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Abstract. Motivated by the advantages of using elliptic curves for discrete logarithm-based
public-key cryptography, there is an active research area investigating the potential of using
hyperelliptic curves of genus 2. For both types of curves, the best known algorithms to solve the
discrete logarithm problem are generic attacks such as Pollard rho, for which it is well-known
that the algorithm can be sped up when the target curve comes equipped with an efficiently com-
putable automorphism. In this paper we incorporate all of the known optimizations (including
those relating to the automorphism group) in order to perform a systematic security assessment
of two elliptic curves and two hyperelliptic curves of genus 2. We use our software framework
to give concrete estimates on the number of core years required to solve the discrete logarithm
problem on four curves that target the 128-bit security level: on the standardized NIST CurveP-
256, on a popular curve from the Barreto-Naehrig family, and on their respective analogues in
genus 2.

1 Introduction

In the last couple of decades, the use of elliptic curves, or genus 1 curves, has become a popular
and standardized choice to instantiate public-key cryptography [25, 29]. The security of these
cryptographic schemes relies on the difficulty of the elliptic curve discrete logarithm prob-
lem (ECDLP). Currently, the best known algorithms to solve this problem are the so-called
“generic” attacks, such as the parallelized version [37] of the Pollard rho algorithm [33], which
has been used to solve large instances of the ECDLP (cf. [22, 12, 8, 2]). It is well-known that
this algorithm can be optimized by a constant factor when the target curve comes equipped
with an efficiently computable group automorphism [39, 15]. For example, all elliptic curves
can efficiently compute the inverse of a point and this negation map can be used to speed
up the run-time by at most a factor

√
2. When the cardinality of the automorphism group

is larger, such as for the elliptic curves proposed in [18], a higher speedup is expected when
solving the ECDLP.

Jacobians of hyperelliptic curves of genus 2 have also been considered for cryptographic
applications [26] (also see [5, 27]). Just as with their elliptic curve counterpart, the best known
algorithms to solve the discrete logarithm in such groups are the generic ones. The practical
potential of genus 2 curves in public-key cryptography has recently been highlighted by the
fast performance numbers presented in [7]. For cryptographically interesting curves over large
prime fields, it is possible to achieve larger automorphism groups in genus 2 (see [15]). This
not only aids the cryptographer (e.g. [17, 7]), but also the cryptanalyst: one can expect a larger
speed-up when computing the (H)ECDLP on curves from these families [15].
? Most of this work was done while the third author was an intern in the Cryptography Research group at
Microsoft Researcha
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In this paper we investigate the practical speed-up of Pollard rho when exploiting the auto-
morphism group. We use the methods presented in [9, 6] for situations where only the negation
map is available, and extend these techniques to curves with a larger group automorphism.
As examples in the elliptic case, we use two curves that target the 128-bit security level: the
NIST Curve P-256 [36] and a BN-curve [3] – the automorphism groups on these two curves
are of size two and six respectively, which are the minimum and maximum possible sizes for
genus 1 curves over large prime fields. To mimic these choices in the hyperelliptic case1, we use
two curves from [7], where the automorphism groups are of size two and ten – these are the
minimum and maximum possible sizes for cryptographically interesting genus 2 curves over
large prime fields. We implemented efficient field and curve arithmetic that was optimized for
each of these four curves, and derived the best parameters to make use of the automorphism
optimization.

We obtain security estimates for these four curves using parameters and implementations
that were devised to minimize the practical inconveniences arising from the group automor-
phism optimization. When taking the standardized NIST Curve P-256 as a baseline for the
128-bit security level, we show that curves with a larger automorphism group (of cardinality
m > 2) indeed sacrifice some security. The constant-factor speedup, however, is lower in prac-
tice than the often cited

√
m. Nevertheless, using both theoretical and experimental analysis,

we provide parameters which push the performance of the Pollard rho algorithm close to what
can be achieved in practice.

The paper is organized as follows. We give preliminaries on the Pollard rho algorithm in
Section 2. In Section 3 we discuss the main practical issues that arise from the automorphism
optimization, and how to minimize their impact on performance. In Section 4 we give the
fine-grained details and parameter choices for each of the curves under consideration, before
discussing our implementations and results in Section 5. We conclude the paper in Section 6.

2 Preliminaries

General group elements. We use JC to denote the Jacobian group of a curve C over a
finite field Fq, where q > 3 is prime. For our purposes, C and JC can be identified when
C is an elliptic curve, where our group elements are all points (x, y) ∈ Fq × Fq satisfying
C/Fq : y2 = x3 + ax + b, together with the identity element O. In genus 2, our curves are
assumed to be of the form C/Fq : y2 = x5 + f3x

3 + f2x
2 + f1x + f0. In this case we write

general elements of the Jacobian group (i.e. weight 2 divisors) in their Mumford representation
as (u(x), v(x)) = (x2 + u1x + u0, v1x + v0) ∈ Fq[x] × Fq[x], such that u(x1) = u(x2) = 0,
v(x1) = y1 and v(x2) = y2, where (x1, y1) and (x2, y2) are two (not necessarily distinct)
points in the set C(Fq), and where y1 6= −y2. The canonical embedding of C into JC maps
(x1, y1) ∈ C(Fq) to the divisor with Mumford representation (x−x1, y1) – we call such divisors
degenerate. Since #C ≈ p and #JC ≈ p2, the probability of encountering a degenerate divisor
randomly from JC is O(1p); this is also the probability that the sum of two random elements
in JC is a degenerate divisor [31, Lemma 1]. Combining these probabilities with standard
Pollard rho heuristics allows us to ignore the existence of degenerate divisors in practice – in
all of the cases considered in this work, it is straightforward to see that an optimized random

1 The fact that the BN curve is pairing-friendly, while our chosen genus 2 “analogue” is not, does not make a
difference in the context of our ECDLP Pollard rho analysis. We wanted curves with large automorphism
groups, and we choose the BN curve as one interesting example.
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walk is more likely to solve the discrete logarithm problem than it is to walk into a degenerate
divisor. Note that in the unlikely event one encounters a degenerate divisor, such that our
general-case formulas compute divisors which are not on the Jacobian, this can be dealt with
at almost no additional cost by performing a sanity check on all active walks, once in a while.
Another solution is to perform such a sanity check on the distinguished elements only (see the
description of the parallel Pollard rho algorithm below) and to discard such incorrect elements.

The Pollard rho algorithm. The Pollard rho algorithm [33] can be used to compute discrete
logarithms in arbitrary groups, but here we give a description that is specific to our context
of Jacobian groups. Suppose we are given P ∈ JC that generates a group of large prime order
n: given some Q ∈ 〈P 〉, the (hyper-) elliptic curve discrete logarithm problem (H)ECDLP is
to find k ∈ Z/nZ such that Q = [k]P . At the highest level, the idea is to compute pseudo-
random elements of the form Pi = [ai]P+[bi]Q for known non-zero ai, bi ∈ Z/nZ, such that if a
collision Pi = Pj is found with bi 6= bj , then taking k := (aj−ai)/(bi−bj) ∈ Z/nZ is a solution
to the (H)ECDLP. The birthday paradox implies that we can expect to find such a collision
after computing around

√
πn
2 group elements Pi, provided they are chosen independently and

uniformly at random [23]. In practice we use the so-called r-adding walk, which starts with r
precomputed group elements Sj = [cj ]P+[dj ]Q, for non-zero cj , dj ∈ Z/nZ and 0 ≤ j < r. On
input of a group element Pi, we use a partition function ` : 〈P 〉 → {0, 1, . . . , r − 1} to define
an iteration function f : 〈P 〉 → 〈P 〉, which computes the next element as Pi+1 = f(Pi) =
Pi + S`(Pi). Put simply, the iteration function chooses one of the r precomputed elements to
add to Pi in order to step to Pi+1. On top of the minor costs of evaluating ` and updating the
ai, bi ∈ Z/nZ, each such step comes at the cost of a single Jacobian group operation. Keeping
every group element encountered in the walk imposes exponential (and therefore infeasible)
storage requirements, which is why the parallel Pollard rho algorithm [37] stores only a small
fraction of the elements we come across: the so-called distinguished points. Storage of O(log n)
group elements suffices when roughly

√
n log n out of n group elements are distinguished [16,

Exercise 14.2.15]. In practice one can use a simple check to determine whether the group
element Pi is classed as distinguished, in which case it is reported to a central location, along
with the corresponding ai and bi. Only these distinguished ‘points’ need to be cross-checked
against one another for collisions; when two walks coincide at a non-distinguished point and
this collision goes undetected, the deterministic iteration function guarantees that these walks
continue along the same path until they arrive at the same distinguished point.

Affine additions with amortized inversions. As mentioned above, each step of a random
walk requires the addition of two distinct Jacobian group elements. In the context of scalar
multiplications, additions on the Jacobian are usually performed in projective space, where all
inversions are avoided until the very end, at which point the result is normalized via a single
inversion. In the context of Pollard rho however, it is preferred to work in affine space for two
main reasons. Firstly, we need a way to suitably define and efficiently check a distinguished
point criterion on every group element that is computed; since there are many distinct tuples
of projective coordinates corresponding to a unique affine point, there is currently no known
method to do this efficiently when working in projective space. Secondly, optimized versions
of Pollard rho run many concurrent random walks to take advantage of Montgomery’s simul-
taneous inversion method [30]. If enough concurrent walks are used, then the amortized cost
of each individual field inversion becomes roughly 3 field multiplications – this makes affine
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Weierstrass coordinates the fastest known coordinate system to work with for cryptanalysis.
On elliptic curves, such amortized point additions require 5 Fq multiplications, 1 Fq squar-
ing and 6 Fq additions; on genus 2 curves, these additions cost 20 Fq multiplications, 4 Fq
squarings and 48 Fq additions [14] – see Table 1 in Section 4.

Exploiting automorphisms. The Pollard rho algorithm can be sped up by a constant factor
if the presence of automorphisms on C is exploited [39, 15]. Let m denote the cardinality of
the automorphism group, Aut(C), which we assume is cyclic2 with generator ψ; in genus 2,
ψ extends in the natural way to JC under the canonical embedding described above. For all
R,R′ ∈ 〈P 〉, define an equivalence relation ∼ on 〈P 〉 by R ∼ R′ if and only if R = ψi(R′) for
some 0 ≤ i < m. Note that there are around n/m such equivalence classes in 〈P 〉, and that
m ≥ 2 since Aut(C) contains (at least) the identity map id and the negation/involution map
“−”. We write R̃ for the unique representative of the class containing R, i.e. R̃1 = R̃2 if and only
if R1 ∼ R2. An efficient way of choosing such representatives is imperative to an optimized
implementation of the Pollard rho algorithm, so we give the fine-grained details for each of the
curves under consideration in Section 4. The important point is that each time the iteration
function computes a new group element Pi+1 via an addition, it now immediately computes
the representative element P̃i+1, thereby accounting for m elements at a time. This effectively
reduces the size of the set on which we walk by a factor of m, which theoretically reduces
the expected time to a collision by a constant factor

√
m. In practice however, computing

these representatives incurs an overhead which reduces the actual speedup obtained; one of
the contributions of this work is to optimize parameter selection in a variety of scenarios to
see how close we can get to this theoretical

√
m improvement.

3 Handling Fruitless Cycles

It is well known that certain practical issues are encountered when exploiting the automor-
phism optimization [39, 18, 15, 9, 6]. Walks will end up in fruitless cycles – endless small loops
where many fruitless collisions are found over-and-over again (the collisions are fruitless be-
cause they have the same ai and bi). At a high level, these collisions occur because the au-
tomorphism ψ, which generates Aut(C), has a minimal polynomial of small degree; for all
scenarios in this paper, ψ satisfies

∑d
i=0 eiψ

i = 0 for ei ∈ Z and where d ≤ 5. Since each
step in a walk involves the addition of an element from a relatively small fixed table, it is
possible that the same table element (or a very small subset of them) is added multiple times
in succession, and that these contributions to the walk are annihilated by unfortunate linear
combinations of powers of ψ (which sum to zero). The most simple and frequently occurring
example is when the negation map sends the walk into a fruitless 2-cycle: the partition function
will choose the same table element twice in a row (i.e `(Pi) = `(Pi+1) = `(Pi + S`(Pi))) with
probability 1/r, and the representative P̃i+1 of the equivalence class {Pi+1,−Pi+1} will be
P̃i+1 = −Pi+1 = −(Pi+S`(Pi)) with probability 1/2, meaning that P̃i+2 = P̃i with probability
1/(2r). This is analyzed in more detail for different cycle lengths and values of m = #Aut(C)
in [15].

In this section we summarize the current literature and discuss how to reduce the occur-
rence of fruitless cycles, how to detect when they occur, and subsequently how to deal with a
walk that is stuck in such a cycle.
2 This is always the case for curves of cryptographic interest over large prime fields with g ≤ 2 (see [15]).
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3.1 Cycle Reduction

In [39], a ‘look-ahead’ technique is described to reduce the event of 2-cycles. This method
starts by computing a candidate point P̂ for Pi+1 as usual, i.e. computing P̂ = Pi + S`(Pi);
if `(P̂ ) 6= `(Pi), then we set Pi+1 = P̂ and continue, otherwise we discard the point P̂ and
compute another candidate point by adding the next lookup table element S`(Pi)+1 mod r to
Pi. Note that the probability that r lookup elements result in invalid candidates is extremely
low, i.e. r−r. As analyzed in [9], using this look-ahead technique lowers the probability to
enter a 2-cycle from 1

2r to 1
2r3

+O( 1
r4
). This technique can be generalized to longer cycles as

well [39, 9]. Note that if a point gets discarded, it means that we have computed the group
operation but did not take a step forward in our pseudo-random walk. We refer to this event
as a fruitless step due to cycle reduction. In this work we use a 2-cycle reduction technique
that slightly modifies the above approach, as we detail in Section 3.3.

3.2 Escaping Fruitless Cycles

Even if the probability of a fruitless cycle is lowered using the look-ahead strategy in Sec-
tion 3.1, the walks will still eventually enter a fruitless cycle, which clearly must be dealt with.
The first step towards a remedy is to detect that a walk is trapped; the next step is to then
escape the fruitless cycle in a deterministic way, such that if any other walk encounters the
same cycle, they both end up exiting using the exact same point. The idea described in [18]
is to occasionally store a sequence of points and to check for repetitions by comparing new
points to these stored points. If a cycle has been detected, then one can escape by applying a
modified iteration function to a representative of the cycle – in [18], the point with smallest
x- or y-coordinate is proposed to be the representative. In [9] it is observed that many mod-
ified iteration functions used to escape the cycle are insufficient, and can result in the walk
recurring to the same fruitless cycle soon after it “escapes”. As observed in [15, 9], one example
of how to properly escape cycles is to double the representative of the fruitless cycle – our
implementations use this approach.

3.3 Handling Fruitless Cycles in Practice

In this subsection we compute a lower-bound on the number of fruitless steps we expect to
perform in order to state an upper-bound on the (theoretical) speedup. For this analysis, we
measure the cost of the additional (fruitless) computations we have to perform in order to
deal with cycles. To analyze this cost, we use a function c which expresses the cost of certain
operations in terms of the number of modular multiplications. We summarize which strategy
we use in our implementation and outline how we select the various parameters, based on our
analysis, to perform cycle reduction and cycle escaping.

In [9], different scenarios and varied parameters for both cycle reduction and cycle escaping
techniques are implemented and compared. The recommendations are to use medium sized
values of r (since larger values might decrease the performance by introducing cache-misses),
to reduce the event of 2-cycles only (not any higher cycles), and to escape cycles by doubling
the cycle’s representative. This combination of choices was able to achieve a 1.29 times speedup
over not using the negation map on architectures supporting the x64 instruction set, while
from a theoretical perspective a speedup of 1.38 should be possible (both speedups are slightly
below

√
2). A follow-up paper [6] takes a different approach on the single instruction, multiple
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data (SIMD) Cell processor. Since multiple walks are processed by the same instructions, all of
which must follow identical computational steps, the cycle reduction technique is completely
omitted. Instead, the walk is modified to occasionally check for fruitless cycles – different cycle
lengths are detected at different points in time, but if a cycle is detected, this is resolved by
escaping from it by again doubling the cycle’s representative.

We now analyze the maximum expected speedup in more detail. Assume we perform w > 0
steps, and that at every step we can enter a cycle with probability p, if we are not in a cycle
already. Once we enter a cycle at step 0 < i ≤ w, all subsequent w − i steps are fruitless.
Hence, after w steps we expect to have computed W (w, p) fruitless steps where

W (w, p) =

w−1∑
i=0

p(1− p)i(w − i) = (1− p)w+1 + p(w + 1)− 1

p
. (1)

Using this simple analysis (which is similar to the analysis from [6]), one can compute the
ratio between the number of fruitful steps and the number of total steps. For example, the im-
plementation described in [6] uses r = 2048, checks for 2-cycles every 48 iterations, and checks
for larger cycles much less frequently. Since 2-cycles occur with probability 1

2r , the expected
number of multiplications due to fruitful steps (per 48 iterations) is c(f) · (48−W (48, 1

2·2048)),
where c(f) is the cost to compute the iteration function expressed in multiplications, which in
this setting is c(f) = 6. The total number of multiplications computed is then 48 · c(f)+ c(D),
where the latter is the cost for point doubling in order to escape the 2-cycle, which is c(D) = 7
in the elliptic curve case. Ignoring the various implementation overheads, this analysis shows
that a speedup of at most 0.97

√
2 is expected when taking only 2-cycles into account.

In our implementations, we chose to follow an approach closer to that which is described
in [9]. The reason is that we do want to use the cycle reduction technique to lower the
probability for walks to enter 2-cycles (at the price of occasionally computing fruitless cycles
due to cycle reduction). We remark that in a SIMD setting, such as that considered in [6],
an approach without cycle reduction might be more efficient in practice. We note that using
the 2-cycle reduction technique also reduces the event of 3-cycles, which can only occur if
3 | #Aut(C), for which the BN curve is the only such scenario in this paper. As shown in [15],
3-cycles occur only if we add representatives from the same partition three times in a row –
this repetition is exactly what we aim to avoid using the 2-cycle reduction technique.

We check for cycles every α steps by recording the β points {α, α+ 1, . . . , α+ β − 1} (or
an appropriate subset of these points), and checking if the (α + β)th point occurs in the list
of recorded points. If it does, then we select a fruitless cycle representative and use this point
to double out of this fruitless cycle: this heuristically eliminates recurring cycles [9].

We modify the cycle reduction technique from [39, 9], as described in Section 3.1. In order
to avoid, with probability r−r, the scenario where all of the r lookup table elements give rise
to an invalid next point, we simply add a point from another precomputed lookup table f̃
(which also contains r elements), as follows:

pi+1 =

{
pi + f`(pi) if `(pi) 6= `(pi + f`(pi)),

pi + f̃`(pi) otherwise.

Following the analysis from [9], this reduces the probability to enter a 2-cycle from (mr)−1

to approximately 4
(mr)3

. For practical values of r, this makes 4-cycles the most likely event to
occur, with probability approximately (mr)−2 (assuming independence of the precomputed
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values Si). Due to this cycle reduction technique, we expect that one out of r steps is fruitless
(since the probability that `(pi) = `(pi + f`(pi)) is

1
r ). Hence, the fraction of all steps that are

fruitful is r−1
r .

4 Target Curves and their Automorphism Groups

In this section we discuss our chosen target curves and the associated parameter choices and
optimizations in the context of Pollard rho. The computational costs for divisor addition, com-
puting the equivalence class representative, and updating the ai and bi values are summarized
in the worst and average case in Table 1. The average case costs are used in our analysis, but
we include the worst case costs for settings (like parallel architectures) where all the walks
must always perform the same (worst-case) computational steps.

We choose to target two curves in genus 1 and two curves in genus 2. All four of these
curves have a prime order between 254 and 256 bits. The two elliptic curves have m = 2
and m = 6, which are the respective minimum and maximum values of m = #Aut(C) for
cryptographically interesting genus 1 curves over prime fields; likewise, the two hyperelliptic
curves have m = 2 and m = 10, which are the respective minimum and maximum values of
m = #Aut(C) for genus 2 curves of cryptographic interest over prime fields.

In each case we also outline our parameter choices for handling fruitless cycles. We follow
the analysis and notation as outlined in Section 3.3, with a primary goal that less than one
percent of the steps we compute are fruitless. We assume that the cost of a modular multipli-
cation and modular squaring are equivalent: if required, the analysis can be trivially adjusted
to reflect any other cost ratio. In order to sufficiently reduce the probability of cycles to occur,
we always take r ≥ 1024 (we did not use the idea from [6] to reduce the storage of the r pre-
computed points). Furthermore, in order to detect much longer (and much less likely) cycles,
we take β = 32, so that we can detect and deal with cycles up to length 32. More precisely,
given a probability p to enter a cycle at every step, and a value for α (we check for cycles
every α steps), we estimate the fraction of all computation that is fruitful using Eq. (1), as

c(f) · (α−W (α, p))

α · c(f) + c(D)
· r − 1

r
, (2)

where the first fraction is due to the cycle detection and escaping (we assume that we always
compute a doubling to escape), and the second fraction incorporates the fruitless steps due to
the cycle reduction technique. Although we give the costs of updating the ai and bi, we omit
these from our analysis – the correct ai and bi can be recovered when needed, when each path
starts at a random point derived from a random seed, as described in [2].

4.1 Target Curves in Genus 1

NIST CurveP-256. Let q = 2256− 2224+2192+296− 1, and define E/Fq : y2 = x3− 3x+ b,
with b=0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B. This
curve has a 256-bit prime order n and is defined in NIST’s Digital Signature Standard [36].
In this case Aut(E) = {id,−}, meaning that (x, y) ∼ (x,−y), so we take the representative
of each class to be the point with the odd y-coordinate (when 0 ≤ y < q). In the worst case,
the cost of computing this representative is a negation in Fq, and updating the corresponding
(ai, bi) pair costs two negations in Z/nZ. On average though, these costs are halved, since we
have already computed (and detected) the representative half of the time.
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In order to derive parameters for the cycle detection, we use p = (2r)−2 as the probability
to enter a 4-cycle, which (due to the cycle-reduction technique) is higher than the probability
to enter a 2-cycle – see Section 3.3. The elliptic curve group operation costs are taken as
c(f) = c(A) = 6 and c(D) = 7. Using the parameters r = 1024, α = 7 · 104 and β = 32, we
expect that around one percent of the computed steps are fruitless: Eq.(2) evaluates to 0.9907.

BN254. Let q be the 254-bit prime obtained when u = −(262 + 255 + 1) is plugged into
q(u) = 36u4 + 36u3 + 24u2 + 6u+ 1. The Barreto-Naehrig (BN) curve [3] E/Fq : y2 = x3 + 2
has a 254-bit prime order n, and has been used in several of the “speed-record” papers for
pairing computations that target the 128-bit security level (e.g. [1, 21]). Since q ≡ 1 mod 3,
there exists ζ 6= 1 ∈ Fq such that ζ3 = 1, meaning that E(Fq) has additional automorphisms,
e.g. φ : E → E, (x, y) 7→ (ζx, y). In fact, Aut(E) = {id,−, φ,−φ, φ2,−φ2}, so that the points
(x, y), (x,−y), (ζx, y), (ζx,−y), (ζ2x, y) and (ζ2x,−y) are all equivalent under ∼. We take the
representative of each equivalence class to be the point whose x-coordinate has least absolute
value and whose y-coordinate is odd. In the worst case, computing this representative costs
one multiplication, two negations and one addition in Fq, and updating the corresponding
(ai, bi) pair costs two multiplications in Z/nZ; we exploit ζ2x = −(ζ +1)x to compute the x-
coordinate of φ2(P ) from the x-coordinates of φ(P ) and P without any further multiplications.
On average however, we only need the negation to get the odd y-coordinate half of the time;
to update the (ai, bi), we compute the two Z/nZ multiplications two thirds of the time, while
in the remaining one third of the cases, we average a single Z/nZ addition.

In order to derive parameters for the cycle detection, we use p = (6r)−2 as the adjusted
probability to enter a 4-cycle (taking the group automorphism into account). In this case the
elliptic curve group operation costs are taken as c(f) = c(A) = 7 and c(D) = 8, where both
costs incorporate the additional multiplication to compute the representative. Using r = 1024
and β = 32, we find that a corresponding α value (for which we expect that around one percent
of the computed steps is fruitless) as α = 6 · 105, which is almost an order of magnitude larger
than in the NIST CurveP-256 setting: in this case, evaluating Eq. (2) gives 0.9911.

4.2 Target Curves in Genus 2

Generic1271. Let q = 2127 − 1 and C/Fq : y2 = x5 + a3x
2 + a2x

2 + a1x+ a0 with

a3 = 0x1A237F07B8BB79AEBA5011C3FA697D2D, a2 = 0x63D7B6834F8A4F3DBDBD141CE55EA675,
a1 = 0x44642D7B9E492BE2E3C4F8A36F0C4236, a0 = 0x504351F67810EFACF06E3A6E5C532F0.

This curve was recently used in [7] as a “generic” instance of a (degree 5) genus 2 curve,
since it has no special structure and the order of its Jacobian is a 254-bit prime n. Here
Aut(C) = {id,−}, which extends to JC to give that the divisors (x2+u1x+u0, v1x+ v0) and
(x2 + u1x + u0,−v1x − v0) are equivalent under ∼. Thus, we take the representative of each
class to be the divisor whose v0-coordinate is odd. In the worst case, the cost of computing
this representative is two negations in Fq, and updating the corresponding (ai, bi) pair costs
two negations in Z/nZ. On average these costs are again halved since we already have the
correct representative half of the time.

In order to derive parameters for the cycle detection, we use exactly the same parameters
as in the NIST CurveP-256 setting, since the automorphism groups are the same, and only
the costs of the group operations differ: c(f) = c(A) = 24 and c(D) = 28 in this case: Eq.(2)
evaluates to 0.9907 (when α = 7 · 104, β = 32 and r = 1024).
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Table 1. Cost of the Pollard rho iteration for the selected genus g curves, where m = #Aut and q is the prime
field characteristic. We denote modular multiplications, modular squarings and modular additions/subtractions
with M, S and a respectively. When updating the ai and bi values, we compute modulo n instead of modulo
q.

cost of one step
curve g m divisor compute representative update ai, bi

addition worst average worst average
CurveP-256 1 2 5M+ S+ 6a 1a 1

2
a 2an 1an

BN254 1 6 5M+ S+ 6a 1M+ 3a 1M+ 5
2
a 2Mn

4
3
Mn + 1

3
an

Generic1271 2 2 20M+ 4S+ 48a 2a 1a 2an 1an

4GLV127-BK 2 10 20M+ 4S+ 48a 6M+ 1S+ 5a 27
5
M+ 4

5
S+ 3

5
a 2Mn

8
5
Mn + 1

5
an

4GLV127-BK. Let q = 264 · (263 − 27443) + 1. The Buhler-Koblitz [11] curve C/Fq : y2 =
x5 + 17 gives rise to a Jacobian whose group order is a 254-bit prime n. Since q ≡ 1 mod 5,
there exists ζ 6= 1 in Fq such that ζ5 = 1, which gives rise to additional automorphisms
on C, e.g. φ : C → C, (x, y) 7→ (ζx, y). The map φ extends to weight-2 divisors as φ :
JC → JC , (x2 + u1x + u0, v1x + v0) 7→ (x2 + ζu1x + ζ2u0, ζ

4v1x + v0). Here Aut(C) =
{id,−, φ,−φ, . . . , φ4,−φ4}, so we take the representative of each class to be the divisor whose
u1-coordinate has least absolute value and whose v0-coordinate is odd. In the worst case, the
cost of finding this representative is six multiplications, one squaring, three additions and two
negations in Fq; it takes three multiplications, three additions and a negation (this time we
use ζ4 = −(ζ3 + ζ2 + ζ + 1) to save a multiplication) to first determine the minimum value
in {ζiu1} for 0 ≤ i ≤ 4, another two multiplications to compute the corresponding ζ2iu0 and
±ζ4iv1, and finally one negation for the v0-coordinate. To comply with the formulas in [14],
we must also recompute the two extended coordinates u1u0 and u21, which additionally incurs
a multiplication and a squaring. Updating the (ai, bi) pair costs two multiplications in Z/nZ.
On average though, we only need the three Fq multiplications and one Fq squaring for u0,
v1, u1u0 and u21 in eight of the ten cases (one of the ten needs only one Fq negation, the
other case needs no computation), and we only need to negate v0 in five of the ten cases. For
updating (ai, bi) on average, we need two Z/nZ multiplications in eight of the ten cases, two
Z/nZ negations in one of them, while the remaining case leaves (ai, bi) unchanged.

Taking the size of the automorphism group into account gives p = (10r)−2 as the adjusted
probability to enter a 4-cycle. Including the average number of additional multiplications to
compute the representative of the equivalence class in the iteration function, the costs become
c(f) = 301

5 and c(D) = 341
5 . An α value for which we expect that around one percent of the

computed steps is fruitless is α = 106: this is over an order of magnitude larger compared
to the Generic1271 setting: evaluating Eq.(2) gives 0.9943 in this case (when β = 32 and
r = 1024).

4.3 Other Curves of Interest

In this subsection we briefly mention the application of the Pollard rho algorithm to other
popular curves that have appeared in the literature and that target the 128-bit security level.

Other genus 1 curves. Bernstein’s Curve25519 [4] and Hisil’s ecfp256e [24] both facilitate
fast timings for scalar multiplications without the existence of additional morphisms, so be-
sides the faster modular arithmetic that is possible over these pseudo-Mersenne primes, the
application of Pollard rho to these two curves is identical to the case of CurveP-256. There are
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other j-invariant zero curves (that are not pairing-friendly) which have been put forward for
fast ECC using the Gallant-Lambert-Vanstone (GLV) technique [18]: the prime order curve
E/Fq : y

2 = x3 + 2 with q = 2256 − 11733 was used by Longa and Sica [28], while the prime
order curve E/Fq : y2 = x3+7 with q = 2256− 232− 977 is proposed in the SEC standard [13]
and is subsequently used in Bitcoin [32]. In both of these cases, the automorphism group is
the same as that for BN254, so Pollard rho is optimized identically.

There exist numerous families of curves that come equipped with non-trivial morphisms
which are useful in the context of scalar multiplications, but which are not useful in the
context of Pollard rho. This is often the case for curves that contain efficiently computable en-
domorphisms which are not automorphisms, like the families of Q-curves recently proposed by
Smith [34]. On the other hand, Galbraith-Lin-Scott (GLS) curves [17] do facilitate a constant-
factor speedup in Pollard rho, since the GLS endomorphism gives rise to small orbits and is
typically much faster than a group operation (it usually involves one multiplication by a fixed
constant).

Other genus 2 curves. The authors of [7] recently used the Kummer surface found by
Gaudry and Schost [20] to achieve fast scalar multiplications in genus 2. Interestingly, there is
no known way to exploit the fast arithmetic on the Kummer surface in Pollard rho, since only
pseudo-additions exist there. Discrete logarithm instances must therefore be mapped back to
the full Jacobian group, where, besides the smaller prime subgroup resulting from the imposed
cofactor of 16 on Kummer1271, the optimal application of Pollard rho is identical to the case
of Generic1271.

In addition to BK curves of the form y2 = x5+ b, the performance of 4-dimensional scalar
decompositions on curves of the form C/Fq : y

2 = x5 + ax was also recently investigated [7].
Similar to the BK curves, the endomorphisms on these curves are very efficient in comparison
to a group addition, so they facilitate significant speedups in Pollard rho. Here we have m = 8,
so it would be interesting to see how close we can get to a

√
8 speedup in this case.

As is the case in the elliptic curve setting, there are several genus 2 families that possess
maps which are useful to the cryptographer, but which offer no known benefit to the crypt-
analyst – see [19] for some examples of endomorphisms which are not automorphisms. Thus,
the application of Pollard rho to these families is identical to the case of Generic1271.

5 Performance Results

In order to systematically compare the security of the genus 1 and genus 2 curves from the
previous section, we designed and implemented a software framework for 64-bit platforms
supporting the x64 instruction set. This modular design is capable of switching various features
on or off: for example, using the automorphism optimization, employing different techniques
for handling fruitless cycles, using different finite fields, or using different curve arithmetic.
We implemented dedicated modular arithmetic for the special prime fields considered in this
work (see Section 4); for each curve, we optimized the modular multiplication by hand in
assembly, which resulted in a significant performance speedup compared to compiling our
native C-code. All of the experimental results presented in this section have been obtained
using an Intel Core i7-3520M (Ivy Bridge), running at 2893.484 MHz, and with the so-called
turbo boost and hyper-threading features disabled.

We do not claim that the performance numbers reported in this section are the best
possible. In a real attack, which focuses on a single curve target, the curve arithmetic and
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the arithmetic in the finite field should be optimized even further in assembly – we spent a
moderate amount of time per curve to achieve good performance. We expect however, that
the relative timings between the curves would remain roughly invariant under such further
optimizations.

5.1 Correctness

In order to make sure that our software framework works correctly and behaves as expected,
we searched for curves defined over the same base fields as our target curves (as outlined in
Section 4), but with smaller (around 45-bit) prime-order subgroups (we note that ψ stabilizes
these prime-order subgroups in all cases). We ran our implementations and enabled all the
“statistic-gathering” options: this slows down the cost of a single step, but does not alter
the behavior of the algorithm. We computed 10 batches of 103 Pollard rho computations for
solving discrete logarithm instances in these subgroups, both with and without the use of the
automorphism optimization.

Pollard rho without the group automorphism optimization. Assume we use an r-
adding walk without the automorphism optimization (we take m = 1, where m is the cardi-
nality of the group automorphism that is used). Experimental results from [35] suggest that
using a larger r-value, such as r ≥ 16, results in practical behavior that is closer to a truly
random walk and gives a run-time that is close to the expected

√
πn
2 . This is in agreement with

the heuristic analysis from [2, Appendix B], which refines the arguments from [10], where it is
shown that the average number of pseudo-random group elements required to find a collision
(and solve the DLP) using an r-adding walk is√

πn

2m(1− 1
r )
, (3)

where n is the size of the prime order subgroup. We use the parallel (i.e. distinguished point)
version of Pollard rho, such that approximately one out of every 2d points is distinguished.
When computing w walks concurrently, Eq. (3) can be adjusted to√

πn

2m(1− 1
r )

+ w · 2d−1. (4)

This is because we need to perform an additional w · 2d−1 steps after two walks arrive at the
same point: on average, 2d−1 steps are required to reach the next distinguished point, where
both walks will be sent to the central database and the collision will be detected. For each
scenario, Table 2 summarizes the average minimum, average and maximum steps of these 10
batches together with the theoretical number of steps we expect to take to solve the DLP. In
all four cases, the average number of steps observed in practice matches the expected number
of steps almost exactly: the difference is below one percent.

Pollard rho with the group automorphism optimization. When using the group au-
tomorphism with m = #Aut(C), we can encounter two types of fruitless steps: those due
to the 2-cycle reduction technique and those which are performed when a walk is trapped in
fruitless cycles. Due to the cycle reduction technique we use (see Section 3.3), the probability
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Table 2. Summary of the number of steps required when solving the DLP in a prime order subgroup n
(2N−1 < n < 2N ) on the four (modified) curves we consider in this work. We computed 10 batches of 103

discrete logarithms and we display the minimum and maximum number of average steps out of these 10 batches,
as well as the overall average. We used a 32-adding walk and a distinguished point property with d = 8, which
we expect to occur once every 28 steps. The expected estimate is derived using Eq. (4).

curve N min avg max expected
NIST CurveP-256 45 6 528 891 6 703 125 6 959 881 6 702 814
BN254 47 12 766 948 13 130 659 13 353 056 13 114 481
Generic1271 45 6 936 215 7 087 854 7 311 815 7 137 587
4GLV127-BK 45 5 339 249 5 489 583 5 668 256 5 489 249

Table 3. A comparison of the expected (exp.) and real number of fruitless steps (FS) and fruitful steps
when computing 10 batches of 103 discrete logarithms (as in Table 2) but using the group automorphism
optimization. The genus-g curves have m = #Aut(C) and we check for cycles up to length β every α steps.

NIST P-256 BN254 Generic1271 4GLV127-BK
(g,m) (1, 2) (1, 6) (2, 2) (2, 10)

(α, β) (7 · 104, 32) (6 · 105, 32) (7 · 104, 32) (106, 32)

exp. # of fruitful steps (Eq.(4)) 4 668 485 5 274 669 4 971 221 1 712 170
real # of fruitful steps (s) 4 643 787 5 271 219 5 010 354 1 723 756

exp. # of trapped FS (Eq. (5)) 38 537 41 671 41 538 8185
real # of trapped FS 33 349 28 526 42 122 4835

exp. # of cycle reduction FS 4535 5148 4893 1683
real # of cycle reduction FS 4582 5173 4911 1687

of 2-cycles and 3-cycles (if the latter can occur) have been reduced significantly. In fact, the
probability to enter a 4-cycle becomes the most likely event by far, so we use the approxi-
mation p = 1/(mr)2 (see Section 3.3) for the probability of entering any cycle. We check for
cycles every α steps, where α depends on the curve (see Section 4), and we escape these cycles
if necessary. If s is the expected number of steps required to solve the DLP, then the expected
number of fruitless steps spent in fruitless cycles is

s

α
·W (α, (mr)−2), (5)

where W is as in Eq. (1).
Table 3 summarizes the results of running Pollard rho with the group automorphism

optimization, where it is clear that the number of fruitful steps observed is very close to what
we expect. Hence, we can expect to achieve a speedup if the practical cost of the iteration
function is not increased too much. We note that the number of fruitless steps due to the
2-cycle reduction technique is also consistent with the prediction.

Interestingly, for the two curves with a larger automorphism group (i.e. with m > 2), the
number of trapped fruitless cycles is lower than the expected value, which can be explained
as follows. Since we expect fruitless cycles to occur much less frequently, the α parameter has
been chosen significantly larger than for the curves with m = 2. In our benchmark runs, we
solve the smaller DLP instances that are outlined in Table 2; if one of the walks gets trapped
in a fruitless cycle, then, with overwhelming probability, one of the other concurrent walks will
solve the DLP before this trapped walk has computed all of the fruitless α+ β steps that are
required to escape from this fruitless cycle. This behavior is not incorporated in our estimate
for the total number of trapped fruitless steps. We ran larger instances of the DLP and, as
expected, the total number of trapped fruitless steps increased.
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Table 4. The performance of our implementations expressed in the number of cycles per step without (32-
adding walk) and with (1024-adding walk) the usage of the group automorphism running 2048 walks con-
currently. For each curve, the expected speedup (which takes into account the additional cost of computing
the equivalence class representative) and the speedup found in practice are stated together with the expected
number of single-core years to solve a discrete logarithm. The security of each curve is given when taking NIST
CurveP-256 as the baseline for the 128-bit security level.

curve performance speedup core sec
without with exp. real years

NIST CurveP-256 1129 1185
√
2 0.947

√
2 3.946 · 1024 128.0

BN254 1030 1296 6
7
·
√
6 ≈ 0.857

√
6 0.790

√
6 9.486 · 1023 125.9

Generic1271 986 1043
√
2 0.940

√
2 1.736 · 1024 126.8

4GLV127-BK 1398 1765 120
151
·
√
10 ≈ 0.795

√
10 0.784

√
10 1.309 · 1024 126.4

5.2 Implementation Results

In order to optimize performance, we conducted several experiments to find the best parame-
ters for instantiating the Pollard rho algorithm in practice: we varied the number of partitions
in the adding walks (but restricted to r ≥ 1024 when using the group automorphism optimiza-
tion) and the number of concurrent walks. For all four curves, we found that 2048 concurrent
walks resulted in low costs for amortized inversions and gave the best performance. Using 2048
concurrent walks contradicts the advice from [9], which might be explained by the fact that
our platform has a large cache so that “cache-misses” will only occur for a much larger number
of concurrent walks. In regards to the optimal size of the lookup table, our benchmark runs
showed that using 32-adding walks are best when the automorphism optimization is not used,
and that 1024-adding walks are best when it is.

In Table 4 we state the performance numbers using the parameters above. We save com-
putation by exploiting the fact that one does not need to update the ai and bi values [2]: this
is especially significant for the curves with m > 2. Note that the number of computer cycles
per step, when not using the group automorphism optimization, is lower for the BN254 curve
compared to CurveP-256. This is surprising since the BN254 curve does not use a special
prime. A partial explanation is that the CurveP-256 arithmetic is relatively slow, especially
compared to the other NIST curves, and the addition of two residues might result in a carry
occupying an additional word, which slows down the computation. On the other hand, the
BN254 curve is defined over a 254-bit prime, such that subtraction-less Montgomery multi-
plication [38] can be used to save a conditional subtraction in every modular multiplication.
Furthermore, the addition of two residues does not result in a carry occupying another word,
which saves instructions. We suspect, however, that a hand-tweaked assembly implementation
of NIST’s CurveP-256 can be made slightly more efficient than the subtraction-less Mont-
gomery arithmetic using the x64 instruction set.

Table 4 states the expected speedup of Pollard rho using the automorphism (which takes
into account the additional cost of choosing representatives), as well as the speedup we ob-
served. This experimental speedup is consistently five to seven percent lower than the expected
one, except for the 4GLV127-BK curve – such differences can be expected, as our analysis did
not take extra modular additions, subtractions and negation into account, nor did we con-
sider various overheads due to the usage of additional memory latencies. In the case of the
BK curve, these additional factors constitute a much smaller fraction of the factors that were
included in the analysis, which is why our experiments results match the expected numbers
even closer.
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For each curve, Table 4 also reports the expected number of single Intel Core i7-3520M
core years required to solve a discrete logarithm instance. This estimate assumes that we use
the group automorphism optimization and takes into account that we have to perform slightly
more steps, increasing the estimate from Eq. (3) such that we take fruitless cycles into account,
in line with the analysis from Section 4. Based on this estimate, we also give the security level
for each curve using the NIST CurveP-256 as the baseline for 128-bit security. Hence, this
security estimate takes into account the different available optimizations for each curve, as
well as the varying performance for the base field arithmetic.

6 Conclusions

We analyzed the practical security of elliptic curves and genus 2 hyperelliptic curves over prime
fields using the Pollard rho algorithm. We developed a software framework implementing the
state-of-the-art techniques to make use of the group automorphism optimization, which is
targeted at 64-bit architectures that support the x64 instruction set. We detailed optimized
parameter selection when dealing with practical issues, such as reducing, detecting and escap-
ing fruitless cycles; in particular, we analyzed these choices for curves with large automorphism
groups, which have not yet received a detailed analysis in the literature.

We studied the performance of the Pollard rho algorithm on two elliptic curves and two
genus 2 curves of cryptographic interest, all of which are estimated to provide around 128 bits
of security. Our first conclusion is that, reassuringly, the practical security of all four curves
considered is almost equivalent. Our second conclusion is that curves having large a large
group automorphism of cardinality m > 2 can not achieve a speedup of

√
m: one has to pay a

penalty for finding the representative of the equivalence class. Nevertheless, a constant-factor
improvement is possible when dealing with fruitless cycles, and our analysis shows how to
optimize this improvement in practice.
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the anonymous reviewers for their insightful comments.
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