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ABSTRACT 
With the progress in mobile computing, web services are 
increasingly delivered to their users through mobile apps, instead 
of web browsers. However, unlike the browser, which enforces 
origin-based security policies to mediate the interactions between 
the web content from different sources,  today’s mobile OSes do 
not have a comparable security mechanism to control the cross-
origin communications between apps, as well as those between an 
app and the web. As a result, a mobile user’s sensitive web 
resources could be exposed to the harms from a malicious origin.  

In this paper, we report the first systematic study on this mobile 
cross-origin risk. Our study inspects the main cross-origin 
channels on Android and iOS, including intent, scheme and web-
accessing utility classes, and further analyzes the ways popular 
web services (e.g., Facebook, Dropbox, etc.) and their apps utilize 
those channels to serve other apps. The research shows that lack 
of origin-based protection opens the door to a wide spectrum of 
cross-origin attacks. These attacks are unique to mobile platforms, 
and their consequences are serious: for example, using carefully 
designed techniques for mobile cross-site scripting and request 
forgery, an unauthorized party can obtain a mobile user’s 
Facebook/Dropbox authentication credentials and record her text 
input. We report our findings to related software vendors, who all 
acknowledged their importance. To address this threat, we 
designed an origin-based protection mechanism, called Morbs, for 
mobile OSes. Morbs labels every message with its origin 
information, lets developers easily specify security policies, and 
enforce the policies on the mobile channels based on origins. Our 
evaluation demonstrates the effectiveness of our new technique in 
defeating unauthorized origin crossing, its efficiency and the 
convenience for the developers to use such protection. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – access 
controls, invasive software 

General Terms 
Design, Experimentation, Security, Standardization. 

Keywords 
Android, iOS, same-origin policy, mobile platform. 

1. INTRODUCTION 
The popularity of smartphones, tablets and other mobile devices 
has brought in a plethora of software applications designed for 
running on these devices. Such applications, commonly known as 
apps, are typically used to deliver web services (data storage, 
social networking, web mails, etc.) through their compact user 
interfaces and simple program logic, which are tailored to mobile 
platforms. Moreover, other than interactions with their own web 
services, many of those apps are also built to work with other 
apps and services, leveraging the third-party’s resources to enrich 
their functionalities. This is a trend that echoes web-API 
integrations extensively utilized in developing traditional, 
browser-based web applications. Examples include the apps that 
support social login and data sharing through the services offered 
by Facebook, Twitter, Google Plus, etc.  

Mobile origin-crossing hazard. Those mobile apps essentially 
play the same role as traditional web browsers at the client side. 
However, different from conventional web applications, which 
enjoy browse-level protection for their sensitive data and critical 
resources (e.g., cookies), apps are hosted directly on mobile 
operating systems (e.g., Android, iOS), whose security 
mechanisms (such as Android’s permission and sandbox model) 
are mainly designed to safeguard those devices’ local resources 
(GPS locations, phone contacts, etc.). This naturally calls into 
question whether the apps’ web resources are also sufficiently 
protected under those OSes. More specifically, web browsers 
enforce the same origin policy (SOP), which prevents the 
dynamic web content (e.g., scripts) of one domain from directly 
accessing the resources from a different domain. When the 
domain boundary has to be crossed, a designated channel needs to 
go through to ensure proper mediation. An example is the 
postMessage channel [5], which a domain uses to send a message 
to another domain by explicitly specifying the recipient’s origin,  
and the browser mediates to ensure that only the content from that 
origin gets the message and the recipient is also well informed of 
the sender’s origin. Such origin-based protection has become a de 
facto security standard for a modern browser. However, it is not 
present on any channels provided by mobile OSes for apps to 
communicate with each other or the web. As a result, the web 
content or apps from an untrusted domain may gain unauthorized 
access to the web resources of other apps/websites through those 
channels, causing serious security consequences.  

As an example, consider the scheme mechanism [25][26] 
supported by Android and iOS, through which an app on 
phone/tablet can be invoked by a URL once it registers the URL’s 
scheme (e.g., the “youtube” part of “youtube://watch?token=xxx”, 
with “xxx” as the input parameter for the app). What an adversary 
can do is to post on Facebook a link that points to a malicious 
script hosted on his website. Once this link is clicked by the 
victim through the Facebook app on her iOS device, the script 
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starts to run within the app’s WebView instance, which is then 
redirected to a dynamically generated URL with the scheme of 
another app that the adversary wants to run on the victim’s device 
and the parameters he chooses. As a result, the target app will be 
invoked to blindly act on the adversary’s command, such as 
logging into his Dropbox account to record the victim’s inputs 
(Section 3.3.2), since the app is given no clue the origin (the 
adversary’s site) of the request. In another case, the Android 
mobile browser processing a URL with the “fbconnect://” scheme 
from the Facebook server will deliver the secret token on the URL 
to an app from an arbitrary origin, as long as it claims to be able 
to handle that scheme (Section 3.3.1).   

Such unauthorized origin crossing is related to the confused 
deputy problem [24] on mobile devices. Prior research on this 
subject, however, focuses on permission redelegation [10], which 
happens when an app with a permission requires sensitive system 
resources (e.g., a phone’s GPS location) on behalf of another app 
without that permission. The interactions between the two apps go 
through an Inter-Process Call (IPC) that delivers a message called 
intent from one app to invoke the other app’s Activity for services 
such as getting GPS coordinates. This intent channel can also be 
used to cross origins: for example, it allows an app from one 
origin to send intents to another app when the latter’s related 
Activity is accidentally made public, a mobile cross-site request 
forgery (CSRF) attack [27]. However, given that those prior 
studies primarily aim at protecting mobile devices’ local 
resources, the general problem has not been dug deeper: for 
example, it is not clear whether an app’s private Activity can still 
be invoked by the intent message from an unauthorized origin, not 
to mention the security implications of other channels (such as the 
URL scheme) that can also be used for crossing domains.  

Our findings. To better understand this critical security issue, we 
conducted the first systematic study on unauthorized origin-
crossing over mobile OSes, including Android and iOS.  In our 
study, we investigated all known channels that allow apps to cross 
domains, such as intent, scheme and utility classes for web 
communications, by dissecting popular apps like Facebook, 
Dropbox, Google Plus, Yelp, and their SDKs, to understand how 
they utilize these channels to serve other apps on different mobile 
OSes. Our study found 5 generic cross-origin weaknesses in those 
high-profile apps and SDKs, which can be exploited through 
CSRF, login CSRF and cross-site scripting (XSS). Many of those 
problems affect multiple apps and web services. They are unique 
to the communication channels on mobile OSes, which are 
fundamentally different from those within the browsers. The root 
cause of the vulnerabilities is the absence of origin-based 
protection. More specifically, due to missing origin information, 
an app or a mobile web service is often left with little clue about 
the true origin of an incoming message, nor does it have any 
control on where its outgoing message will be delivered to. 

The consequences of these cross-origin attacks are dire. They 
allow a malicious app to steal the mobile device owner’s 
Facebook, Dropbox authentication credentials, or even directly 
perform arbitrary operations on her Dropbox account (sharing, 
deleting, etc.) on Android.  On iOS, a remote adversary without 
direct access to any app on the victim’s device can stealthily log 
the phone into the adversary’s Dropbox account through Google 
Plus, Facebook apps. As a result, the victim’s text input on iPhone 
and iPad, her contacts and other confidential information are all 
exposed to the adversary once she uses popular editing and 
backup apps (e.g., PlainText, TopNotes, Nocs, Contacts Backup, 
etc.) that integrate Dropbox iOS SDK. We reported those 

problems to related parties, who all acknowledged the importance 
of our discoveries. We received over $7000 bounty for these 
findings, most of which were donated to charity. The details of 
such recognition together with demos of our attacks are posted 
online [31].   

Origin-based defense. Without any OS-level support, not only 
does app development become highly error-prone, but software 
manufacturers can also have hard time fixing the problems after 
they are discovered.  As examples, both Dropbox and Facebook 
need to spend a significant amount of effort to fix the security 
problems we discovered, which involves changing software 
architecture (Section 3.2.1) or deprecating some core features 
within their apps and SDKs (Section 3.3.1). To address these 
issues and facilitate convenient development of securer apps, we 
present in this paper the design of the first mobile origin-based 
defense mechanism, called Morbs. Our approach mediates all the 
cross-origin channels on Android and iOS, including intent, 
scheme and the utility classes for web communications, and 
enables a developer to specify to the OS authorized origins her 
app/website can receive requests from and/or send responses to. 

We implemented Morbs on Android in a way that fully preserves 
its compatibility with existing apps. Moreover, we show that 
through our mechanism, the developers can easily gain controls 
on all cross-origin events, avoiding the ordeal experienced by 
Facebook, Dropbox, and other companies. Our evaluation on the 
implementation also shows that it is both effective, stopping all 
the exploits we found, and efficient, incurring only a negligible 
impact on performance (< 1% overhead).  

The source code of Morbs is publicly available on GitHub [40].  

Contributions.  We summarize the paper’s contributions here:  

 New problem. Up to our knowledge, the research reported 
here is the first attempt to systematically understand 
unauthorized origin crossing on mobile OSes.  The discovery 
made by our study brings to light the presence of such 
vulnerabilities in high-profile apps and more importantly, the 
seriousness and pervasiveness of the problem.  

 New techniques.  We developed new origin-based protection 
for existing mobile OSes, which works with apps/websites to 
oversee the communication channels on these systems. 

 Implementation and evaluation.  We implemented our design 
on Android, and evaluated its effectiveness, efficiency, 
compatibility, and usability to the app developer.  

Roadmap.  The rest of the paper is organized as follows:    
Section 2 describes the mobile channels used for apps to 
communicate with each other or the web; Section 3 elaborates our 
study on mobile cross-origin problems and our findings; Section 4 
presents our defense mechanism Morbs, Section 5 reports the 
evaluation of our techniques; Section 6 compares our work with 
other related research; Section 7 concludes the paper and 
discusses the future research.  

2. MOBILE CHANNELS 
Today’s mobile OSes (including Android and iOS) provide 
various channels for apps to communicate with each other or the 
web. Those channels include intent, scheme, and web-accessing 
utility classes (which we elaborate later in the section). As shown 
in Figure 1, an app communicates with other apps through the 
intent or scheme channel. It can also invoke the browser to load a 
webpage using an intent and be triggered by the web content 
rendered in the browser through a URL scheme. Moreover, the 



app can simply acquire and display any web content through the 
WebView class, which embeds a browser-like widget within the 
app, and directly talks to a web server using the methods provided 
by the HttpClient classes. Note that the intent channel is Android-
specific, while others are also available on iOS. Unlike the 
domain-crossing mechanisms within a browser (e.g., 
postMessage), these mobile channels are not under the origin-
based protection: messages exchanged do not carry any origin 
information that the sender/receiver can inspect, and are 
completely unmediated with regard to where they come from.  
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Figure 1 Mobile communication channels 

Here we elaborate how those channels work: 

 Intent.  An intent is an inter-process message delivered 
through an IPC.  It is a channel only supported by Android. 
Through intent messaging, one app on Android can activate the 
background Services, Activities (application components with 
user interfaces) or Broadcast-Receivers of another app, as well as 
the Activities/Services of its own. Intent invocation is conducted 
through APIs such as startActivity, startActivityForResult, and 
startService. An app developer can specify a set of intents the app 
can receive from other apps in its manifest file. However, the 
intent channel never labels the origin of each message (i.e., who 
created it). This causes the problem we elaborate in Section 3.2.1.  

 URL scheme.  As discussed before, scheme is supported 
by both Android and iOS, which allows an app or website to use a 
URL to invoke another app (on iOS) or its Activity/Service 
components (on Android) that claim the scheme of that URL. For 
example, the URL “youtube://watch?token=xxx” can be  used to 
start the YouTube app to play the video “xxx”. When such a URL 
is loaded in the mobile browser or a WebView instance, the OS 
will launch the target app with this URL as input. In addition, an 
app can also invoke other apps through the schemes they 
registered. On Android, scheme invocation is implemented 
through the intent channel: a scheme URL is wrapped in an intent 
instance, and invoked by an app through the same set of APIs that 
also serve intent messages, such as startActivity.  On iOS, this is 
done through openURL API. Again, the OSes do not mediate the 
scheme-based invocations using origins.  

 Web-accessing utility classes. Mobile platforms provide 
several utility classes for apps to communicate with the web. We 
call them web-accessing utility classes. For example, both 

Android and iOS support the WebView class (called UIWebView 
on iOS), which an app can embed for displaying webpages. An 
app can interact with its WebView instance through a set of 
method calls or callbacks. For example, it can call loadURL on 
Android (loadRequest on iOS) with a URL to load a page into the 
instance; it can also register events, like URL loading, to inspect 
every URL its WebView instance processes through a callback 
shouldStartLoadWithRequest (iOS) or shouldOverrideUrlLoading 
(Android). In addition, the mobile platforms provide utility 
classes for an app to directly talk to a web server without loading 
its web content. HttpClient [36] or HttpURLConnection [37] 
(Android) and NSURLConnection [38] [39] (iOS) are such 
examples. We call those classes (for direct communication with 
web servers) HttpClient classes. Origin-based protection is not in 
the picture here: e.g., a WebView/HttpClient instance never labels 
which app is the origin of an HTTP request. 

3. ATTACKS 
In this section, we elaborate our study on unauthorized origin 
crossing on mobile OSes. What we want to understand here are 
whether the ways real-world apps utilize those channels for cross-
origin communications indeed expose them to attackers, and 
whether those apps have proper means to mitigate such a threat 
and safeguard their operations over those channels. For this 
purpose, we systematically analyzed high-profile apps on both 
Android and iOS, including the official apps of Facebook and 
Dropbox and their SDKs, and the official Google Plus and Yelp 
app. Note that these SDKs are very popular. They have been 
integrated into many real-world apps. Problems discovered there 
may have a broad impact. In our research, we looked into how 
those apps use the aforementioned cross-origin channels to 
interact with other apps, or the web. The study reveals the 
pervasive presence of subtle yet serious cross-origin 
vulnerabilities, allowing an unauthorized party to activate an app 
remotely with arbitrary input parameters, call its internal 
Activities, steal user’s authentication credentials and even directly 
manipulate its operations.  

Such discoveries were made through an in-depth analysis on the 
code and operations of those apps. Specifically, for Android apps, 
we decompiled the binary code of their latest versions using 
apktool [33] and AndroChef Java Decompiler [34] in order to 
analyze their program logic related to the mobile channels. When 
it comes to iOS apps, decompiling their executables is often hard. 
Therefore, we resorted to a black-box traffic analysis to 
understand those apps’ interactions with other parties (apps, web 
services, etc.). We also studied the SDKs provided by Facebook 
and Dropbox, whose source code is publically available. In the 
rest of the section, we report our findings. The demos of our 
exploits on those apps and other supplementary materials are 
posted on the web [31]. 

3.1 Adversary Model 
Our adversary model describes practical threats to different 
mobile platforms. On Android, we consider an adversary who can 
trick a user into installing a malicious app on her device. That 
app, however, may not have any permission considered to be 
dangerous by Android. Also, threats to Android can come directly 
from the web, when the victim uses her mobile app or browser to 
view malicious web content posted by the adversary on a website. 
On iOS, we only consider this remote threat (from a malicious 
website), not the malicious app, given the fact that Apple’s 
vetting process on iOS apps is more restrictive than that of 
Android apps, and few malicious apps have been reported so far.  



Note that we treated Android and iOS differently to respect the 
realistic threats those systems face: we could have found more 
issues had we assumed the presence of malicious apps on iOS. 
Finally, we do not consider an adversary with OS-level controls.  

3.2 Exploiting the Intent Channel 
The security implication of the intent channel on Android has 
been studied in prior research [10][27]. All existing work, 
however, focuses on how such a channel can be leveraged by a 
malicious app to invoke a legitimate app’s Activities that are 
accidentally made public by the app’s developer.  In our research, 
we found that even the private Activities not exposed to the 
public, which is meant to be called only by the app itself, can be 
triggered by an app from an unauthorized origin.  This problem 
has a serious consequence, letting the malicious app gain great 
control of the victim app. We discovered this vulnerability on 
both the Facebook app and the Dropbox app.  Here we use the 
Dropbox app as an example to explain where the problem is. 

3.2.1 Next Intent  (Android) 
An Android app can have two types of Activities, private or 
public. By default, an Activity is private, meaning that only the 
code inside the app can invoke it. When the app developer sets the 
“exported” property of the Activity to true, or she declares at least 
one intent for the Activity in the manifest of the app, the Activity 
becomes public, in which case other apps can invoke the Activity 
with an intent instance as an argument. 

Our analysis on the Dropbox app reveals that the app exposes a 
few Activities, such as login, which is meant to be public.  An 
interesting observation is that when any of its public Activities are 
invoked by an intent instance, the Activity first needs to check 
whether the user is in a logged-in status. If not, it redirects him to 
the login Activity before proceeding with its own task. 
Specifically, the Activity creates a new intent instance, in which 
the current intent, the one it receives from another app, is saved 
under the key “com.dropbox.activity.extra.NEXT_INTENT” 
(called “NEXT_INTENT” here). The new intent instance is then 
issued by the app itself to invoke LoginOrNewAcctActivity (the 
login Activity). Once the user completes her login, the login 
Activity retrieves the original intent instance from 
“NEXT_INTENT”, and uses it to invoke the unfinished public 
Activity to fulfill its task. 

The cross-origin exploit. It turns out that this next-intent feature 
can be exploited by a malicious app to cross origins and invoke 
the Dropbox app’s private Activity. Since the login Activity is 
public, a malicious app can trigger it with an intent instance, in 
which the attacker puts another intent instance under the 
“NEXT_INTENT” key. The second instance points to a private 
Activity of the Dropbox app.  This login intent will not be noticed 
by the user if she is already in the logged-in status, and cause little 
suspicion if she is not, simply because it is the authentic Dropbox 
app that asks the user to log in. Either way, once the login is done, 
LoginOrNewAcctActivity retrieves the intent content under the 
“NEXT_INTENT” key and use it to call the startActivity API. 
Since startActivity is now invoked by the Dropbox app itself, all 
of its Activities, including those private ones, can be executed, 
even though the next-intent actually comes from a different 
origin, the malicious app. The root cause of this problem is that 
the startActivity API never checks (and also has no means to 
check) the provenance of the intent under the “NEXT_INTENT” 
key, due to the lack of origin-based protection on the mobile OS. 
In the absence of the origin information (here, the app creating the 

intent), even an app’s private Activity can be exposed to 
unauthorized parties.  

The problem goes beyond a single app. In the Facebook app, we 
discovered the same problem in a public Activity called 
UriAuthHandler. The Facebook app also checks the login status, 
and directs the user to the login Activity, and uses 
“CALLING_INTENT” (equivalent to “NEXT_INTENT”) as a 
key to store the current intent instance. This channel is equally 
vulnerable and can be abused in the same way, as found in our 
study. We suspect that other apps with this type of next-intent 
feature are also subject to the same exploit. 

Attacks and consequences. Once the origin is crossed 
illegitimately, the door is open to all kinds of abuses. In our 
research, we implemented two attacks (one against the Dropbox 
app, another one against the Facebook app) to demonstrate the 
serious security consequences of the problem.  

Our attack on the Facebook app leverages a private Activity 
LoggedOutWebViewActivity. The Activity takes a URL as an 
input parameter and loads the content pointed by the URL into a 
WebView instance. What can happen here is that a malicious app 
running on the same device can drop a Javascript file onto its SD 
card (Secure Digital memory card) and exploit the next-intent 
feature to run LoggedOutWebViewActivity with the URL 
pointing to that Javascript file. Since the SD card is viewed as a 
local storage by Android, the script is allowed to access contents 
from all Internet domains [32]. Specifically in our attack, the 
script injected can make arbitrary AJAX requests to 
facebook.com and read the contents of the responses. Given that 
all such requests carry the user’s Facebook cookie, this cross-
origin scripting ends up allowing the adversary to perform 
arbitrary operations on the user’s account, and obtain all private 
data.  

For the Dropbox app, we exploited a private Activity 
VideoPlayerActivity, which has an input parameter “EXTRA_ 
METADATA_URL” that specifies a URL from which to fetch 
the metadata for a video file. In a normal situation, this URL 
points to a file kept by dropbox.com. However, our next-intent 
exploit enables a malicious app to set the URL to arbitrary web 
domain, such as “http://attacker.com”. When the Dropbox app 
makes a request with that URL, it always assumes the recipient to 
be dropbox.com and attaches to the request an authentication 
header, as opposed to applying the conventional origin-based 
cookie policy. Since right now, EXTRA_METADATA_URL 
points to “http://attacker.com”, the adversary gets the header and 
can use it to gain a full access to the user’s Dropbox account.  

Vendor responses. Fixing this problem turns out to be much 
more complicated than it appears to be. Specifically, the Dropbox 
security team told us they were “working on changing the 
architecture in our Android app to make that API secure”, but the 
next-intent feature is “unfortunately also very useful for us”. 
Facebook also said that this problem “will take some time to fix”. 
As an acknowledgement to the importance of our work, Facebook 
awarded us $5000 bounty for finding this vulnerability, which we 
donated to charity. Dropbox also awarded us 100GB free storage 
for each author, and included our names on their special thanks 
page.  The details of those software vendors’ responses can be 
found here [31]. From our communications with the vendors, it 
can be seen that addressing this next-intent problem from the 
developer side alone can be hard. In Section 4, we show how a 
well-thought-out OS-level support can make this type of flaws 
more convenient to fix.  



3.3 Abusing the Scheme Channel 
As discussed in Section 2, scheme is an important cross-origin 
channel supported by both Android and iOS. Through this 
channel, an app on those OSes can be invoked by a URL (with the 
scheme the app claims) from another app or from a webpage in a 
WebView instance or a browser (see Figure 1 in Section 2).  In 
our research, we found that this channel can be easily abused for 
unauthorized origin crossing, enabling a malicious app to acquire 
a user’s authentication token with Facebook or perform a login 
CSRF on iOS, as described below.  

3.3.1 Fbconnect  (Android) 
Facebook provides a Dialog mechanism [35] through its apps and 
SDKs for both Android and iOS. Using the mechanism, an app 
can send through the Facebook official app a Dialog request to 
query the Facebook server for sensitive user data (e.g., access 
token) or operate on the user’s account (e.g., sharing a post). 
Among all the arguments carried by the Dialog request are 
client_id, the ID assigned to the sender app by Facebook, and 
redirect_uri, which is set to “fbconnect://success”.  In the case 
that the user’s access token is requested, the Facebook server 
displays a dialog within Facebook app’s WebView instance to ask 
for the user’s consent, and upon receiving it, the server redirects 
the WebView instance to “fbconnect://success#...”, where the 
secret token is attached to the “…” part of the message. This 
token is then extracted by the Facebook app, which later 
dispatches it to the target app (i.e., the sender of the Dialog 
request) associated with the client_id.   

The URL “fbconnect://success#...” is just used for delivering data 
from the Facebook server to its official app. However, if this URL 
is loaded in the mobile browser, a serious attack can happen. 
More specifically, a malicious app on the device first registers this 
fbconnect:// scheme, and then invokes the browser to load a 
Dialog URL, in an attempt to request the sensitive data of another 
app (e.g., the TexasHoldem app) from the Facebook server. This 
can be easily done by setting client_id in the URL to that of 
TexasHoldem because an app’s client_id is public. Also, within 
the browser, the dialog may not even show up to alert the user, if 
it is already in the logged-in status. As a result, Facebook will 
redirect the browser to “fbconnect://success#...”.  Unlike the 
Facebook app, the browser treats this URL as a scheme 
invocation, and therefore will trigger the scheme’s handler (i.e., 
the malicious app) with the URL as an argument. This exposes to 
the malicious app the victim’s Facebook secret token for the 
TexasHoldem app. We tested the attack on an Android device 
(Galaxy Tab 2) and confirmed that the malicious app can get the 
user’s access token, authorization code and other secrets. In this 
case, we can see that although the Facebook server is the sender 
of the scheme message, it cannot control which app to receive the 
message through the mobile browser. This is different from what 
happens within a web browser: for example, if a script from 
a.com sends a message to b.com through the postMessage API, it 
can specify the recipient domain and the browser then guarantees 
that only b.com gets the message. On today’s mobile OS, 
however, there is no way that the Facebook server can specify the 
authorized receiver of its scheme URL, not to mention any 
mechanism to enforce this security policy.   

Also note that the fbconnect problem here is present on both 
Android and iOS.  However, given that iOS malware is rare, the 
risk it poses is mainly to Android (see our adversary model).  

Vendor response. Without the OS support, this problem turns out 
to be even harder to fix than the next-intent issue. We reported it 

to Facebook on Sept. 11, 2012. On Jan. 22, 2013, Facebook 
security team told us that they took steps to “ensure that popular 
app stores block apps that attempt to register this URI schema”. 
Moreover, they were “crafting a formal deprecation plan for the 
fbconnect schema”, but this plan needs a “several month 
deprecation period” because “all of our embedded SDKs currently 
depend upon this functionality”. On March 20, 2013, Facebook 
informed us that they “crafted a plan for the deprecation of the 
fbconnect schema in the next major release”. They expect to “see 
this disappear entirely as users continue to upgrade”. They 
awarded us a bounty of $1500 for this finding, which we donated 
to charity.  

3.3.2 Invoking Apps from the Web (Android and iOS) 
In this section, we elaborate a new security threat that comes from 
a malicious website the user visits with a mobile device. The root 
cause of the problem has been confirmed to exist on both Android 
and iOS. For the simplicity of presentation, here we just use iOS 
as an example to explain the problem.  

Mobile apps typically use their WebView instances to render web 
content. Such content could come from less trustworthy web 
sources, such as public posts on Facebook and restaurant reviews 
from the strangers on Yelp. In our research, we found that during 
such rendering of web content, whenever the WebView instance 
of an app is directed by the content to a URL with a scheme 
registered by another app on the same device, the latter will be 
automatically invoked, without being noticed by the user, and act 
on the parameters given by the URL. This is dangerous because 
the app receiving the scheme message which carries the URL 
cannot distinguish whether this message comes from the sender 
app itself or from the web content within the app’s WebView 
instance, which causes the confusion about the message’s true 
origin. Here we use two examples to show the consequences of 
this confusion. 

Login CSRF attacks on Dropbox iOS SDK. We studied the 
latest version (v.1.3.3) of Dropbox iOS SDK, which enables a 
3rd-party app on iOS to link to the device owner’s Dropbox 
account, using Dropbox as the app’s storage. Here, we use 
PlainText [41], a popular text-editing app, as an example to 
explain what can go wrong, though apps using Dropbox iOS SDK 
are all vulnerable. Specifically, after the mobile user authorizes 
this account linking, the Dropbox app delivers to the PlainText 
app a scheme URL, which is in the following format: db-
<APP_ID>://1/connect?oauth_token&oauth_token_secret&uid. 
The URL includes 3 arguments, oauth_token, oauth_token_secret, 
and uid, which the PlainText app uses to communicate with the 
Dropbox server to complete the account linking. However, we 
found that the linking process can be exploited to launch a serious 
login CSRF attack, without any malicious app running on the 
user’s device. Specifically, in our attack, the adversary uses the 3 
URL arguments collected from his own device to build a URL: 
db-<APP_ID>://1/connect?oauth_token’&oauth_token_ secret’ & 
uid’, where oauth_token’, oauth_token _secret’, and uid’ are the 
adversary’s Dropbox credentials, and APP_ID identifies the 
PlainText app. The attacker shares a malicious web URL (e.g. 
pointing to attacker.com) on his Google Plus status updates or 
comments. Once the victim user clicks it within the Google Plus 
app on her device, attacker.com is loaded in the app’s WebView 
instance, and redirects the WebView to the scheme URL. As a 
result, the PlainText app is invoked with the URL as input. The 
app treats the URL as part of the scheme message from the 
Google Plus app, without knowing that it actually comes from the 



web content of attacker.com rendered in the Google Plus app’s 
WebView. It is then unknowingly linked to the attacker's 
Dropbox account. When this happens, the app automatically 
sends the user's text input to the attacker's account. A demo of this 
attack is posted online [31]. We also checked a few other popular 
iPad apps using Dropbox SDK, including TopNotes, Nocs, and 
Contacts Backup to Dropbox. They are all found vulnerable. 

Bypassing Facebook’s app authentication mechanism. Many 
apps using Facebook iOS SDK, such as Yelp and TripAdvisor, 
may also render untrusted web contents within their WebView 
instances.  Below we show that an attacker who posts a malicious 
link on Yelp can bypass an important mechanism Facebook uses 
to authenticate 3rd-party iOS apps. Specifically, when app A 
invokes the Facebook app through schemes such as “fbauth://”, 
the Facebook app sends the app ID specified by app A and its 
bundle ID retrieved from the OS to the Facebook server for 
authentication. This prevents app A from impersonating another 
app to communicate with the Facebook server because it cannot 
manipulate the bundle ID. However, this protection does not work 
when a malicious page is loaded to the WebView instance of the 
Yelp app because the Facebook app cannot distinguish whether an 
incoming scheme message is from the Yelp app or a webpage in 
its WebView (the bundle ID from the OS always points to the 
Yelp app). Therefore, whoever posts a comment on Yelp acquires 
the same privilege as Yelp has on the victim’s Facebook account. 

Vendor response. We reported these problems to Dropbox, 
Google, and Facebook. For the first problem (login CSRF through 
Dropbox SDK), Dropbox started its investigation immediately 
after receiving our report. They have implemented a fix that needs 
to change both the SDKs and the Dropbox official apps on all 
platforms (including Android and iOS). Facebook mitigated the 
threat by deploying a whitelist inside the WebView instance of its 
official app, which only allows http, https, and ftp schemes. 
Google has not taken any actions so far [31]. Facebook awarded 
us $1000 for this finding. We also reported to Facebook the 
second case (bypassing its app authentication mechanism on iOS), 
which is still under investigation. 

3.4 Attacks on Web-Accessing Utility Classes 
As shown in Figure 1, besides intent and scheme, origins can also 
be crossed on a mobile OS when an app directly calls the methods 
of the WebView/HttpClient classes or registers their callback 
events. Here we show how this channel can be abused.  

3.4.1 Exploiting Callbacks (iOS) 
On iOS, we studied a WebView callback method the Facebook 
app registers, shouldStartLoadWithRequest, which is triggered 
each time the app’s WebView instance is navigated to a link.  If 
this link is in the form “fbrpc://appID=xyz&foo=123”,  the 
callback method (provided by Facebook) creates a new URL 
“fbxyz://foo=123” to invoke an app with the appID “xyz” and set 
its input argument to “123”. Note that this operation is different 
from the scheme-based invocation (from a web domain) described 
in Section 3.3.2, as in that case, a website directly runs a URL to 
invoke the target app on the mobile device (the sender of the 
scheme message is the website), while here such a URL is 
actually created by the callback method, which is implemented by 
the Facebook app (the sender is the Facebook app). 

This mechanism can be exploited when a malicious link such as 
attacker.com is clicked by the user through her Facebook app. 
When this happens, the malicious content loaded to the WebView 

instance redirects to the fbrpc URL. Then the callback of the 
Facebook app generates a new scheme URL to launch any app the 
adversary wants to run on the victim’s device with any argument 
value he sets. For example, we found that in this way, a popular 
app Pinterest can be activated by the adversary to sign onto the 
adversary’s account on the victim’s device, so as to dump the 
user’s data with Pinterest into the adversary’s account.  

3.4.2 Exploiting Header-attachment  (Android) 
We also studied the HttpClient class, which is used by Android 
apps for direct HTTP communications with web servers. 
HttpClient allows a developer to specify the URL of a request and 
an HTTP header. The header is attached to the request. In the 
absence of origin-based protection, any header, including the one 
used for authentication, can be attached to a request sent to any 
website. A prominent example is the attack case described in 
Section 3.2.1: the adversary invokes the Dropbox app’s Activity 
VideoPlayerActivity, which utilizes an HttpClient instance to load 
metadata from a URL with the user’s authentication header 
attached. Since the URL is manipulated by the adversary to point 
to attacker.com, without origin checks, the authentication header 
goes to the adversary.  

Note that this header-attachment issue by itself is a security flaw, 
as admitted by the Dropbox security team (“Attaching the 
Authorization header to non-Dropbox URLs was definitely a 
serious security bug” [31]).  Actually the attack on a phone user’s 
Dropbox account as described in Section 3.2.1 is built upon two 
security flaws, i.e., the next-intent and header-attachment issue. 

4. ORIGIN-BASED DEFENSE 
As described in the prior section, unlike web browsers, today’s 
mobile OSes (i.e., Android and iOS) do not offer origin protection 
to the channels used by apps to communicate with each other or 
the web. As a result, cross-origin interactions on those systems 
can be easily abused to undermine the user’s security and privacy, 
which even happens to highly popular apps built by security-
savvy developers. Moreover, even after the problems were 
reported, the developers still had hard time in fixing them. This 
makes us believe that a generic solution to the problem should be 
built into mobile OSes, which have the observations of messages’ 
origins, and the means to mediate the communication over those 
channels.  In this section, we elaborate the first design for such 
protection, called Morbs (mobile origin based security), and its 
implementation on Android. We released the source code of the 
Android implementation on GitHub [40]. 

4.1 Design 
Overview. Morbs is generic to iOS and Android. It is designed to 
achieve browser-like origin protection: 1) it exposes to the 
developers the true origins of the messages their apps/websites 
receive, enabling them to build protections based on such 
information; 2) it allows the developers to specify their intentions, 
in the form of whitelists of origins their apps/websites can get 
messages from and send messages to, and enforces policies 
transparently within the OS.  

More specifically, an app or a web service that asks for origin 
protection first communicates its intended sender/recipient origins 
(the whitelists) to the OS. These policies are enforced by a 
reference monitor that mediates different mobile channels.  The 
reference monitor is triggered by the messages delivered through 
these channels. Once invoked, it identifies the origins of the 
messages, which are either apps or web domains, and checks their 



policy compliance against the whitelists. Those running against 
the policies are blocked by Morbs.   

A unique feature of Morbs is its capability to connect web 
activities (within WebView instances or the mobile browser) to 
the events that happen within the OS.  For example, it exposes the 
true origin of a message to a recipient app when confusion arises 
on whether the message comes from another app or the web 
domain visited by that app’s WebView instance. It also helps a 
web server specify to a mobile device a designate app on the 
device that can receive the server’s scheme message. This 
capability is crucial for defeating unauthorized origin crossing on 
mobile devices. Following we elaborate our design. 

Defining mobile origin. For web content, an origin is defined as 
a combination of scheme, host name, and port number [4]. 
However, this definition is insufficient for the origin protection on 
mobile platforms: here we need to consider not only web origins 
but also app identities and other local origins.  To maintain the 
consistency with the web origins, we adopted a URL-like 
representation for those new origins, such as “app://<appID>”,  
where <appID> is an app’s package name (Android) or bundle ID 
(iOS), for example, “app://com.facebook.katana” for the 
Facebook app on Android and “app://com.getdropbox.Dropbox” 
for the Dropbox app on iOS. Likewise, messages from trusted 
sources like the OS are given a local origin “local://”. For web 
domains, we adhere to the traditional origin definition [4]. 

Exposing origins. When a message is created by an app/website, 
Morbs sets the origin attribute (added by our approach) of the 
message to its creator (i.e., an app, a web domain, or local). This 
attribute always goes with the message within the OS, until it gets 
to its recipient app/website, where we remove the attribute. To 
help developers build their own protection, our design exposes the 
origin of a message through existing and new APIs. For example, 
on iOS, we can enhance the API for retrieving the bundle ID of 
the sender of a scheme message by returning the true origin of the 
message, which could be the domain of the web content within 
that app’s WebView instance. In this way, Facebook will be able 
to find out that the scheme message it gets from the Yelp app 
actually comes from a webpage Yelp displays, not the app itself. 
Therefore, the exploit described in Section 3.3.2 will be defeated. 

Default policy. It is well known that the browser by default 
enforces the SOP to the web content it hosts, but the same policy 
cannot be applied to all the apps on mobile platforms as it may 
disrupt their legitimate cross-origin communications. Our strategy 
is to implement the SOP only on the totally unexpected and 
insecure channel. An example is the next-intent communication 
described in Section 3.2.1, which is unexpected, since the private 
Activity of an app should only be invoked by the app’s own intent 
when calling the startActivity API. Therefore, in this scenario, the 
SOP is always enforced.  

Setting policies. Morbs allows a policy to be specified on a 
channel between an app and a web domain (web policy), as well 
as between two apps (app policy). An app policy defines 
legitimate inter-app communication, which goes through intent or 
scheme. A web policy is about app-web interactions, through 
scheme or web-accessing utility classes.  An app or a website sets 
a policy on a specific channel to notify Morbs the list of senders 
authorized to send messages to it, and the list of recipients 
allowed to receive the messages it sends.  

Setting a policy can be done through a new API setOriginPolicy, 
which an app can directly call.  Here is its specification: 

 
Here, type identifies the type of the channel (intent, scheme, or 
utility class), senderOrRecipient specifies sender or recipient, 
channelID indicates the channel ID, and origins is the whitelist. 
Once invoked, setOriginPolicy first identifies a channel by type, 
and channelID, which is an OS-wide unique string. For example, 
the ID for the intent channel that triggers LoginActivity within the 
Facebook app is “com.facebook.katana.LoginActivity”, in which 
“com.facebook.katana” is the Facebook app’s package name. For 
a scheme, its channel ID is the corresponding scheme field on a 
URL. For web-accessing utility classes, they are identified by 
their class instances within an app. After a channel is identified, 
the API then extracts the whitelist that regulates the sender or the 
recipient (specified in senderOrRecipient) through this channel 
from the origins parameter. 

Although setOriginPolicy offers a generic interface for policy 
specification, it cannot be directly invoked by a website to set its 
policies. To address this problem, Morbs provides mechanisms 
for indirectly accessing this API, including a JavaScript API 
setMobileAllowedOrigins, through which the dynamic content 
from a website can set policies within the mobile browser or a 
WebView instance, and a header mobile-allowed-origins in HTTP 
responses that inform the browser or a WebView instance of the 
parties on the device allowed to get the message. The app 
developer can also leverage other indirect mechanisms to define 
her policies whenever she is building the app’s functionality over 
a mobile channel. Specifically, Morbs allows the developer to set 
her policies regarding a scheme/intent her app claims within the 
app’s manifest file (for Android) or .plist (for iOS), under a new 
property allowedOrigins.  In this way, she can turn on our origin 
protection for her app without changing its code. Other ways for 
policy setting include a new argument allowedOrigins for the API 
that delivers scheme/intent messages, and a new API 
setAllowedOrigins used to define policies for utility classes such 
as WebView and HttpClient. An advantage of using these indirect 
ways is that they only require one argument (i.e., origins) from 
the developer because other arguments are set by default. 

Enforcing policies.  Morbs runs a reference monitor to enforce 
security policies on different channels. Whenever a message is 
delivered over a channel, the reference monitor is triggered to 
identify its origin and calls a function checkOriginPolicy to check 
its policy compliance. The function’s specification is as follows: 

 
Intuitively, the function searches Morbs policy base to find out 
whether the current sender (specified in the from argument) is 
allowed to deliver the message to the recipient (to) through the 
specific channel (type and channelID). Note that 
checkOriginPolicy needs to be called twice (one for checking the 
sender origin against the recipient’s policy and the other for 
checking the recipient origin against the sender’s policy). The 
message is allowed to go through only if both checks succeed.  

Both setOriginPolicy and checkOriginPolicy operate on the 
Morbs policy base that keeps all policies. setOriginPolicy inserts 
a policy into the database and checkOriginPolicy searches the 
database for an applicable policy, checking whether a 
sender/recipient origin is on the whitelist included in the policy. 
The performance of this compliance check is critical because it 
needs to be invoked for every message going through these 

bool checkOriginPolicy(type, senderOrRecipient, channelID, from, to) 

void setOriginPolicy(type, senderOrRecipient, channelID, origins) 



channels. To make it efficient, Morbs leverages the hash-table 
search to quickly locate a target within the database. 
4.2 Implementation 
We implemented our design on Android (Figure 2).  At the center 
of our system are the setOriginPolicy API and the 
ReferenceMonitor class, in which the most important function is 
checkOriginPolicy. They were built into the Thread class of the 
Dalvik Virtual Machine. The setOriginPolicy API is open to all 
apps, while ReferenceMonitor is kept for the OS, which is only 
accessible to the code running inside the Android OS kernel.  
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Figure 2 The framework of Morbs on Android 

In the presence of the centralized policy compliance check 
(checkOriginPolicy), the task of ReferenceMonitor (i.e., policy 
enforcement) becomes trivial:  all we need to do here is pulling 
the arguments, invoking checkOriginPolicy and raising an 
exception to drop a message when the check fails. In our 
implementation, the ReferenceMonitor class is used in the OS 
components related to these channels to conduct mediation.  
Specifically, for intent and scheme, the enforcement code was 
placed within the API startActivityForResult, which needs to be 
called by startActivity, when a message delivered through those 
channels attempts to start an Activity. Note that we chose not to 
do the security checks within the IPC mechanism: Android does 
not recommend inspecting intent data in IPC because the intent 
instances are serialized for high performance data transport [29]. 
For mediating web-app communications, we changed the 
handleMessage method within both the WebViewCore class and 
the CallbackProxy class. The two methods are the focal point of 
mobile browsers and WebView instances: all method invocations 
and callback handling from apps need to go through them. In 
addition, the execute method of HttpClient class was used to 
mediate apps’ direct communication with web servers. 

Challenge I: origin identification.  Morbs attaches an origin 
attribute to every message exchanged through the mobile 
channels. On Android, both intent and scheme channels utilize the 
intent messages (Section 2). The constructor for generating an 
intent instance is hooked in our implementation to label an intent 
message with its app origin. Specifically, we added an origin 
property to the intent class. When the constructor is creating a 
new intent instance, it retrieves the package name of the app 
initiating the intent and fills in the origin property with the 
package name.  For example, when the initiator is the Facebook 
app, the origin property should be marked as “app://com. 
facebook.katana”, in which “com.facebook.katana” is the package 

name of Facebook app. However, this origin is not easy to 
identify in practice, since there is no API to help us find out the 
initiator directly. A simple solution is to get the whole call stack 
from the OS through getStackTrace API, and then inspect it to 
find out the caller. This approach turns out to be very expensive: 
in our test, extracting the call stack takes 1.35 ms in average. Our 
solution is to add an origin property to each thread that hosts an 
app. When the thread is created, the app’s origin is attached to the 
property. Once an intent is initiated, the constructor then copies 
the origin information from the thread to the intent instance.  

Challenge II: response inspection. To enable a web server to set 
its policies to a mobile device, Morbs needs to inspect the HTTP 
response to find the header mobile-allowed-origins. The response 
is processed by Android’s native C++ libraries. Morbs (written in 
Java) cannot directly access it. In our implementation, we 
managed to get access to the header using Java Native Interface 
(JNI) [30]. JNI provides an API called onReceivedData through 
which C++ code can send messages to Java code. To inform 
Morbs of the content of the header, we modified the C++ code to 
identify the header mobile-allowed-origins within HTTP 
responses, and then call onReceivedData to deliver all policies 
described there to WebViewCore, where Morbs uses 
setOriginPolicy to complete this policy setting process. 

5. EVALUATION 
We evaluated the general design of Morbs and its implementation 
on Android to understand its effectiveness, performance, 
compatibility and utility to the app developers. 

5.1 Effectiveness 
We ran our implementation against the aforementioned cross-
origin attacks (Section 3). Specifically, our experiment was 
conducted on Android 4.3 with Morbs running within an 
emulator.  We installed both the vulnerable apps discovered in our 
research and the attacker apps. In the experiments, we first ran the 
attacker apps, and then checked whether the exploits were 
blocked by Morbs or not. Note that in some situations, we also 
need the developers to explicitly specify their whitelists of origins 
within their apps, in addition to the default policies. In the 
absence of those apps’ source code, we had to directly enter those 
app-specific policies (whitelists) into the OS. 

Preventing the exploits on intent. As described in Section 3.2.1, 
a malicious app can use the next-intent trick to invoke any private 
Activities of the victim app (the Dropbox app and the Facebook 
app). The content saved under the NEXT-INTENT key is 
essentially an intent, which needs to be first created by the 
malicious app before it is embedded into another intent (the one 
delivered to Dropbox app’s login Activity). Under Morbs, the 
intent constructor sets the origins of both intents to the malicious 
app, which cannot be changed by the app. As a result, when 
startActivity is called to start the target private Activity, our 
reference monitor immediately finds that the origin of the next-
intent is not the victim app itself, and stops this invocation 
according to the default policy (the SOP). Our tests confirmed 
that the vulnerabilities in both Dropbox app and Facebook app are 
fixed in this manner, without changing the apps’ code. 

Defeating the attacks on scheme. For the fbconnect problem 
described in Section 3.3.1, what Facebook wants to do is to return 
the data (e.g., secret tokens) from its server  to the app associated 
with the client_id parameter within the Dialog request, not anyone 
that claims the fbconnect:// scheme. This intention is 



communicated by the Facebook server to the mobile OS through a 
list of legitimate recipient origins specified using its HTTP 
response header or the JavaScript API provided by Morbs. 
Specifically in our experiment, we inserted the header “mobile-
allowed-origins: app://com.facebook.katana” into the HTTP 
response from the Facebook server, indicating that only the 
Facebook app can receive the data, and observed that the scheme 
invocation was stopped when the app that registered the 
fbconnect:// scheme was not the Facebook app. A video demo 
about this case can be found at [31]. 

When it comes to the apps using Dropbox iOS SDK (the first 
vulnerability described in Section 3.3.2), it is clear that their 
schemes associated with Dropbox are only supposed to be 
invoked by the Dropbox app.  Using Morbs, the Dropbox SDK 
embedded in the apps specifies “app://com.getdropbox.Dropbox” 
(i.e., the Dropbox app) as the only legitimate sender origin for 
these schemes. As a result, our reference monitor ensures that any 
invocation of the schemes comes only from the Dropbox app, 
which defeats the attacks from a malicious webpage (through 
Facebook app or the Google Plus app). In the case of the attack 
using the Yelp app (second vulnerability described in Section 
3.3.2), the problem comes from that the recipient of the scheme 
message, the Facebook app, cannot tell whether the origin of the 
message is indeed Yelp or a malicious website visited by the Yelp 
app’s WebView instance. In the presence of Morbs, the true 
origin of the message is revealed as the website’s domain, which 
enables Facebook to thwart the attack. Note that we did not 
actually run those fixes as the problems were found on iOS. 

Mediating issues in web-accessing utility classes. For the case 
of the WebView callback within the Facebook app (Section 
3.4.1), this callback should only respond to the event (i.e., 
processing the fbrpc URL) when this URL comes from the 
domains under Facebook’s control. Let’s assume Facebook app 
specifies “https://*.facebook.com” as the whitelist associated with 
the callback class UIWebViewDelegate, an operation that can be 
easily done using Morbs. As a result, the event initiated from 
“attacker.com” is ignored by the WebView, without triggering the 
callback shouldStartLoadWithRequest, while those from 
facebook.com continue to be handled. We further evaluated our 
implementation against the exploit on the HttpClient class 
(Section 3.4.2). This time, we set “https://*.dropbox.com” as the 
legitimate origin on the whitelist for the instance of the HttpClient 
class used in the Dropbox app. After that, we found that even 
after the adversary crossed the origins through the next-intent 
channel, he still cannot steal the Dropbox authentication header 
by sending requests to a non-dropbox.com URL, because it was 
blocked by our reference monitor according to the whitelist. 

5.2 Performance 
We evaluated the performance of our implementation on a Nexus 
4 development phone. We compared the overhead of Morbs with 
the overall delay the user experiences in the absence of Morbs, to 
understand the performance impact that our approach can have on 
cross-origin communications. In the experiments, we call a Java 
API nanoTime to collect timing measurements at a precision of 1 
nanosecond (i.e., 10-9 s).  To measure the performance of a Morbs 
operation, we repeated it 10 times to get its average execution 
time. The operations we studied include setting policies and 
checking policy compliance.  Among them, the compliance check 
is the focus of our evaluations, as the policy setting is just a one-
time task. More specifically, we measured the delays for sending 
messages through intent, scheme, and utility classes in the 
absence of Morbs, and then compared them with the time spent on 

a policy compliance check.  In all the cases, the impact of Morbs 
was found to be negligible (below 1%). 

Performance of Morbs operations. On the Android OS with our 
Morbs implementation, we ran a test app to invoke the 
setOriginPolicy API, and measured the time for setting a policy. 
On average, this operation took 0.354 ms, which involves storing 
the content of the policy to a policy database maintained by the 
OS. To check the compliance with the policies, Morbs needs to 
search the database to find out whether the origin of the current 
sender or recipient is whitelisted. As described in Section 4.1, we 
leverage the hash-table search to quickly locate the policies.  To 
understand the performance of this operation, we utilized a test 
app to invoke another test app through an intent message, which 
triggered the checkOriginPolicy function. We found that the 
whole compliance check process took 0.219 ms on average. Note 
that policy enforcement over other channels all utilizes the same 
ReferenceMonitor class, which is expected to bring in similar 
average delay. 

Impacts on mobile communications. As described above, the 
performance impact of setting policies should be minimum, since 
it just incurs a one-time cost. Also for the policies declared within 
a manifest file, they are set when the app is installed, which does 
not affect its operations. Therefore, our focus was policy 
compliance check.  

In the study, we measured the overall delays for sending a 
message through intent, scheme, and web-accessing utility classes 
without the policy compliance check. Table 1 shows the average 
delays for such communication, and their comparison with the 
overhead for a compliance check (0.219 ms). This gives a pretty 
good picture about the impact the check can have on such 
channels. Specifically, for the intent channel, we measured the 
time interval between the invocation of startActivity and the 
execution of performCreate (the first API the target Activity 
needs to call). After repeating the operation for 10 times, we 
observed an average delay of 42.142 ms when the sender and 
recipient were the same app, and 46.267 ms when they were not 
(see Table 1).  On the other hand, the compliance check took only 
an average 0.219 ms.  Therefore, the impact of this mediation on 
the intent communication was around 0.5%.  For the scheme 
message delivered between two apps, it goes through the same 
intent mechanism. The mediation impact of Morbs on this 
communication was found to be 0.3% on average. We further 
measured the time a webpage takes to invoke an app through 
scheme, between the event when the method handleMessage in 
WebViewCore class is triggered to process the scheme URL, and 
when the performCreate API for the target test app is called. We 
found that this whole process took 115.301 ms and the impact of 
the policy checking there was 0.2%. 

When we take into account the delays incurred by web-related 
operations, particularly those performed by the methods and 
callbacks of WebView and HttpClient class, the extra time spent 
on the policy compliance check can be comfortably ignored.  
Specifically, we measured the waiting time for loading a URL 
(specifically, google.com) through HttpClient, and WebView.  
For HttpClient, we measured the time interval between the 
creation of a class instance and the point when the instance 
receives the HTTP response, which took 225.035 ms on average. 
For WebView, we measured the interval between the start of page 
loading (onPageStarted is called) and its completion 
(onPageFinished is called), which took 692.955 ms. By 



comparison, the time Morbs spends on the compliance check 
(0.219 ms) become unnoticeable. 

Table 1 Impact of policy compliance check 

Channel Type of 

Communication 

Communication 
Delay w/o 
Morbs (ms) 

Impact of Morbs 
policy checking 

intent in-app 42.142 0.52% 

cross-app 46.267 0.47% 

scheme app-app 64.077 0.34% 

web-app 115.301 0.19% 

utility 
classes 

HttpClient 225.035 0.10% 

WebView 692.955 0.03% 

5.3 Compatibility and Developer’s Effort 
An important goal of Morbs is to maintain compatibility when 
possible and minimize the developer’s effort to use its protection. 
Following we elaborate our study on these two issues. 

Compatibility. To see whether our implementation can work 
with existing apps, we loaded Android with Morbs into a Nexus 4 
development phone and evaluated the operations of top 20 free 
apps downloaded from Google Play market. Those apps were first 
analyzed: we disassembled their binary code and found that all of 
them use intent, 12 claim various schemes and all need to use the 
web through WebView and HttpClient classes. We then analyzed 
their functionalities in the presence or absence of Morbs 
mediation, by clicking on all buttons and using all of the services 
we could find.  During the test, we did not observed any deviation 
of those apps’ behaviors with and without our mechanism. 

Developer’s effort.  As discussed before, to use Morbs, the 
developer only need to specify her whitelists through the 
interfaces (e.g., the setOriginPolicy API) we provide, which is 
straightforward for them to act on.  This is compared to the case-
by-case fixes that app developers are currently doing in response 
to our vulnerability reports. In Table 1, we give a comparison 
with regard to the vulnerabilities described in Section 3.  The 
ways they are fixed (or to be fixed) (“Fix w/o Morbs”) come from 
our conversations with corresponding software vendors. Here, 
how to fix the problem 4 (the exploit through Yelp app) and 5 (the 
callback loophole) is still unknown. 

As we can see from the table, these vulnerabilities are much 
easier to fix with the support of Morbs. Specifically, for the next-
intent problem (Section 3.2.1), both Dropbox and Facebook 
informed us that an effective fix takes time to build. Particularly, 
Dropbox explained that they need to “change the architecture” of 
their app, which involves non-trivial effort. In the presence of our 
origin-based protection, however, this next-intent cross-origin 
loophole is fixed without requiring any modification to the apps.  
As another example, for the fbconnect issue described in Section 
3.3.1, Facebook chose to deprecate the use of fbconnect, which is 
a core feature in all of its native SDKs and official apps. This 
effort needs “a several month deprecation period”, according to 
Facebook.  Using Morbs, however, Facebook could easily fix the 
problem without touching any of its SDKs and apps, by simply 
adding an extra header, including the origins of the apps supposed 
to receive its message, to the HTTP response its server sends to 
mobile devices. Overall, as shown in the table, the current fixes to 
these problems are all case by case, while our solution is 
consistent in the way to set origin-based security policies 
(whitelist of authorized origins) and enforce the policies.  

Table 2 Comparison of current fixes and the fixes with Morbs 

Problems Fix w/o Morbs Fix w. Morbs 

next-intent 
(Section 3.2.1) 

Change architecture of the 
Dropbox app and the 
Facebook app  

No modification 

fbconnect 
(Section 3.3.1) 

Deprecate this feature 
(affecting all apps with 
Facebook SDKs, and 
taking several months) 

Facebook server specifies 
recipient whitelist by setting a 
header in HTTP response 
“mobile- allowed-origins: 
app://com.facebook.katana”  

Dropbox iOS 
SDK (Section 
3.3.2) 

Change both the Dropbox 
apps and SDKs  

Dropbox SDK specifies sender 
whitelist by adding an entry 
“allowedOrigins: 
app://com.getdropbox.Dropbox” 
under “URL scheme” in .plist file. 

Yelp issue  
(Section 3.3.2) 

Unknown No modification 

callback exploit 
(Section 3.4.1) 

Unknown Facebook app specifies sender 
whitelist by calling 
WebViewClient:setAllowedOrigi
ns(“https://*.facebook.com”) 

HTTPClient 
exploit (Section 
3.4.2) 

Change to the Dropbox 
app, adding code for 
checking whether a URL 
is from dropbox. com 
when attaching 
authorization header  

Dropbox app specifies recipient 
whitelist by calling 
HTTPClient.setAllowedOrigins(“
https://*.dropbox.com”). 

6. RELATED WORK 
Origin-based protection in web browsers.  Origin-based 
protection is a cornerstone for browser security. All modern web 
browsers enforce the same-origin policy (SOP) [4] to protect the 
web content from one origin against unauthorized access from a 
different origin. Always at the center of browser security is the 
attacks that circumvent this protection, such as XSS, CSRF, login 
CSRF, and the defense that reinforces the browser and makes the 
protection hard to bypass [1][2][3]. Our research shows that 
serious cross-origin attacks can also happen on mobile platforms 
and therefore the origin-based protection is equally important to 
mobile security. 

Under the SOP, cross-origin communication needs to go through 
designated channels with proper mediation. A prominent example 
is the postMessage channel [5], through which the web content of 
one origin can send messages to another domain, and the browser 
ensures that the recipient knows the true origin of the sender.  
However, the web developer of the recipient domain still needs to 
come up with her own policy enforcement logic, which could be 
error-prone. Alternatively, the browser can act on whitelisted 
origins specified by the developer. An example is the Cross-
Origin Resource Sharing mechanism [6], through which the 
content from a.com can request resources from b.com server 
using XMLHttpRequest [7]. The server authorizes this cross-
origin activity to the browser by attaching to its HTTP response a 
header “Access-Control-Allow-Origin: a.com”, a whitelist for the 
requestor a.com.  The browser then enforces this policy, sending 
the message only to a.com webpages.  

The design of Morbs is pretty much in line with those browser-
based security mechanisms. We bring in this origin-based 
protection to mobile platforms, making the true origin of each 
message observable to app/web developers and also helping them 
enforce their policies at the OS level.  



Security on mobile platforms. The security framework of 
Android is built on i) the sandbox model [8], which separates an 
app’s data and code execution from that of the rest of the system, 
and 2) the permission model [9], which grants each app different 
level of privileges to access system resources under the user’s 
consent. Prior studies mainly focus on circumventing such 
protection to obtain private user data (e.g., GPS location, phone 
contacts) or perform privileged operations (e.g., sending SMS 
messages) without proper consents from the user 
[10][11][12][13][14][27]. Most related to our work here is 
permission re-delegation [10], in which an unprivileged app sends 
an intent to another app with a proper permission to act on its 
behalf, operating on the resources (e.g., GPS, user contacts, etc.) 
it is not supposed to touch. However, this problem has been 
studied mainly for understanding the threat to mobile devices’ 
local resources. What we investigated is the protection of an app’s 
web resources, which has not been explicitly included in 
Android’s security models. Luo et al. conducted two studies 
specifically about security issues related to WebView: in [42], 
they categorized existing issues raised by other researchers and a 
number of issues discovered by them. Many of these issues were 
shown to affect Android applications that use the open-source 
package DroidGap; in [43], they proposed a type of attack called 
“touchjacking”, which targets the weaknesses of WebView’s 
handling of touch events. 

To address those problems, numerous defense mechanisms have 
been proposed [17][18][19][20]. Particularly, information-flow 
techniques, such as TaintDroid [15] and Vision [16], are used to 
track the propagation of sensitive user data across a suspicious 
app at the instruction level. Different from those existing 
techniques, our protection mechanism is designed to keep track of 
the origin of the message exchanged between the initiator and the 
recipients for origin-based mediation. For this purpose, we only 
need to work on the API level (given that the OS is trusted), 
which is much more efficient. A related technique called Quire 
[21] enables Android to trace and sign the whole IPC chain 
observed by the OS during intent messaging, so that the recipient 
of an intent can find out its initiator. However, this approach is 
not designed to determine a request’s web origin: for example, 
when an app is activated through a scheme URL generated by a 
malicious webpage displayed in the WebView instance of the 
Facebook app, looking at the IPC chain does not tell the recipient 
app that it is actually originated from the malicious domain.   

Similar call-sequence analyses have been done on iOS to detect 
information leaks through iOS apps [22][23].  The focus of these 
analyses is on malicious apps, while our focus is on protecting 
benign apps. 

7. CONCLUSION AND FUTURE WORK 
Unlike traditional web applications, which enjoy browser-level 
origin-based protection, apps are hosted on mobile OSes, whose 
security models (e.g., sandbox and permission models) are not 
designed to safeguard resources based their web origins. Our 
research shows that in the absence of such protection, the mobile 
channels can be easily abused to gain unauthorized access to a 
user’s sensitive web resources. We found 5 cross-origin issues in 
popular SDKs and high-profile apps such as Facebook and 
Dropbox, which can be exploited to steal their users’ 
authentication credentials and other confidential information such 
as text input. Moreover, without the OS support for origin-based 
protection, not only is app development shown to be prone to 
such cross-origin flaws, but the developer may also have trouble 
fixing the flaws even after they are discovered. This points to the 
urgent need of building origin-based protection into mobile 

platforms. In our research, we designed and implemented the first 
such protection mechanism, Morbs, for mediating cross-origin 
communications at the OS level.  Our evaluation shows that the 
new technique effectively and efficiently controls the risks that 
come with the communications, and can also be conveniently 
utilized by the app and web developers.  

Our current implementation is for Android. Building this new 
protection on iOS is equally important. Also interesting is the 
effort to automatically analyze existing apps, to identify their 
cross-origin vulnerabilities and defend them using the origin 
protection we provided. More generally, given the trend that web 
services are increasingly delivered through apps, further 
investigations are needed to understand how to better protect 
users’ web resources on mobile OSes, which were originally 
designed to safeguard a device’s local resources. 
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