
Unauthorized Origin Crossing on Mobile Platforms:
Threats and Mitigation

Rui Wang
Microsoft Research

ruiwan@microsoft.com

Luyi Xing
Indiana University

luyixing@indiana.edu

XiaoFeng Wang
Indiana University

xw7@indiana.edu

Shuo Chen
Microsoft Research

shuochen@microsoft.com

ABSTRACT
With the progress in mobile computing, web services are
increasingly delivered to their users through mobile apps, instead
of web browsers. However, unlike the browser, which enforces
origin-based security policies to mediate the interactions between
the web content from different sources, today’s mobile OSes do
not have a comparable security mechanism to control the cross-
origin communications between apps, as well as those between an
app and the web. As a result, a mobile user’s sensitive web
resources could be exposed to the harms from a malicious origin.

In this paper, we report the first systematic study on this mobile
cross-origin risk. Our study inspects the main cross-origin
channels on Android and iOS, including intent, scheme and web-
accessing utility classes, and further analyzes the ways popular
web services (e.g., Facebook, Dropbox, etc.) and their apps utilize
those channels to serve other apps. The research shows that lack
of origin-based protection opens the door to a wide spectrum of
cross-origin attacks. These attacks are unique to mobile platforms,
and their consequences are serious: for example, using carefully
designed techniques for mobile cross-site scripting and request
forgery, an unauthorized party can obtain a mobile user’s
Facebook/Dropbox authentication credentials and record her text
input. We report our findings to related software vendors, who all
acknowledged their importance. To address this threat, we
designed an origin-based protection mechanism, called Morbs, for
mobile OSes. Morbs labels every message with its origin
information, lets developers easily specify security policies, and
enforce the policies on the mobile channels based on origins. Our
evaluation demonstrates the effectiveness of our new technique in
defeating unauthorized origin crossing, its efficiency and the
convenience for the developers to use such protection.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls, invasive software

General Terms
Design, Experimentation, Security, Standardization.

Keywords
Android, iOS, same-origin policy, mobile platform.

1. INTRODUCTION
The popularity of smartphones, tablets and other mobile devices
has brought in a plethora of software applications designed for
running on these devices. Such applications, commonly known as
apps, are typically used to deliver web services (data storage,
social networking, web mails, etc.) through their compact user
interfaces and simple program logic, which are tailored to mobile
platforms. Moreover, other than interactions with their own web
services, many of those apps are also built to work with other
apps and services, leveraging the third-party’s resources to enrich
their functionalities. This is a trend that echoes web-API
integrations extensively utilized in developing traditional,
browser-based web applications. Examples include the apps that
support social login and data sharing through the services offered
by Facebook, Twitter, Google Plus, etc.

Mobile origin-crossing hazard. Those mobile apps essentially
play the same role as traditional web browsers at the client side.
However, different from conventional web applications, which
enjoy browse-level protection for their sensitive data and critical
resources (e.g., cookies), apps are hosted directly on mobile
operating systems (e.g., Android, iOS), whose security
mechanisms (such as Android’s permission and sandbox model)
are mainly designed to safeguard those devices’ local resources
(GPS locations, phone contacts, etc.). This naturally calls into
question whether the apps’ web resources are also sufficiently
protected under those OSes. More specifically, web browsers
enforce the same origin policy (SOP), which prevents the
dynamic web content (e.g., scripts) of one domain from directly
accessing the resources from a different domain. When the
domain boundary has to be crossed, a designated channel needs to
go through to ensure proper mediation. An example is the
postMessage channel [5], which a domain uses to send a message
to another domain by explicitly specifying the recipient’s origin,
and the browser mediates to ensure that only the content from that
origin gets the message and the recipient is also well informed of
the sender’s origin. Such origin-based protection has become a de
facto security standard for a modern browser. However, it is not
present on any channels provided by mobile OSes for apps to
communicate with each other or the web. As a result, the web
content or apps from an untrusted domain may gain unauthorized
access to the web resources of other apps/websites through those
channels, causing serious security consequences.

As an example, consider the scheme mechanism [25][26]
supported by Android and iOS, through which an app on
phone/tablet can be invoked by a URL once it registers the URL’s
scheme (e.g., the “youtube” part of “youtube://watch?token=xxx”,
with “xxx” as the input parameter for the app). What an adversary
can do is to post on Facebook a link that points to a malicious
script hosted on his website. Once this link is clicked by the
victim through the Facebook app on her iOS device, the script

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.
CCS’13, November 4–8, 2013, Berlin, Germany.
Copyright © 2013 ACM 978-1-4503-2477-9/13/11…$15.00.

starts to run within the app’s WebView instance, which is then
redirected to a dynamically generated URL with the scheme of
another app that the adversary wants to run on the victim’s device
and the parameters he chooses. As a result, the target app will be
invoked to blindly act on the adversary’s command, such as
logging into his Dropbox account to record the victim’s inputs
(Section 3.3.2), since the app is given no clue the origin (the
adversary’s site) of the request. In another case, the Android
mobile browser processing a URL with the “fbconnect://” scheme
from the Facebook server will deliver the secret token on the URL
to an app from an arbitrary origin, as long as it claims to be able
to handle that scheme (Section 3.3.1).

Such unauthorized origin crossing is related to the confused
deputy problem [24] on mobile devices. Prior research on this
subject, however, focuses on permission redelegation [10], which
happens when an app with a permission requires sensitive system
resources (e.g., a phone’s GPS location) on behalf of another app
without that permission. The interactions between the two apps go
through an Inter-Process Call (IPC) that delivers a message called
intent from one app to invoke the other app’s Activity for services
such as getting GPS coordinates. This intent channel can also be
used to cross origins: for example, it allows an app from one
origin to send intents to another app when the latter’s related
Activity is accidentally made public, a mobile cross-site request
forgery (CSRF) attack [27]. However, given that those prior
studies primarily aim at protecting mobile devices’ local
resources, the general problem has not been dug deeper: for
example, it is not clear whether an app’s private Activity can still
be invoked by the intent message from an unauthorized origin, not
to mention the security implications of other channels (such as the
URL scheme) that can also be used for crossing domains.

Our findings. To better understand this critical security issue, we
conducted the first systematic study on unauthorized origin-
crossing over mobile OSes, including Android and iOS. In our
study, we investigated all known channels that allow apps to cross
domains, such as intent, scheme and utility classes for web
communications, by dissecting popular apps like Facebook,
Dropbox, Google Plus, Yelp, and their SDKs, to understand how
they utilize these channels to serve other apps on different mobile
OSes. Our study found 5 generic cross-origin weaknesses in those
high-profile apps and SDKs, which can be exploited through
CSRF, login CSRF and cross-site scripting (XSS). Many of those
problems affect multiple apps and web services. They are unique
to the communication channels on mobile OSes, which are
fundamentally different from those within the browsers. The root
cause of the vulnerabilities is the absence of origin-based
protection. More specifically, due to missing origin information,
an app or a mobile web service is often left with little clue about
the true origin of an incoming message, nor does it have any
control on where its outgoing message will be delivered to.

The consequences of these cross-origin attacks are dire. They
allow a malicious app to steal the mobile device owner’s
Facebook, Dropbox authentication credentials, or even directly
perform arbitrary operations on her Dropbox account (sharing,
deleting, etc.) on Android. On iOS, a remote adversary without
direct access to any app on the victim’s device can stealthily log
the phone into the adversary’s Dropbox account through Google
Plus, Facebook apps. As a result, the victim’s text input on iPhone
and iPad, her contacts and other confidential information are all
exposed to the adversary once she uses popular editing and
backup apps (e.g., PlainText, TopNotes, Nocs, Contacts Backup,
etc.) that integrate Dropbox iOS SDK. We reported those

problems to related parties, who all acknowledged the importance
of our discoveries. We received over $7000 bounty for these
findings, most of which were donated to charity. The details of
such recognition together with demos of our attacks are posted
online [31].

Origin-based defense. Without any OS-level support, not only
does app development become highly error-prone, but software
manufacturers can also have hard time fixing the problems after
they are discovered. As examples, both Dropbox and Facebook
need to spend a significant amount of effort to fix the security
problems we discovered, which involves changing software
architecture (Section 3.2.1) or deprecating some core features
within their apps and SDKs (Section 3.3.1). To address these
issues and facilitate convenient development of securer apps, we
present in this paper the design of the first mobile origin-based
defense mechanism, called Morbs. Our approach mediates all the
cross-origin channels on Android and iOS, including intent,
scheme and the utility classes for web communications, and
enables a developer to specify to the OS authorized origins her
app/website can receive requests from and/or send responses to.

We implemented Morbs on Android in a way that fully preserves
its compatibility with existing apps. Moreover, we show that
through our mechanism, the developers can easily gain controls
on all cross-origin events, avoiding the ordeal experienced by
Facebook, Dropbox, and other companies. Our evaluation on the
implementation also shows that it is both effective, stopping all
the exploits we found, and efficient, incurring only a negligible
impact on performance (< 1% overhead).

The source code of Morbs is publicly available on GitHub [40].

Contributions. We summarize the paper’s contributions here:

 New problem. Up to our knowledge, the research reported
here is the first attempt to systematically understand
unauthorized origin crossing on mobile OSes. The discovery
made by our study brings to light the presence of such
vulnerabilities in high-profile apps and more importantly, the
seriousness and pervasiveness of the problem.

 New techniques. We developed new origin-based protection
for existing mobile OSes, which works with apps/websites to
oversee the communication channels on these systems.

 Implementation and evaluation. We implemented our design
on Android, and evaluated its effectiveness, efficiency,
compatibility, and usability to the app developer.

Roadmap. The rest of the paper is organized as follows:
Section 2 describes the mobile channels used for apps to
communicate with each other or the web; Section 3 elaborates our
study on mobile cross-origin problems and our findings; Section 4
presents our defense mechanism Morbs, Section 5 reports the
evaluation of our techniques; Section 6 compares our work with
other related research; Section 7 concludes the paper and
discusses the future research.

2. MOBILE CHANNELS
Today’s mobile OSes (including Android and iOS) provide
various channels for apps to communicate with each other or the
web. Those channels include intent, scheme, and web-accessing
utility classes (which we elaborate later in the section). As shown
in Figure 1, an app communicates with other apps through the
intent or scheme channel. It can also invoke the browser to load a
webpage using an intent and be triggered by the web content
rendered in the browser through a URL scheme. Moreover, the

app can simply acquire and display any web content through the
WebView class, which embeds a browser-like widget within the
app, and directly talks to a web server using the methods provided
by the HttpClient classes. Note that the intent channel is Android-
specific, while others are also available on iOS. Unlike the
domain-crossing mechanisms within a browser (e.g.,
postMessage), these mobile channels are not under the origin-
based protection: messages exchanged do not carry any origin
information that the sender/receiver can inspect, and are
completely unmediated with regard to where they come from.

mobile
browser

Web

HttpClient classes

App WebView class

App
App
Apps

schemes

Mobile Device

intents

callbacks

Figure 1 Mobile communication channels

Here we elaborate how those channels work:

 Intent. An intent is an inter-process message delivered
through an IPC. It is a channel only supported by Android.
Through intent messaging, one app on Android can activate the
background Services, Activities (application components with
user interfaces) or Broadcast-Receivers of another app, as well as
the Activities/Services of its own. Intent invocation is conducted
through APIs such as startActivity, startActivityForResult, and
startService. An app developer can specify a set of intents the app
can receive from other apps in its manifest file. However, the
intent channel never labels the origin of each message (i.e., who
created it). This causes the problem we elaborate in Section 3.2.1.

 URL scheme. As discussed before, scheme is supported
by both Android and iOS, which allows an app or website to use a
URL to invoke another app (on iOS) or its Activity/Service
components (on Android) that claim the scheme of that URL. For
example, the URL “youtube://watch?token=xxx” can be used to
start the YouTube app to play the video “xxx”. When such a URL
is loaded in the mobile browser or a WebView instance, the OS
will launch the target app with this URL as input. In addition, an
app can also invoke other apps through the schemes they
registered. On Android, scheme invocation is implemented
through the intent channel: a scheme URL is wrapped in an intent
instance, and invoked by an app through the same set of APIs that
also serve intent messages, such as startActivity. On iOS, this is
done through openURL API. Again, the OSes do not mediate the
scheme-based invocations using origins.

 Web-accessing utility classes. Mobile platforms provide
several utility classes for apps to communicate with the web. We
call them web-accessing utility classes. For example, both

Android and iOS support the WebView class (called UIWebView
on iOS), which an app can embed for displaying webpages. An
app can interact with its WebView instance through a set of
method calls or callbacks. For example, it can call loadURL on
Android (loadRequest on iOS) with a URL to load a page into the
instance; it can also register events, like URL loading, to inspect
every URL its WebView instance processes through a callback
shouldStartLoadWithRequest (iOS) or shouldOverrideUrlLoading
(Android). In addition, the mobile platforms provide utility
classes for an app to directly talk to a web server without loading
its web content. HttpClient [36] or HttpURLConnection [37]
(Android) and NSURLConnection [38] [39] (iOS) are such
examples. We call those classes (for direct communication with
web servers) HttpClient classes. Origin-based protection is not in
the picture here: e.g., a WebView/HttpClient instance never labels
which app is the origin of an HTTP request.

3. ATTACKS
In this section, we elaborate our study on unauthorized origin
crossing on mobile OSes. What we want to understand here are
whether the ways real-world apps utilize those channels for cross-
origin communications indeed expose them to attackers, and
whether those apps have proper means to mitigate such a threat
and safeguard their operations over those channels. For this
purpose, we systematically analyzed high-profile apps on both
Android and iOS, including the official apps of Facebook and
Dropbox and their SDKs, and the official Google Plus and Yelp
app. Note that these SDKs are very popular. They have been
integrated into many real-world apps. Problems discovered there
may have a broad impact. In our research, we looked into how
those apps use the aforementioned cross-origin channels to
interact with other apps, or the web. The study reveals the
pervasive presence of subtle yet serious cross-origin
vulnerabilities, allowing an unauthorized party to activate an app
remotely with arbitrary input parameters, call its internal
Activities, steal user’s authentication credentials and even directly
manipulate its operations.

Such discoveries were made through an in-depth analysis on the
code and operations of those apps. Specifically, for Android apps,
we decompiled the binary code of their latest versions using
apktool [33] and AndroChef Java Decompiler [34] in order to
analyze their program logic related to the mobile channels. When
it comes to iOS apps, decompiling their executables is often hard.
Therefore, we resorted to a black-box traffic analysis to
understand those apps’ interactions with other parties (apps, web
services, etc.). We also studied the SDKs provided by Facebook
and Dropbox, whose source code is publically available. In the
rest of the section, we report our findings. The demos of our
exploits on those apps and other supplementary materials are
posted on the web [31].

3.1 Adversary Model
Our adversary model describes practical threats to different
mobile platforms. On Android, we consider an adversary who can
trick a user into installing a malicious app on her device. That
app, however, may not have any permission considered to be
dangerous by Android. Also, threats to Android can come directly
from the web, when the victim uses her mobile app or browser to
view malicious web content posted by the adversary on a website.
On iOS, we only consider this remote threat (from a malicious
website), not the malicious app, given the fact that Apple’s
vetting process on iOS apps is more restrictive than that of
Android apps, and few malicious apps have been reported so far.

Note that we treated Android and iOS differently to respect the
realistic threats those systems face: we could have found more
issues had we assumed the presence of malicious apps on iOS.
Finally, we do not consider an adversary with OS-level controls.

3.2 Exploiting the Intent Channel
The security implication of the intent channel on Android has
been studied in prior research [10][27]. All existing work,
however, focuses on how such a channel can be leveraged by a
malicious app to invoke a legitimate app’s Activities that are
accidentally made public by the app’s developer. In our research,
we found that even the private Activities not exposed to the
public, which is meant to be called only by the app itself, can be
triggered by an app from an unauthorized origin. This problem
has a serious consequence, letting the malicious app gain great
control of the victim app. We discovered this vulnerability on
both the Facebook app and the Dropbox app. Here we use the
Dropbox app as an example to explain where the problem is.

3.2.1 Next Intent (Android)
An Android app can have two types of Activities, private or
public. By default, an Activity is private, meaning that only the
code inside the app can invoke it. When the app developer sets the
“exported” property of the Activity to true, or she declares at least
one intent for the Activity in the manifest of the app, the Activity
becomes public, in which case other apps can invoke the Activity
with an intent instance as an argument.

Our analysis on the Dropbox app reveals that the app exposes a
few Activities, such as login, which is meant to be public. An
interesting observation is that when any of its public Activities are
invoked by an intent instance, the Activity first needs to check
whether the user is in a logged-in status. If not, it redirects him to
the login Activity before proceeding with its own task.
Specifically, the Activity creates a new intent instance, in which
the current intent, the one it receives from another app, is saved
under the key “com.dropbox.activity.extra.NEXT_INTENT”
(called “NEXT_INTENT” here). The new intent instance is then
issued by the app itself to invoke LoginOrNewAcctActivity (the
login Activity). Once the user completes her login, the login
Activity retrieves the original intent instance from
“NEXT_INTENT”, and uses it to invoke the unfinished public
Activity to fulfill its task.

The cross-origin exploit. It turns out that this next-intent feature
can be exploited by a malicious app to cross origins and invoke
the Dropbox app’s private Activity. Since the login Activity is
public, a malicious app can trigger it with an intent instance, in
which the attacker puts another intent instance under the
“NEXT_INTENT” key. The second instance points to a private
Activity of the Dropbox app. This login intent will not be noticed
by the user if she is already in the logged-in status, and cause little
suspicion if she is not, simply because it is the authentic Dropbox
app that asks the user to log in. Either way, once the login is done,
LoginOrNewAcctActivity retrieves the intent content under the
“NEXT_INTENT” key and use it to call the startActivity API.
Since startActivity is now invoked by the Dropbox app itself, all
of its Activities, including those private ones, can be executed,
even though the next-intent actually comes from a different
origin, the malicious app. The root cause of this problem is that
the startActivity API never checks (and also has no means to
check) the provenance of the intent under the “NEXT_INTENT”
key, due to the lack of origin-based protection on the mobile OS.
In the absence of the origin information (here, the app creating the

intent), even an app’s private Activity can be exposed to
unauthorized parties.

The problem goes beyond a single app. In the Facebook app, we
discovered the same problem in a public Activity called
UriAuthHandler. The Facebook app also checks the login status,
and directs the user to the login Activity, and uses
“CALLING_INTENT” (equivalent to “NEXT_INTENT”) as a
key to store the current intent instance. This channel is equally
vulnerable and can be abused in the same way, as found in our
study. We suspect that other apps with this type of next-intent
feature are also subject to the same exploit.

Attacks and consequences. Once the origin is crossed
illegitimately, the door is open to all kinds of abuses. In our
research, we implemented two attacks (one against the Dropbox
app, another one against the Facebook app) to demonstrate the
serious security consequences of the problem.

Our attack on the Facebook app leverages a private Activity
LoggedOutWebViewActivity. The Activity takes a URL as an
input parameter and loads the content pointed by the URL into a
WebView instance. What can happen here is that a malicious app
running on the same device can drop a Javascript file onto its SD
card (Secure Digital memory card) and exploit the next-intent
feature to run LoggedOutWebViewActivity with the URL
pointing to that Javascript file. Since the SD card is viewed as a
local storage by Android, the script is allowed to access contents
from all Internet domains [32]. Specifically in our attack, the
script injected can make arbitrary AJAX requests to
facebook.com and read the contents of the responses. Given that
all such requests carry the user’s Facebook cookie, this cross-
origin scripting ends up allowing the adversary to perform
arbitrary operations on the user’s account, and obtain all private
data.

For the Dropbox app, we exploited a private Activity
VideoPlayerActivity, which has an input parameter “EXTRA_
METADATA_URL” that specifies a URL from which to fetch
the metadata for a video file. In a normal situation, this URL
points to a file kept by dropbox.com. However, our next-intent
exploit enables a malicious app to set the URL to arbitrary web
domain, such as “http://attacker.com”. When the Dropbox app
makes a request with that URL, it always assumes the recipient to
be dropbox.com and attaches to the request an authentication
header, as opposed to applying the conventional origin-based
cookie policy. Since right now, EXTRA_METADATA_URL
points to “http://attacker.com”, the adversary gets the header and
can use it to gain a full access to the user’s Dropbox account.

Vendor responses. Fixing this problem turns out to be much
more complicated than it appears to be. Specifically, the Dropbox
security team told us they were “working on changing the
architecture in our Android app to make that API secure”, but the
next-intent feature is “unfortunately also very useful for us”.
Facebook also said that this problem “will take some time to fix”.
As an acknowledgement to the importance of our work, Facebook
awarded us $5000 bounty for finding this vulnerability, which we
donated to charity. Dropbox also awarded us 100GB free storage
for each author, and included our names on their special thanks
page. The details of those software vendors’ responses can be
found here [31]. From our communications with the vendors, it
can be seen that addressing this next-intent problem from the
developer side alone can be hard. In Section 4, we show how a
well-thought-out OS-level support can make this type of flaws
more convenient to fix.

3.3 Abusing the Scheme Channel
As discussed in Section 2, scheme is an important cross-origin
channel supported by both Android and iOS. Through this
channel, an app on those OSes can be invoked by a URL (with the
scheme the app claims) from another app or from a webpage in a
WebView instance or a browser (see Figure 1 in Section 2). In
our research, we found that this channel can be easily abused for
unauthorized origin crossing, enabling a malicious app to acquire
a user’s authentication token with Facebook or perform a login
CSRF on iOS, as described below.

3.3.1 Fbconnect (Android)
Facebook provides a Dialog mechanism [35] through its apps and
SDKs for both Android and iOS. Using the mechanism, an app
can send through the Facebook official app a Dialog request to
query the Facebook server for sensitive user data (e.g., access
token) or operate on the user’s account (e.g., sharing a post).
Among all the arguments carried by the Dialog request are
client_id, the ID assigned to the sender app by Facebook, and
redirect_uri, which is set to “fbconnect://success”. In the case
that the user’s access token is requested, the Facebook server
displays a dialog within Facebook app’s WebView instance to ask
for the user’s consent, and upon receiving it, the server redirects
the WebView instance to “fbconnect://success#...”, where the
secret token is attached to the “…” part of the message. This
token is then extracted by the Facebook app, which later
dispatches it to the target app (i.e., the sender of the Dialog
request) associated with the client_id.

The URL “fbconnect://success#...” is just used for delivering data
from the Facebook server to its official app. However, if this URL
is loaded in the mobile browser, a serious attack can happen.
More specifically, a malicious app on the device first registers this
fbconnect:// scheme, and then invokes the browser to load a
Dialog URL, in an attempt to request the sensitive data of another
app (e.g., the TexasHoldem app) from the Facebook server. This
can be easily done by setting client_id in the URL to that of
TexasHoldem because an app’s client_id is public. Also, within
the browser, the dialog may not even show up to alert the user, if
it is already in the logged-in status. As a result, Facebook will
redirect the browser to “fbconnect://success#...”. Unlike the
Facebook app, the browser treats this URL as a scheme
invocation, and therefore will trigger the scheme’s handler (i.e.,
the malicious app) with the URL as an argument. This exposes to
the malicious app the victim’s Facebook secret token for the
TexasHoldem app. We tested the attack on an Android device
(Galaxy Tab 2) and confirmed that the malicious app can get the
user’s access token, authorization code and other secrets. In this
case, we can see that although the Facebook server is the sender
of the scheme message, it cannot control which app to receive the
message through the mobile browser. This is different from what
happens within a web browser: for example, if a script from
a.com sends a message to b.com through the postMessage API, it
can specify the recipient domain and the browser then guarantees
that only b.com gets the message. On today’s mobile OS,
however, there is no way that the Facebook server can specify the
authorized receiver of its scheme URL, not to mention any
mechanism to enforce this security policy.

Also note that the fbconnect problem here is present on both
Android and iOS. However, given that iOS malware is rare, the
risk it poses is mainly to Android (see our adversary model).

Vendor response. Without the OS support, this problem turns out
to be even harder to fix than the next-intent issue. We reported it

to Facebook on Sept. 11, 2012. On Jan. 22, 2013, Facebook
security team told us that they took steps to “ensure that popular
app stores block apps that attempt to register this URI schema”.
Moreover, they were “crafting a formal deprecation plan for the
fbconnect schema”, but this plan needs a “several month
deprecation period” because “all of our embedded SDKs currently
depend upon this functionality”. On March 20, 2013, Facebook
informed us that they “crafted a plan for the deprecation of the
fbconnect schema in the next major release”. They expect to “see
this disappear entirely as users continue to upgrade”. They
awarded us a bounty of $1500 for this finding, which we donated
to charity.

3.3.2 Invoking Apps from the Web (Android and iOS)
In this section, we elaborate a new security threat that comes from
a malicious website the user visits with a mobile device. The root
cause of the problem has been confirmed to exist on both Android
and iOS. For the simplicity of presentation, here we just use iOS
as an example to explain the problem.

Mobile apps typically use their WebView instances to render web
content. Such content could come from less trustworthy web
sources, such as public posts on Facebook and restaurant reviews
from the strangers on Yelp. In our research, we found that during
such rendering of web content, whenever the WebView instance
of an app is directed by the content to a URL with a scheme
registered by another app on the same device, the latter will be
automatically invoked, without being noticed by the user, and act
on the parameters given by the URL. This is dangerous because
the app receiving the scheme message which carries the URL
cannot distinguish whether this message comes from the sender
app itself or from the web content within the app’s WebView
instance, which causes the confusion about the message’s true
origin. Here we use two examples to show the consequences of
this confusion.

Login CSRF attacks on Dropbox iOS SDK. We studied the
latest version (v.1.3.3) of Dropbox iOS SDK, which enables a
3rd-party app on iOS to link to the device owner’s Dropbox
account, using Dropbox as the app’s storage. Here, we use
PlainText [41], a popular text-editing app, as an example to
explain what can go wrong, though apps using Dropbox iOS SDK
are all vulnerable. Specifically, after the mobile user authorizes
this account linking, the Dropbox app delivers to the PlainText
app a scheme URL, which is in the following format: db-
<APP_ID>://1/connect?oauth_token&oauth_token_secret&uid.
The URL includes 3 arguments, oauth_token, oauth_token_secret,
and uid, which the PlainText app uses to communicate with the
Dropbox server to complete the account linking. However, we
found that the linking process can be exploited to launch a serious
login CSRF attack, without any malicious app running on the
user’s device. Specifically, in our attack, the adversary uses the 3
URL arguments collected from his own device to build a URL:
db-<APP_ID>://1/connect?oauth_token’&oauth_token_ secret’ &
uid’, where oauth_token’, oauth_token _secret’, and uid’ are the
adversary’s Dropbox credentials, and APP_ID identifies the
PlainText app. The attacker shares a malicious web URL (e.g.
pointing to attacker.com) on his Google Plus status updates or
comments. Once the victim user clicks it within the Google Plus
app on her device, attacker.com is loaded in the app’s WebView
instance, and redirects the WebView to the scheme URL. As a
result, the PlainText app is invoked with the URL as input. The
app treats the URL as part of the scheme message from the
Google Plus app, without knowing that it actually comes from the

web content of attacker.com rendered in the Google Plus app’s
WebView. It is then unknowingly linked to the attacker's
Dropbox account. When this happens, the app automatically
sends the user's text input to the attacker's account. A demo of this
attack is posted online [31]. We also checked a few other popular
iPad apps using Dropbox SDK, including TopNotes, Nocs, and
Contacts Backup to Dropbox. They are all found vulnerable.

Bypassing Facebook’s app authentication mechanism. Many
apps using Facebook iOS SDK, such as Yelp and TripAdvisor,
may also render untrusted web contents within their WebView
instances. Below we show that an attacker who posts a malicious
link on Yelp can bypass an important mechanism Facebook uses
to authenticate 3rd-party iOS apps. Specifically, when app A
invokes the Facebook app through schemes such as “fbauth://”,
the Facebook app sends the app ID specified by app A and its
bundle ID retrieved from the OS to the Facebook server for
authentication. This prevents app A from impersonating another
app to communicate with the Facebook server because it cannot
manipulate the bundle ID. However, this protection does not work
when a malicious page is loaded to the WebView instance of the
Yelp app because the Facebook app cannot distinguish whether an
incoming scheme message is from the Yelp app or a webpage in
its WebView (the bundle ID from the OS always points to the
Yelp app). Therefore, whoever posts a comment on Yelp acquires
the same privilege as Yelp has on the victim’s Facebook account.

Vendor response. We reported these problems to Dropbox,
Google, and Facebook. For the first problem (login CSRF through
Dropbox SDK), Dropbox started its investigation immediately
after receiving our report. They have implemented a fix that needs
to change both the SDKs and the Dropbox official apps on all
platforms (including Android and iOS). Facebook mitigated the
threat by deploying a whitelist inside the WebView instance of its
official app, which only allows http, https, and ftp schemes.
Google has not taken any actions so far [31]. Facebook awarded
us $1000 for this finding. We also reported to Facebook the
second case (bypassing its app authentication mechanism on iOS),
which is still under investigation.

3.4 Attacks on Web-Accessing Utility Classes
As shown in Figure 1, besides intent and scheme, origins can also
be crossed on a mobile OS when an app directly calls the methods
of the WebView/HttpClient classes or registers their callback
events. Here we show how this channel can be abused.

3.4.1 Exploiting Callbacks (iOS)
On iOS, we studied a WebView callback method the Facebook
app registers, shouldStartLoadWithRequest, which is triggered
each time the app’s WebView instance is navigated to a link. If
this link is in the form “fbrpc://appID=xyz&foo=123”, the
callback method (provided by Facebook) creates a new URL
“fbxyz://foo=123” to invoke an app with the appID “xyz” and set
its input argument to “123”. Note that this operation is different
from the scheme-based invocation (from a web domain) described
in Section 3.3.2, as in that case, a website directly runs a URL to
invoke the target app on the mobile device (the sender of the
scheme message is the website), while here such a URL is
actually created by the callback method, which is implemented by
the Facebook app (the sender is the Facebook app).

This mechanism can be exploited when a malicious link such as
attacker.com is clicked by the user through her Facebook app.
When this happens, the malicious content loaded to the WebView

instance redirects to the fbrpc URL. Then the callback of the
Facebook app generates a new scheme URL to launch any app the
adversary wants to run on the victim’s device with any argument
value he sets. For example, we found that in this way, a popular
app Pinterest can be activated by the adversary to sign onto the
adversary’s account on the victim’s device, so as to dump the
user’s data with Pinterest into the adversary’s account.

3.4.2 Exploiting Header-attachment (Android)
We also studied the HttpClient class, which is used by Android
apps for direct HTTP communications with web servers.
HttpClient allows a developer to specify the URL of a request and
an HTTP header. The header is attached to the request. In the
absence of origin-based protection, any header, including the one
used for authentication, can be attached to a request sent to any
website. A prominent example is the attack case described in
Section 3.2.1: the adversary invokes the Dropbox app’s Activity
VideoPlayerActivity, which utilizes an HttpClient instance to load
metadata from a URL with the user’s authentication header
attached. Since the URL is manipulated by the adversary to point
to attacker.com, without origin checks, the authentication header
goes to the adversary.

Note that this header-attachment issue by itself is a security flaw,
as admitted by the Dropbox security team (“Attaching the
Authorization header to non-Dropbox URLs was definitely a
serious security bug” [31]). Actually the attack on a phone user’s
Dropbox account as described in Section 3.2.1 is built upon two
security flaws, i.e., the next-intent and header-attachment issue.

4. ORIGIN-BASED DEFENSE
As described in the prior section, unlike web browsers, today’s
mobile OSes (i.e., Android and iOS) do not offer origin protection
to the channels used by apps to communicate with each other or
the web. As a result, cross-origin interactions on those systems
can be easily abused to undermine the user’s security and privacy,
which even happens to highly popular apps built by security-
savvy developers. Moreover, even after the problems were
reported, the developers still had hard time in fixing them. This
makes us believe that a generic solution to the problem should be
built into mobile OSes, which have the observations of messages’
origins, and the means to mediate the communication over those
channels. In this section, we elaborate the first design for such
protection, called Morbs (mobile origin based security), and its
implementation on Android. We released the source code of the
Android implementation on GitHub [40].

4.1 Design
Overview. Morbs is generic to iOS and Android. It is designed to
achieve browser-like origin protection: 1) it exposes to the
developers the true origins of the messages their apps/websites
receive, enabling them to build protections based on such
information; 2) it allows the developers to specify their intentions,
in the form of whitelists of origins their apps/websites can get
messages from and send messages to, and enforces policies
transparently within the OS.

More specifically, an app or a web service that asks for origin
protection first communicates its intended sender/recipient origins
(the whitelists) to the OS. These policies are enforced by a
reference monitor that mediates different mobile channels. The
reference monitor is triggered by the messages delivered through
these channels. Once invoked, it identifies the origins of the
messages, which are either apps or web domains, and checks their

policy compliance against the whitelists. Those running against
the policies are blocked by Morbs.

A unique feature of Morbs is its capability to connect web
activities (within WebView instances or the mobile browser) to
the events that happen within the OS. For example, it exposes the
true origin of a message to a recipient app when confusion arises
on whether the message comes from another app or the web
domain visited by that app’s WebView instance. It also helps a
web server specify to a mobile device a designate app on the
device that can receive the server’s scheme message. This
capability is crucial for defeating unauthorized origin crossing on
mobile devices. Following we elaborate our design.

Defining mobile origin. For web content, an origin is defined as
a combination of scheme, host name, and port number [4].
However, this definition is insufficient for the origin protection on
mobile platforms: here we need to consider not only web origins
but also app identities and other local origins. To maintain the
consistency with the web origins, we adopted a URL-like
representation for those new origins, such as “app://<appID>”,
where <appID> is an app’s package name (Android) or bundle ID
(iOS), for example, “app://com.facebook.katana” for the
Facebook app on Android and “app://com.getdropbox.Dropbox”
for the Dropbox app on iOS. Likewise, messages from trusted
sources like the OS are given a local origin “local://”. For web
domains, we adhere to the traditional origin definition [4].

Exposing origins. When a message is created by an app/website,
Morbs sets the origin attribute (added by our approach) of the
message to its creator (i.e., an app, a web domain, or local). This
attribute always goes with the message within the OS, until it gets
to its recipient app/website, where we remove the attribute. To
help developers build their own protection, our design exposes the
origin of a message through existing and new APIs. For example,
on iOS, we can enhance the API for retrieving the bundle ID of
the sender of a scheme message by returning the true origin of the
message, which could be the domain of the web content within
that app’s WebView instance. In this way, Facebook will be able
to find out that the scheme message it gets from the Yelp app
actually comes from a webpage Yelp displays, not the app itself.
Therefore, the exploit described in Section 3.3.2 will be defeated.

Default policy. It is well known that the browser by default
enforces the SOP to the web content it hosts, but the same policy
cannot be applied to all the apps on mobile platforms as it may
disrupt their legitimate cross-origin communications. Our strategy
is to implement the SOP only on the totally unexpected and
insecure channel. An example is the next-intent communication
described in Section 3.2.1, which is unexpected, since the private
Activity of an app should only be invoked by the app’s own intent
when calling the startActivity API. Therefore, in this scenario, the
SOP is always enforced.

Setting policies. Morbs allows a policy to be specified on a
channel between an app and a web domain (web policy), as well
as between two apps (app policy). An app policy defines
legitimate inter-app communication, which goes through intent or
scheme. A web policy is about app-web interactions, through
scheme or web-accessing utility classes. An app or a website sets
a policy on a specific channel to notify Morbs the list of senders
authorized to send messages to it, and the list of recipients
allowed to receive the messages it sends.

Setting a policy can be done through a new API setOriginPolicy,
which an app can directly call. Here is its specification:

Here, type identifies the type of the channel (intent, scheme, or
utility class), senderOrRecipient specifies sender or recipient,
channelID indicates the channel ID, and origins is the whitelist.
Once invoked, setOriginPolicy first identifies a channel by type,
and channelID, which is an OS-wide unique string. For example,
the ID for the intent channel that triggers LoginActivity within the
Facebook app is “com.facebook.katana.LoginActivity”, in which
“com.facebook.katana” is the Facebook app’s package name. For
a scheme, its channel ID is the corresponding scheme field on a
URL. For web-accessing utility classes, they are identified by
their class instances within an app. After a channel is identified,
the API then extracts the whitelist that regulates the sender or the
recipient (specified in senderOrRecipient) through this channel
from the origins parameter.

Although setOriginPolicy offers a generic interface for policy
specification, it cannot be directly invoked by a website to set its
policies. To address this problem, Morbs provides mechanisms
for indirectly accessing this API, including a JavaScript API
setMobileAllowedOrigins, through which the dynamic content
from a website can set policies within the mobile browser or a
WebView instance, and a header mobile-allowed-origins in HTTP
responses that inform the browser or a WebView instance of the
parties on the device allowed to get the message. The app
developer can also leverage other indirect mechanisms to define
her policies whenever she is building the app’s functionality over
a mobile channel. Specifically, Morbs allows the developer to set
her policies regarding a scheme/intent her app claims within the
app’s manifest file (for Android) or .plist (for iOS), under a new
property allowedOrigins. In this way, she can turn on our origin
protection for her app without changing its code. Other ways for
policy setting include a new argument allowedOrigins for the API
that delivers scheme/intent messages, and a new API
setAllowedOrigins used to define policies for utility classes such
as WebView and HttpClient. An advantage of using these indirect
ways is that they only require one argument (i.e., origins) from
the developer because other arguments are set by default.

Enforcing policies. Morbs runs a reference monitor to enforce
security policies on different channels. Whenever a message is
delivered over a channel, the reference monitor is triggered to
identify its origin and calls a function checkOriginPolicy to check
its policy compliance. The function’s specification is as follows:

Intuitively, the function searches Morbs policy base to find out
whether the current sender (specified in the from argument) is
allowed to deliver the message to the recipient (to) through the
specific channel (type and channelID). Note that
checkOriginPolicy needs to be called twice (one for checking the
sender origin against the recipient’s policy and the other for
checking the recipient origin against the sender’s policy). The
message is allowed to go through only if both checks succeed.

Both setOriginPolicy and checkOriginPolicy operate on the
Morbs policy base that keeps all policies. setOriginPolicy inserts
a policy into the database and checkOriginPolicy searches the
database for an applicable policy, checking whether a
sender/recipient origin is on the whitelist included in the policy.
The performance of this compliance check is critical because it
needs to be invoked for every message going through these

bool checkOriginPolicy(type, senderOrRecipient, channelID, from, to)

void setOriginPolicy(type, senderOrRecipient, channelID, origins)

channels. To make it efficient, Morbs leverages the hash-table
search to quickly locate a target within the database.
4.2 Implementation
We implemented our design on Android (Figure 2). At the center
of our system are the setOriginPolicy API and the
ReferenceMonitor class, in which the most important function is
checkOriginPolicy. They were built into the Thread class of the
Dalvik Virtual Machine. The setOriginPolicy API is open to all
apps, while ReferenceMonitor is kept for the OS, which is only
accessible to the code running inside the Android OS kernel.

App
App

class Activity {
startActivityForResult()

}

class WebViewCore {
handleMessage()

}

class CallbackProxy {
handleMessage()

}

class Thread {
setOriginPolicy() API
class ReferenceMonitor {
checkOriginPolicy ()

}
}

Dalvik VM

Web

Apps
intents/schemes

Set p
o
licy

Set p
o
licy

C
h
eck p

o
licy

C
h
e
ck p

o
licy

Check policy

calls/schemes
callbacks

Mobile Device

Figure 2 The framework of Morbs on Android

In the presence of the centralized policy compliance check
(checkOriginPolicy), the task of ReferenceMonitor (i.e., policy
enforcement) becomes trivial: all we need to do here is pulling
the arguments, invoking checkOriginPolicy and raising an
exception to drop a message when the check fails. In our
implementation, the ReferenceMonitor class is used in the OS
components related to these channels to conduct mediation.
Specifically, for intent and scheme, the enforcement code was
placed within the API startActivityForResult, which needs to be
called by startActivity, when a message delivered through those
channels attempts to start an Activity. Note that we chose not to
do the security checks within the IPC mechanism: Android does
not recommend inspecting intent data in IPC because the intent
instances are serialized for high performance data transport [29].
For mediating web-app communications, we changed the
handleMessage method within both the WebViewCore class and
the CallbackProxy class. The two methods are the focal point of
mobile browsers and WebView instances: all method invocations
and callback handling from apps need to go through them. In
addition, the execute method of HttpClient class was used to
mediate apps’ direct communication with web servers.

Challenge I: origin identification. Morbs attaches an origin
attribute to every message exchanged through the mobile
channels. On Android, both intent and scheme channels utilize the
intent messages (Section 2). The constructor for generating an
intent instance is hooked in our implementation to label an intent
message with its app origin. Specifically, we added an origin
property to the intent class. When the constructor is creating a
new intent instance, it retrieves the package name of the app
initiating the intent and fills in the origin property with the
package name. For example, when the initiator is the Facebook
app, the origin property should be marked as “app://com.
facebook.katana”, in which “com.facebook.katana” is the package

name of Facebook app. However, this origin is not easy to
identify in practice, since there is no API to help us find out the
initiator directly. A simple solution is to get the whole call stack
from the OS through getStackTrace API, and then inspect it to
find out the caller. This approach turns out to be very expensive:
in our test, extracting the call stack takes 1.35 ms in average. Our
solution is to add an origin property to each thread that hosts an
app. When the thread is created, the app’s origin is attached to the
property. Once an intent is initiated, the constructor then copies
the origin information from the thread to the intent instance.

Challenge II: response inspection. To enable a web server to set
its policies to a mobile device, Morbs needs to inspect the HTTP
response to find the header mobile-allowed-origins. The response
is processed by Android’s native C++ libraries. Morbs (written in
Java) cannot directly access it. In our implementation, we
managed to get access to the header using Java Native Interface
(JNI) [30]. JNI provides an API called onReceivedData through
which C++ code can send messages to Java code. To inform
Morbs of the content of the header, we modified the C++ code to
identify the header mobile-allowed-origins within HTTP
responses, and then call onReceivedData to deliver all policies
described there to WebViewCore, where Morbs uses
setOriginPolicy to complete this policy setting process.

5. EVALUATION
We evaluated the general design of Morbs and its implementation
on Android to understand its effectiveness, performance,
compatibility and utility to the app developers.

5.1 Effectiveness
We ran our implementation against the aforementioned cross-
origin attacks (Section 3). Specifically, our experiment was
conducted on Android 4.3 with Morbs running within an
emulator. We installed both the vulnerable apps discovered in our
research and the attacker apps. In the experiments, we first ran the
attacker apps, and then checked whether the exploits were
blocked by Morbs or not. Note that in some situations, we also
need the developers to explicitly specify their whitelists of origins
within their apps, in addition to the default policies. In the
absence of those apps’ source code, we had to directly enter those
app-specific policies (whitelists) into the OS.

Preventing the exploits on intent. As described in Section 3.2.1,
a malicious app can use the next-intent trick to invoke any private
Activities of the victim app (the Dropbox app and the Facebook
app). The content saved under the NEXT-INTENT key is
essentially an intent, which needs to be first created by the
malicious app before it is embedded into another intent (the one
delivered to Dropbox app’s login Activity). Under Morbs, the
intent constructor sets the origins of both intents to the malicious
app, which cannot be changed by the app. As a result, when
startActivity is called to start the target private Activity, our
reference monitor immediately finds that the origin of the next-
intent is not the victim app itself, and stops this invocation
according to the default policy (the SOP). Our tests confirmed
that the vulnerabilities in both Dropbox app and Facebook app are
fixed in this manner, without changing the apps’ code.

Defeating the attacks on scheme. For the fbconnect problem
described in Section 3.3.1, what Facebook wants to do is to return
the data (e.g., secret tokens) from its server to the app associated
with the client_id parameter within the Dialog request, not anyone
that claims the fbconnect:// scheme. This intention is

communicated by the Facebook server to the mobile OS through a
list of legitimate recipient origins specified using its HTTP
response header or the JavaScript API provided by Morbs.
Specifically in our experiment, we inserted the header “mobile-
allowed-origins: app://com.facebook.katana” into the HTTP
response from the Facebook server, indicating that only the
Facebook app can receive the data, and observed that the scheme
invocation was stopped when the app that registered the
fbconnect:// scheme was not the Facebook app. A video demo
about this case can be found at [31].

When it comes to the apps using Dropbox iOS SDK (the first
vulnerability described in Section 3.3.2), it is clear that their
schemes associated with Dropbox are only supposed to be
invoked by the Dropbox app. Using Morbs, the Dropbox SDK
embedded in the apps specifies “app://com.getdropbox.Dropbox”
(i.e., the Dropbox app) as the only legitimate sender origin for
these schemes. As a result, our reference monitor ensures that any
invocation of the schemes comes only from the Dropbox app,
which defeats the attacks from a malicious webpage (through
Facebook app or the Google Plus app). In the case of the attack
using the Yelp app (second vulnerability described in Section
3.3.2), the problem comes from that the recipient of the scheme
message, the Facebook app, cannot tell whether the origin of the
message is indeed Yelp or a malicious website visited by the Yelp
app’s WebView instance. In the presence of Morbs, the true
origin of the message is revealed as the website’s domain, which
enables Facebook to thwart the attack. Note that we did not
actually run those fixes as the problems were found on iOS.

Mediating issues in web-accessing utility classes. For the case
of the WebView callback within the Facebook app (Section
3.4.1), this callback should only respond to the event (i.e.,
processing the fbrpc URL) when this URL comes from the
domains under Facebook’s control. Let’s assume Facebook app
specifies “https://*.facebook.com” as the whitelist associated with
the callback class UIWebViewDelegate, an operation that can be
easily done using Morbs. As a result, the event initiated from
“attacker.com” is ignored by the WebView, without triggering the
callback shouldStartLoadWithRequest, while those from
facebook.com continue to be handled. We further evaluated our
implementation against the exploit on the HttpClient class
(Section 3.4.2). This time, we set “https://*.dropbox.com” as the
legitimate origin on the whitelist for the instance of the HttpClient
class used in the Dropbox app. After that, we found that even
after the adversary crossed the origins through the next-intent
channel, he still cannot steal the Dropbox authentication header
by sending requests to a non-dropbox.com URL, because it was
blocked by our reference monitor according to the whitelist.

5.2 Performance
We evaluated the performance of our implementation on a Nexus
4 development phone. We compared the overhead of Morbs with
the overall delay the user experiences in the absence of Morbs, to
understand the performance impact that our approach can have on
cross-origin communications. In the experiments, we call a Java
API nanoTime to collect timing measurements at a precision of 1
nanosecond (i.e., 10-9 s). To measure the performance of a Morbs
operation, we repeated it 10 times to get its average execution
time. The operations we studied include setting policies and
checking policy compliance. Among them, the compliance check
is the focus of our evaluations, as the policy setting is just a one-
time task. More specifically, we measured the delays for sending
messages through intent, scheme, and utility classes in the
absence of Morbs, and then compared them with the time spent on

a policy compliance check. In all the cases, the impact of Morbs
was found to be negligible (below 1%).

Performance of Morbs operations. On the Android OS with our
Morbs implementation, we ran a test app to invoke the
setOriginPolicy API, and measured the time for setting a policy.
On average, this operation took 0.354 ms, which involves storing
the content of the policy to a policy database maintained by the
OS. To check the compliance with the policies, Morbs needs to
search the database to find out whether the origin of the current
sender or recipient is whitelisted. As described in Section 4.1, we
leverage the hash-table search to quickly locate the policies. To
understand the performance of this operation, we utilized a test
app to invoke another test app through an intent message, which
triggered the checkOriginPolicy function. We found that the
whole compliance check process took 0.219 ms on average. Note
that policy enforcement over other channels all utilizes the same
ReferenceMonitor class, which is expected to bring in similar
average delay.

Impacts on mobile communications. As described above, the
performance impact of setting policies should be minimum, since
it just incurs a one-time cost. Also for the policies declared within
a manifest file, they are set when the app is installed, which does
not affect its operations. Therefore, our focus was policy
compliance check.

In the study, we measured the overall delays for sending a
message through intent, scheme, and web-accessing utility classes
without the policy compliance check. Table 1 shows the average
delays for such communication, and their comparison with the
overhead for a compliance check (0.219 ms). This gives a pretty
good picture about the impact the check can have on such
channels. Specifically, for the intent channel, we measured the
time interval between the invocation of startActivity and the
execution of performCreate (the first API the target Activity
needs to call). After repeating the operation for 10 times, we
observed an average delay of 42.142 ms when the sender and
recipient were the same app, and 46.267 ms when they were not
(see Table 1). On the other hand, the compliance check took only
an average 0.219 ms. Therefore, the impact of this mediation on
the intent communication was around 0.5%. For the scheme
message delivered between two apps, it goes through the same
intent mechanism. The mediation impact of Morbs on this
communication was found to be 0.3% on average. We further
measured the time a webpage takes to invoke an app through
scheme, between the event when the method handleMessage in
WebViewCore class is triggered to process the scheme URL, and
when the performCreate API for the target test app is called. We
found that this whole process took 115.301 ms and the impact of
the policy checking there was 0.2%.

When we take into account the delays incurred by web-related
operations, particularly those performed by the methods and
callbacks of WebView and HttpClient class, the extra time spent
on the policy compliance check can be comfortably ignored.
Specifically, we measured the waiting time for loading a URL
(specifically, google.com) through HttpClient, and WebView.
For HttpClient, we measured the time interval between the
creation of a class instance and the point when the instance
receives the HTTP response, which took 225.035 ms on average.
For WebView, we measured the interval between the start of page
loading (onPageStarted is called) and its completion
(onPageFinished is called), which took 692.955 ms. By

comparison, the time Morbs spends on the compliance check
(0.219 ms) become unnoticeable.

Table 1 Impact of policy compliance check

Channel Type of

Communication

Communication
Delay w/o
Morbs (ms)

Impact of Morbs
policy checking

intent in-app 42.142 0.52%

cross-app 46.267 0.47%

scheme app-app 64.077 0.34%

web-app 115.301 0.19%

utility
classes

HttpClient 225.035 0.10%

WebView 692.955 0.03%

5.3 Compatibility and Developer’s Effort
An important goal of Morbs is to maintain compatibility when
possible and minimize the developer’s effort to use its protection.
Following we elaborate our study on these two issues.

Compatibility. To see whether our implementation can work
with existing apps, we loaded Android with Morbs into a Nexus 4
development phone and evaluated the operations of top 20 free
apps downloaded from Google Play market. Those apps were first
analyzed: we disassembled their binary code and found that all of
them use intent, 12 claim various schemes and all need to use the
web through WebView and HttpClient classes. We then analyzed
their functionalities in the presence or absence of Morbs
mediation, by clicking on all buttons and using all of the services
we could find. During the test, we did not observed any deviation
of those apps’ behaviors with and without our mechanism.

Developer’s effort. As discussed before, to use Morbs, the
developer only need to specify her whitelists through the
interfaces (e.g., the setOriginPolicy API) we provide, which is
straightforward for them to act on. This is compared to the case-
by-case fixes that app developers are currently doing in response
to our vulnerability reports. In Table 1, we give a comparison
with regard to the vulnerabilities described in Section 3. The
ways they are fixed (or to be fixed) (“Fix w/o Morbs”) come from
our conversations with corresponding software vendors. Here,
how to fix the problem 4 (the exploit through Yelp app) and 5 (the
callback loophole) is still unknown.

As we can see from the table, these vulnerabilities are much
easier to fix with the support of Morbs. Specifically, for the next-
intent problem (Section 3.2.1), both Dropbox and Facebook
informed us that an effective fix takes time to build. Particularly,
Dropbox explained that they need to “change the architecture” of
their app, which involves non-trivial effort. In the presence of our
origin-based protection, however, this next-intent cross-origin
loophole is fixed without requiring any modification to the apps.
As another example, for the fbconnect issue described in Section
3.3.1, Facebook chose to deprecate the use of fbconnect, which is
a core feature in all of its native SDKs and official apps. This
effort needs “a several month deprecation period”, according to
Facebook. Using Morbs, however, Facebook could easily fix the
problem without touching any of its SDKs and apps, by simply
adding an extra header, including the origins of the apps supposed
to receive its message, to the HTTP response its server sends to
mobile devices. Overall, as shown in the table, the current fixes to
these problems are all case by case, while our solution is
consistent in the way to set origin-based security policies
(whitelist of authorized origins) and enforce the policies.

Table 2 Comparison of current fixes and the fixes with Morbs

Problems Fix w/o Morbs Fix w. Morbs

next-intent
(Section 3.2.1)

Change architecture of the
Dropbox app and the
Facebook app

No modification

fbconnect
(Section 3.3.1)

Deprecate this feature
(affecting all apps with
Facebook SDKs, and
taking several months)

Facebook server specifies
recipient whitelist by setting a
header in HTTP response
“mobile- allowed-origins:
app://com.facebook.katana”

Dropbox iOS
SDK (Section
3.3.2)

Change both the Dropbox
apps and SDKs

Dropbox SDK specifies sender
whitelist by adding an entry
“allowedOrigins:
app://com.getdropbox.Dropbox”
under “URL scheme” in .plist file.

Yelp issue
(Section 3.3.2)

Unknown No modification

callback exploit
(Section 3.4.1)

Unknown Facebook app specifies sender
whitelist by calling
WebViewClient:setAllowedOrigi
ns(“https://*.facebook.com”)

HTTPClient
exploit (Section
3.4.2)

Change to the Dropbox
app, adding code for
checking whether a URL
is from dropbox. com
when attaching
authorization header

Dropbox app specifies recipient
whitelist by calling
HTTPClient.setAllowedOrigins(“
https://*.dropbox.com”).

6. RELATED WORK
Origin-based protection in web browsers. Origin-based
protection is a cornerstone for browser security. All modern web
browsers enforce the same-origin policy (SOP) [4] to protect the
web content from one origin against unauthorized access from a
different origin. Always at the center of browser security is the
attacks that circumvent this protection, such as XSS, CSRF, login
CSRF, and the defense that reinforces the browser and makes the
protection hard to bypass [1][2][3]. Our research shows that
serious cross-origin attacks can also happen on mobile platforms
and therefore the origin-based protection is equally important to
mobile security.

Under the SOP, cross-origin communication needs to go through
designated channels with proper mediation. A prominent example
is the postMessage channel [5], through which the web content of
one origin can send messages to another domain, and the browser
ensures that the recipient knows the true origin of the sender.
However, the web developer of the recipient domain still needs to
come up with her own policy enforcement logic, which could be
error-prone. Alternatively, the browser can act on whitelisted
origins specified by the developer. An example is the Cross-
Origin Resource Sharing mechanism [6], through which the
content from a.com can request resources from b.com server
using XMLHttpRequest [7]. The server authorizes this cross-
origin activity to the browser by attaching to its HTTP response a
header “Access-Control-Allow-Origin: a.com”, a whitelist for the
requestor a.com. The browser then enforces this policy, sending
the message only to a.com webpages.

The design of Morbs is pretty much in line with those browser-
based security mechanisms. We bring in this origin-based
protection to mobile platforms, making the true origin of each
message observable to app/web developers and also helping them
enforce their policies at the OS level.

Security on mobile platforms. The security framework of
Android is built on i) the sandbox model [8], which separates an
app’s data and code execution from that of the rest of the system,
and 2) the permission model [9], which grants each app different
level of privileges to access system resources under the user’s
consent. Prior studies mainly focus on circumventing such
protection to obtain private user data (e.g., GPS location, phone
contacts) or perform privileged operations (e.g., sending SMS
messages) without proper consents from the user
[10][11][12][13][14][27]. Most related to our work here is
permission re-delegation [10], in which an unprivileged app sends
an intent to another app with a proper permission to act on its
behalf, operating on the resources (e.g., GPS, user contacts, etc.)
it is not supposed to touch. However, this problem has been
studied mainly for understanding the threat to mobile devices’
local resources. What we investigated is the protection of an app’s
web resources, which has not been explicitly included in
Android’s security models. Luo et al. conducted two studies
specifically about security issues related to WebView: in [42],
they categorized existing issues raised by other researchers and a
number of issues discovered by them. Many of these issues were
shown to affect Android applications that use the open-source
package DroidGap; in [43], they proposed a type of attack called
“touchjacking”, which targets the weaknesses of WebView’s
handling of touch events.

To address those problems, numerous defense mechanisms have
been proposed [17][18][19][20]. Particularly, information-flow
techniques, such as TaintDroid [15] and Vision [16], are used to
track the propagation of sensitive user data across a suspicious
app at the instruction level. Different from those existing
techniques, our protection mechanism is designed to keep track of
the origin of the message exchanged between the initiator and the
recipients for origin-based mediation. For this purpose, we only
need to work on the API level (given that the OS is trusted),
which is much more efficient. A related technique called Quire
[21] enables Android to trace and sign the whole IPC chain
observed by the OS during intent messaging, so that the recipient
of an intent can find out its initiator. However, this approach is
not designed to determine a request’s web origin: for example,
when an app is activated through a scheme URL generated by a
malicious webpage displayed in the WebView instance of the
Facebook app, looking at the IPC chain does not tell the recipient
app that it is actually originated from the malicious domain.

Similar call-sequence analyses have been done on iOS to detect
information leaks through iOS apps [22][23]. The focus of these
analyses is on malicious apps, while our focus is on protecting
benign apps.

7. CONCLUSION AND FUTURE WORK
Unlike traditional web applications, which enjoy browser-level
origin-based protection, apps are hosted on mobile OSes, whose
security models (e.g., sandbox and permission models) are not
designed to safeguard resources based their web origins. Our
research shows that in the absence of such protection, the mobile
channels can be easily abused to gain unauthorized access to a
user’s sensitive web resources. We found 5 cross-origin issues in
popular SDKs and high-profile apps such as Facebook and
Dropbox, which can be exploited to steal their users’
authentication credentials and other confidential information such
as text input. Moreover, without the OS support for origin-based
protection, not only is app development shown to be prone to
such cross-origin flaws, but the developer may also have trouble
fixing the flaws even after they are discovered. This points to the
urgent need of building origin-based protection into mobile

platforms. In our research, we designed and implemented the first
such protection mechanism, Morbs, for mediating cross-origin
communications at the OS level. Our evaluation shows that the
new technique effectively and efficiently controls the risks that
come with the communications, and can also be conveniently
utilized by the app and web developers.

Our current implementation is for Android. Building this new
protection on iOS is equally important. Also interesting is the
effort to automatically analyze existing apps, to identify their
cross-origin vulnerabilities and defend them using the origin
protection we provided. More generally, given the trend that web
services are increasingly delivered through apps, further
investigations are needed to understand how to better protect
users’ web resources on mobile OSes, which were originally
designed to safeguard a device’s local resources.

8. ACKNOWLEDGEMENTS
We thank Seungyeop Han, Ravi Bhoraskar, and Jaeyeon Jung for
their help on monitoring HTTPS traffic of Android emulator.
Authors from Indiana University are supported in part by National
Science Foundation CNS-1117106 and CNS-1223477.

9. REFERENCES
[1] Fogie, S., Grossman, J., Hansen, R., Rager, A., & Petkov, P.

D. (2007). XSS Attacks: Cross Site Scripting Exploits and
Defense. Syngress Publishing.

[2] Auger, R. (2008). The cross-site request forgery (csrf/xsrf)
faq. CGISecurity. com. Apr, 17.

[3] Barth, A., Jackson, C., & Mitchell, J. C. (2008, October).
Robust defenses for cross-site request forgery. In
Proceedings of the 15th ACM conference on Computer and
communications security (pp. 75-88). ACM.

[4] Barth, A. (2011). The web origin concept.
[5] Cross-document messaging – HTML standard.

http://www.whatwg.org/specs/web-apps/current-
work/multipage/web-messaging.html#web-messaging

[6] van Kesteren, A. (2010). Cross-origin resource sharing. W3C
Working Draft WD-cors-20100727.

[7] Garrett, J. J. (2005). Ajax: A new approach to web
applications.

[8] Android Developers: Security Tips.
http://developer.android.com/training/articles/security-
tips.html

[9] Android Developers: Permissions.
http://developer.android.com/guide/topics/security/permissio
ns.html

[10] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., & Chin,
E. (2011, August). Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium (Vol. 18, pp. 19-31).

[11] Davi, L., Dmitrienko, A., Sadeghi, A. R., & Winandy, M.
(2011). Privilege escalation attacks on android. In
Information Security (pp. 346-360). Springer Berlin
Heidelberg.

[12] Grace, M., Zhou, Y., Wang, Z., & Jiang, X. (2012,
February). Systematic detection of capability leaks in stock
Android smartphones. In Proceedings of the 19th Annual
Symposium on Network and Distributed System Security.

[13] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A.,
& Wang, X. (2011, February). Soundcomber: A stealthy and
context-aware sound trojan for smartphones. In Proceedings

of the 18th Annual Network and Distributed System Security
Symposium (NDSS) (pp. 17-33).

[14] Schrittwieser, S., Frühwirt, P., Kieseberg, P., Leithner, M.,
Mulazzani, M., Huber, M., & Weippl, E. (2012, February).
Guess Who’s Texting You? Evaluating the Security of
Smartphone Messaging Applications. In Proceedings of the
19th Annual Symposium on Network and Distributed System
Security.

[15] Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J.,
McDaniel, P., & Sheth, A. N. (2010, October). TaintDroid:
an information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation (pp. 1-6).

[16] Gilbert, P., Chun, B. G., Cox, L. P., & Jung, J. (2011, June).
Vision: automated security validation of mobile apps at app
markets. In Proceedings of the second international
workshop on Mobile cloud computing and services (pp. 21-
26). ACM.

[17] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.
R., & Shastry, B. (2012, February). Towards taming
privilege-escalation attacks on Android. In 19th Annual
Network & Distributed System Security Symposium (NDSS)
(Vol. 17, pp. 18-25).

[18] Shekhar, S., Dietz, M., & Wallach, D. S. (2012). Adsplit:
Separating smartphone advertising from applications. CoRR,
abs/1202.4030.

[19] Fragkaki, E., Bauer, L., Jia, L., & Swasey, D. (2012).
Modeling and enhancing Android’s permission system. In
Computer Security–ESORICS 2012 (pp. 1-18). Springer
Berlin Heidelberg.

[20] Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T.,
Hund, R., ... & Sadeghi, A. R. (2012, February). MoCFI: A
framework to mitigate control-flow attacks on smartphones.
In Proceedings of the 19th Annual Symposium on Network
and Distributed System Security.

[21] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., & Wallach, D.
S. (2011, August). Quire: Lightweight provenance for smart
phone operating systems. In Proceedings of the 20th
USENIX Security Symposium.

[22] Egele, M., Kruegel, C., Kirda, E., & Vigna, G. (2011,
February). PiOS: Detecting privacy leaks in iOS
applications. In Proceedings of the Network and Distributed
System Security Symposium.

[23] Werthmann, T., Hund, R., Davi, L., Sadeghi, A. R., & Holz,
T. (2013). PSiOS: Bring Your Own Privacy & Security to
iOS Devices.

[24] Hardy, N. (1988). The Confused Deputy:(or why capabilities
might have been invented). ACM SIGOPS Operating
Systems Review, 22(4), 36-38.

[25] Hermandroid. “Launching an Android application from a
URL”. http://androidsmith.com/2011/07/launching-an-
android-application-from-a-url/

[26] Apple URL Scheme Reference.
http://developer.apple.com/library/ios/#featuredarticles/iPho
neURLScheme_Reference/Introduction/Introduction.html

[27] Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011,
June). Analyzing inter-application communication in
Android. In Proceedings of the 9th international conference
on Mobile systems, applications, and services (pp. 239-252).
ACM.

[28] Android Developers: WebView.addJavaScriptInterface.
http://developer.android.com/reference/android/webkit/Web
View.html#addJavascriptInterface%28java.lang.Object,%20j
ava.lang.String%29

[29] Android Developers: Parcel.
http://developer.android.com/reference/android/os/Parcel.ht
ml

[30] Android Developers: Java Native Interface.
http://developer.android.com/training/articles/perf-jni.html

[31] Supporting materials for this work.
http://research.microsoft.com/en-us/um/people/ruiwan/mobile-
origin/index.html

[32] A local file loaded from SD card to webview on Android can
cross-domain. http://lists.grok.org.uk/pipermail/full-
disclosure/2012-February/085619.html

[33] Android-apktool – A tool for reverse engineering Android
apk files. http://code.google.com/p/android-apktool/

[34] AndroChef Java Decompiler.
http://www.neshkov.com/ac_decompiler.html

[35] Facebook Developers – Dialogs Overview.
https://developers.facebook.com/docs/reference/dialogs/

[36] Android Developers – HttpClient.
http://developer.android.com/reference/org/apache/http/clien
t/HttpClient.html

[37] Android Developers – HttpURLConnection.
http://developer.android.com/reference/java/net/HttpURLCo
nnection.html

[38] iOS Developer Library – NSURLConnection Class
Reference.
http://developer.apple.com/library/ios/#documentation/Coco
a/Reference/Foundation/Classes/NSURLConnection_Class/
Reference/Reference.html#//apple_ref/occ/cl/NSURLConnec
tion

[39] iOS Developer Library – Making HTTP and HTTPS
Requests.
http://developer.apple.com/library/ios/#documentation/Netw
orkingInternetWeb/Conceptual/NetworkingOverview/Worki
ngWithHTTPAndHTTPSRequests/WorkingWithHTTPAndH
TTPSRequests.html

[40] The implementation of the mobile origin-based security
mechanism (Morbs) on Android is published on GitHub.
https://github.com/mobile-security/Morbs

[41] PlainText – Dropbox text editing for iPhone, iPod touch, and
iPad. https://itunes.apple.com/us/app/plaintext-dropbox-text-
editing/id391254385?mt=8

[42] Luo, T., Hao, H., Du, W., Wang, Y., & Yin, H. (2011,
December). Attacks on WebView in the Android system. In
Proceedings of the 27th Annual Computer Security
Applications Conference (pp. 343-352).

[43] Luo, T., Jin, X., Ajai, A., & Du, W. Touchjacking attacks on
web in android, ios, and windows phone. In Proceedings of
5TH International Symposium on Foundations & Practice of
Security (FPS 2012).

