H C V, |[H| < h' be the
hitting set for all shortest paths P” in |G| such that P" NV # (), £(P") > r and d(v, P") < 2r.
We show that H is the hitting set for S,(v). Let P be a shortest path that is (r,2r)-close to v.
Let P” be as in Lemma 11.2. Then P” must be hit by an element z of H and by the Lemma 11.2,
x e P.

To prove the second inequality, consider v € V(|G|) and » > 0. We construct a hitting set
H C V for shortest paths P’ in |G| such that PNV # 0, ¢{(P") > r, and dist(v, P") < 2r as
follows.

If v corresponds to an interior point of an edge, we define x,y € V to be the endpoints of this
edge. Otherwise v corresponds to a vertex of V, and we define x = y = v. Since the HD of G is h,
there are hitting sets H, for S,(x) and H, for S,(y) of size at most h each. We set H' = H, U H,,.
Clearly |H'| < 2h.

Consider a path P’ in |G| that we need to hit. Since P'NV is non-empty, the path P induced
by the sequence of vertices of P’ belonging to V' is non-empty. So P’ is not contained in the
interior of the continuous edge (z,y), and therefore P’ is at least as close to one of x or y as it
is to v. Without loss of generality assume that d(v, P’') < d(z, P’). Then P’ is the witness path
that certifies that P is (r, 2r)-close to x. Therefore H, hits P, so H' hits P’. 0

Note that the definition of CHD refers to a discrete graph by requiring the paths that are hit
to have the property P NV. An alternative is to define the CHD of a continuous graph without
referring to a discrete graph by requiring P to have at least one vertex of degree other than two
(i.e., degree two vertices are “continuous” and other vertices are “discrete”).

Definition 11.4 We define the Continuous Highway Dimension (CHD) of |G| as h if h is the
smallest integer such that for all v > 0 for all v € V(|G|), there exists a set H C'V such that (i)
|H| < h and (ii) HN P # 0 for any continuous shortest path P in |G| such that P contains a

vertez of degree other than two, £3(P) > r, and d(v, P) < 2r.

This definition is almost equivalent to Definition 11.1 since we can eliminate degree-two vertices
in G as follows: if v has two neighbors (u and w), we can delete v and replace (u,v) and (v, w) by
a shortcut edge (u, w) with ¢(u,w) = £(u,v)+£(v,w). Note the continuous graph still has a vertex
that corresponds to v, but we do not treat is as an original vertex. The only difference between
the two definitions is that the first one allows such vertices in hitting sets while the second one
does not. If G has no degree-two vertices, the vertices of G correspond to vertices of |G| of degree
other than two, and the definitions are equivalent.

12 Concluding Remarks

We have introduced the notion of highway dimension (HD), and have shown that small HD for-
mally guarantees good query performance for variants of several recent shortest paths algorithms
for road networks (HL, TN, CH, and RE). Our results shed light on what might be the underlying
reason for their remarkably good performance on road networks. When they first appeared [6],
our results suggested that HL might perform better than the other algorithms we consider (TN,
CH, and RE), motivating experimental studies [3, 4] that indeed confirmed this conjecture.

Our definition of HD is motivated by the transit node (TN) algorithm [9]. The key to its
efficiency is the empirically discovered fact that if a map is partitioned into regions, then for any
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region, all sufficiently long shortest paths originating from it can be hit by a small number of
vertices. In our case, a region is roughly defined as a ball of radius 2r and “sufficiently long”
means r-significant.

Note that the definition of HD we consider here is slightly different from the one we used
in our conference papers [6, 1]. The main difference is the use of r-significant paths instead of
shortest paths of length greater than r. Besides being cleaner, the new definition allows us to
prove Lemma 4.3, which yields a better bound for the TN algorithm. (The lemma does not hold
under the old definition.) In addition, HD is a strengthening of doubling dimension under the new
definition, as shown in Theorem 9.1. Under the old definition, constant highway dimension does
not imply constant doubling dimension. It is easy to see that an n-vertex star graph with unit
edge lengths has doubling dimension 2(logn) but highway dimension one under the old definition
(the center vertex covers all paths of non-zero length). The new definition requires both ends of
r-significant edges to be hit, and the highway dimension of the star graph becomes n.

Note that the highway dimension of a network depends not only on the underlying graph
structure, but also on the length function ¢. This is natural, as HD is a strengthening of doubling
dimension, which is a property of the metric induced by £.

The theory of HD is helpful for developing other shortest path algorithms and route planning
services for road networks. In particular, our notion of SPHS has inspired practical algorithms for
computing improved contraction orderings [4]. Moreover, the ideas behind HD have been used to
develop new algorithms to compute alternative paths [5] and shortest path corridors [24], as well
as a new approach to computing shortest path trees that can take advantage of modern CPU and
GPU architectures [21].

We have also introduced a model of road network formation that leads to constant HD net-
works. An experimental study of this model [15] shows that hierarchical algorithms (CH and RE)
perform well on these networks, further validating our theoretical analysis.

The notion of highway dimension explains some of the behavior of routing algorithms, but
the algorithms seem to perform better than our bounds imply. Although it is possible that our
time and space bounds on query complexity can be improved, a recent paper [51] shows that the
O(nhlog D) bound on the number of shortcuts is tight for a wide range of parameters h, n, and
D. Other properties of road networks, such as the fact that they have very small separators [23]
(better than what planarity would guarantee), may also contribute to good practical performance.
In fact, algorithms based only on this fact can be quite fast in practice [22], though not as fast as
those that use the shortest path structure on graphs with strong hierarchies. However, hierarchy-
based algorithms tend to be more sensitive to metric changes. A related recent paper [11] studies
the theoretical performance of CH with respect to the maximum HD value over all possible
metrics.

While our theoretical results apply to undirected graphs, real road networks are directed, and
practical variants of the algorithms we study work very well on such inputs. One can try to extend
our results to directed networks. One possible approach is to define directed balls in a natural
way. Although one could define HD and SPHS in the directed case, our proof of Theorem 4.2
would not work. One way to extend the results would be to use an alternative definition of HD: a
graph has HD h if h is the smallest integer for which an (r, h)-SPHS exists for all r. Another way
to extend the results is to assume that the asymmetry is bounded, i.e., dist(v,w) and dist(w, v)
are within a constant factor of each other. Note, however, that for directed graphs the relationship
to doubling dimension will not hold, as metrics are symmetric by definition.
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Other variants of HD may prove to be interesting as well. One could, for example, use a
cardinality-based definition, where instead of a balls of radius r one considers balls of cardinality
R. Another possibility is to study the average-case highway dimension: at each scale r, instead of
bounding the maximum r-neighborhood hitting set size, bound the average hitting set size. This
definition may give a better explanation for the practical performance of various algorithms.

An interesting avenue for future research is an experimental analysis of HD (and related
concepts) of real road networks. In particular, it would be useful to measure the HD (which is
determined by the maximum hitting set size) for specific inputs, as well as the distribution of
the hitting set sizes for different r and different centers. Unfortunately the underlying problems
are NP-hard, and even our polynomial-time approximation algorithm is too slow to be practical
for continental road networks. One can also attempt to derive lower bounds on the HD of real
networks; a related paper [29] proves instance-specific lower bounds on the number of transit
nodes.
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