
ar
X

iv
:1

40
5.

45
44

v1
 [

cs
.L

G
]

 1
8

M
ay

 2
01

4

A distributed block coordinate descent method for training
l1 regularized linear classifiers

Dhruv Mahajan
Microsoft Research

Bangalore, India
dhrumaha@microsoft.com

S. Sathiya Keerthi
CISL, Microsoft Corporation

Mountain View, CA
keerthi@microsoft.com

S. Sundararajan
Microsoft Research

Bangalore, India
ssrajan@microsoft.com

ABSTRACT
Distributed training of l1 regularized classifiers has received
great attention recently. Existing methods approach this
problem by taking steps obtained from approximating the
objective by a quadratic approximation that is decoupled
at the individual variable level. These methods are designed
for multicore and MPI platforms where communication costs
are low. They are inefficient on systems such as Hadoop
running on a cluster of commodity machines where commu-
nication costs are substantial. In this paper we design a dis-
tributed algorithm for l1 regularization that is much better
suited for such systems than existing algorithms. A careful
cost analysis is used to support these points. The main idea
of our algorithm is to do block optimization of many vari-
ables within each computing node; this increases the compu-
tational cost per step that is commensurate with the commu-
nication cost, and decreases the number of outer iterations,
thus yielding a faster overall method. Distributed Gauss-
Seidel and greedy schemes are used for choosing variables
to update in each step. We establish global convergence
theory for our algorithm, including Q-linear rate of conver-
gence. Experiments on two benchmark problems show our
method to be much faster than existing methods.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Clas-
sifier design and evaluation

General Terms
Algorithms, Performance, Experimentation

1. INTRODUCTION
The design of sparse linear classifiers using l1 regulariza-

tion is an important problem that has received great atten-
tion in recent years. This is due to its value in scenarios
where the number of features is large and the classifier rep-
resentation needs to be kept compact. With big data be-
coming common nowadays, distributed storage of data over
a cluster of commodity machines becomes necessary. Thus,
fast training of l1 regularized classifiers over distributed data
is an important problem.

A number of algorithms have been recently proposed for
parallel and distributed training of l1 regularized classifiers.
Most of these algorithms are designed for multicore and MPI
platforms in which data communication costs are negligible.
These platforms are usually equipped with only a small num-
ber of computing nodes. Distributed systems, e.g., Hadoop

running on a cluster of commodity machines, are better for
employing a large number of nodes and hence, for inexpen-
sive handling of big data. However, in such systems, commu-
nication costs are high; current methods for l1 regularization
are not optimally designed for such systems. In this paper
we develop a distributed block coordinate descent (DBCD)
method that is efficient on distributed platforms in which
communication costs are high.

Most methods (including the current ones and the one we
propose) fit into a generic algorithm format that we describe
in Section 2. This gives a clear view of existing methods and
allows us to motivate the new method. We give full details
of the DBCD method in Section 3. A fuller discussion of ex-
isting methods in relation to our method is given in Section
4. The analysis of computation and communication costs in
Section 5 sheds further insight. Experiments comparing our
method with several existing methods on a few large scale
datasets are given in Section 6. These experiments strongly
demonstrate the efficiency of one version of our method that
chooses update variables greedily. We conclude the paper in
Section 7. The appendix gives a proof of the convergence
result stated in Section 3.

2. A GENERIC ALGORITHM
The generic algorithm format allows us to explain the

roles of key elements of the methods and point out how
new choices for various steps can lead to a better design.
Before describing it, we first formulate the l1 regularization
problem.

Problem formulation. Let w be the weight vector with
m variables, wj , j = 1, . . . ,m,1 and xi ∈ Rm denote the i-th
example. A linear classifier produces the output yi = wTxi.
For binary class label ti ∈ {1,−1}, the loss is given by
ℓ(yi; ti). We will assume that ℓ ∈ C1, the class of contin-
uously differentiable functions, and that ℓ′ is non-negative
and Lipschitz continuous2. Loss functions such as least
squares loss, logistic loss, SVM squared hinge loss and Hu-
ber loss satisfy these assumptions. The total loss function,
f : Rm → R is f(w) = 1

n

∑
i
ℓ(yi; ti). Let u be the l1

regularizer given by u(w) = λ
∑

j
|wj |, where λ > 0 is the

regularization constant. Our aim is to solve the problem

min
w∈Rm

F (w) = f(w) + u(w). (1)

1Vector components are denoted by superscripts. We also use
superscript for iteration number, but the distinction will be clear
from the context.
2A function h is Lipschitz continuous if there exists a (Lipschitz)
constant L ≥ 0 such that ‖h(a) − h(b)‖ ≤ L‖a − b‖ ∀ a, b.

http://arxiv.org/abs/1405.4544v1

Let g = ∇f . The optimality conditions for (1) are:

∀j : gj + λ sign(wj) = 0 if |wj | > 0; |gj | ≤ λ if wj = 0.
(2)

Generic algorithm. Let there be n training examples
and let X denote the n×m data matrix, whose i-th row is
xT
i . For problems with a large number of features, it is nat-

ural to randomly partition the columns of X and place the
parts in P computing nodes. Let {Bp}

P
p=1 denote this par-

tition ofM = {1, . . . , m}. We will assume that this feature
partitioning is given and that all algorithms operate within
that constraint. The variables associated with a particular
partition get placed in one node. Given a subset of variables
S, let XS be the submatrix of X containing the columns
corresponding to S. For a vector z ∈ Rm, zS will denote the
vector containing the components of z corresponding to S.

Algorithm 1 gives the generic algorithm. Items such as
Bp, S

t
p, wBp , d

t
Bp

, XBp stay local in node p and do not need
to be communicated. Step (d) can be carried out using an
All Reduce operation [1] over the nodes and then y becomes
available in all the nodes. The gradient sub-vector gtBp

can

then be computed locally as gtBp
= XT

Bp
b where b ∈ Rn is a

vector with {ℓ′(yi)} as its components.

Algorithm 1: A generic distributed algorithm

Choose w0 and compute y = Xw0;
for t = 0, 1 . . . do

for p = 1, . . . , P do
(a) Select a subset of variables, St

p ⊂ Bp;

(b) Form f t
p(wBp), an approximation of f and

solve (exactly or approximately):

min f t
p(wBp) s.t. wj = wt

j ∀ j 6∈ Bp \ S
t
p (3)

to get w̄t
Bp

and set direction: dtBp
= w̄t

Bp
− wt

Bp
;

(c) Choose αt and update:
wt+1

Bp
← wt

Bp
+ αtdtBp

;

end

(d) Update y ← y + α
∑

p
XBpd

t
Bp

;

(e) Terminate if optimality conditions hold;

end

Step (a) - variable sampling. Some choices are: (a.1) ran-

dom selection [4, 18]; (a.2) random cyclic: over a set of
consecutive iterations (t) all variables are touched once [2];
(a.3) greedy: always choose a set of variables that, in some
sense violate (2) the most at the current iterate [16, 7]; and,
(a.4) greedy selection using the Gauss-Southwell rule [24,
27].

Step (b) - function approximation. Most methods choose
a quadratic approximation that is decoupled at the individ-
ual variable level:

f t
p(w

t
Bp

) =
∑

j∈Bp

gj(wt)(wj − (wt)j) +
Lj

2
(wj − (wt)j)2 (4)

The main advantages of (4) are its simplicity and closed-
form minimization. Choices for Lj that have been tried are:
(b.1) Lj = a Lipschitz constant for gj [4, 16]; (b.2) Lj = a
large enough bound on the Lipschitz constant for gj to suit
the sampling in step (a) [18]; (b.3) adaptive adjustment of
Lj [7]; and (b.4) Lj = Ht

jj , the j-th diagonal term of the

Hessian at wt [2].
Step (c) - step size. The choices are: (c.1) always fix αt =

1 [4, 18, 16]; (c.2) use stochastic approximation to choose
{αt} so that

∑
t
(αt)2 < ∞ and

∑
t
|αt| = ∞ [7]; and (c.3)

choose α by line search that is directly tied to the optimiza-
tion of F in (1) [2].

To understand the role of the various choices better, let
us focus on the use of (4) for f t

p. Algorithm 1 can diverge
due to one of the following reasons: (i) choosing too many
variables (|St

p| large) for parallel updating in step (a); (ii)

choosing small values for the proximal coefficient Lj in step
(b); and (iii) not controlling αt to be sufficiently small in
step (c). Different methods control against these by making
suitable choices in the steps.

The choice made for step (c) gives a nice delineation of
methods. With (c.1), one has to do a suitable mix of large
enough Lj and small enough |St

p|. (c.2) is better since the
proper control of {αt} → 0 takes care of convergence; how-
ever, for good practical performance, Lj and αt need to be
carefully adapted, which is usually messy. Choice (c.3) is
good in many ways: it leads to monotone decrease in F ; it is
good theoretically and practically; and, it allows both, small
Lj as well as large |St

p| without hindering convergence. Ex-
cept for [2, 24, 27] (c3) has been unused in other methods
because it is considered as ‘not-in-line’ with a proper parallel
approach as it requires F computations for several αt values
within one t. But truly, the slightly increased computation
and communication costs is amply made up by a reduction
in the number of iterations to reach sufficient optimality. So
we go with the choice (c.3) in our method.

The choice of (4) for f t
p in step (b) is pretty much unani-

mously used in all previous works. While this is fine for com-
munication friendly platforms such as multicore and MPI, it
is not the right choice when communication costs are high.
Such a setting permits more per-node computation time,
and there is much to be gained by using a more complex
f t
p. We propose the use of a function f t

p that couples the
variables in St

p. We also advocate an approximate solution
of (3) (e.g., a few rounds of coordinate descent within each
node) in order to control the computation time.

Crucial gains are also possible via resorting to the greedy
choices, (a.3) and (a.4) for choosing St

p. On the other hand,
with methods based on (c.1), one has to be careful in using
(a.3): apart from difficulties in establishing convergence,
practical performance can also be bad, as we show in Section
6.

Contributions. Following are our main contributions.

1. We make careful choices for the three steps, leading to
the development of a distributed block coordinate descent
(DBCD) method that is very efficient on distributed plat-
forms with high communication cost.

2. We establish convergence theory for our method using
the results of [24, 27]. It is worth noting the following: (a)
though [24, 27] cover algorithms using quadratic approxima-
tions for the total loss, we use a simple trick to apply them to
general nonlinear approximations, thus bringing more power
to their results; and (b) even those works use only (4) in their
implementations.

3. We provide a cost analysis that brings out the compu-
tation and communication costs of Algorithm 1 clearly for
different methods.

4. We give an experimental evaluation that shows the
strong performance of DBCD against key current methods
in scenarios where communication cost is significant.

3. DBCD METHOD
The DBCD method that we propose fits into the general

format of Algorithm 1. It is actually a class of algorithms
that allows various possibilities for steps (a), (b) and (c). Be-
low we lay out these possibilities and establish convergence
theory for our method.

3.1 Function approximation.
Let us begin with step (b). We stress the main point that,

unlike previous methods, we allow f t
p to be non-quadratic

and also to be a joint function of the variables in wBp . We
first describe a general set of properties that f t

p must satisfy,
and then discuss specific instantiations that satisfy these
properties.

P1. f t
p ∈ C

1; gtp = ∇f t
p is Lipschitz continuous, with

the Lipschitz constant uniformly bounded over all t; f t
p is

strongly convex (uniformly in t), i.e., ∃ µ > 0 such that
f t
p −

µ

2
‖wBp‖

2 is convex; and, f t
p is gradient consistent with

f at wt
Bp

, i.e., gtp(w
t
Bp

) = gBp(w
t).

Gradient consistency is essential because it is the prop-
erty that connects f t

p to f and ensures that a solution of (3)
will make dtBp

a descent direction for F at wt
Bp

, thus paving
the way for a decrease in F at step (c). Strong convex-
ity is a technical requirement that is needed for establishing
sufficient decrease in F in each step of Algorithm 1. Lips-
chitz continuity is another technical condition that is needed
for ensuring boundedness of various quantities. Let us now
discuss some good ways of choosing f t

p. For all these instan-
tiations, a proximal term is added to get the strong convexity
required by P1.

Proximal-Jacobi. We can follow the classical Jacobi
method in choosing f t

p to be the restriction of f to wt
St
p
,

with the remaining variables fixed at their values in wt. Let
B̄p denote the complement of Bp, i.e., the set of variables
associated with nodes other than p. Thus we set

f t
p(wBp) = f(wBp , w

t
B̄p

) +
µ

2
‖wBp − wt

Bp
‖2 (5)

where µ > 0. It is worth pointing out that, since each node
p keeps a copy of the classifier output vector y, the compu-
tation of f t

p and gtp due to changes in wBp can be locally
computed in node p. Thus the solution of (3) is local to
node p and so step (b) can be executed in parallel for all p.

Block GLMNET. GLMNET [26, 8] is a sequential co-
ordinate descent method that has been demonstrated to be
very promising for sequential solution of l1 regularized prob-
lems with logistic loss. At each iteration, GLMNET mini-
mizes the second order Taylor series of f at wt, followed by
line search along the direction generated by this minimizer.
We can make a distributed version by choosing f t

p to be the
second order Taylor series approximation of f(wBp , w

t
B̄p

) re-

stricted to wBp while keeping wB̄p
fixed at wt

B̄p
.

Block L-BFGS. One can keep a limited history of wt
Bp

and gtBp
and use an L−BFGS approach to build a second

order approximation of f in each iteration to form f t
p.

Decoupled quadratic. Like in existing methods we can
also form a quadratic approximation of f that decouples
at the variable level. If the second order term is based on

the diagonal elements of the Hessian at wt, then the PCDN
algorithm given in [2] can be viewed as a special case of our
DBCD method. PCDN [2] is based on Gauss-Seidel variable
selection. But it can also be used in combination with the
distributed greedy scheme that we propose in Section 3.2.

Approximate stopping. In step (b) of Algorithm 1
we mentioned the possibility of approximately solving (3).
This is irrelevant for previous methods which solve individ-
ual variable level quadratic optimization in closed form, but
very relevant to our method. Here we propose an approx-
imate relative stopping criterion and later, in Section 3.4,
also prove convergence theory to support it.

Let ∂uj be the set of sub-gradients of the regularizer term
uj = λ|wj |, i.e.,

∂uj = [−λ, λ] if wj = 0; λ sign(wj) if wj 6= 0. (6)

A point w̄t
Bp

is optimal for (3) if, at that point,

(gtp)
j + ξj = 0, for some ξj ∈ ∂uj ∀ j ∈ St

p. (7)

An approximate stopping condition can be derived by choos-
ing a tolerance ǫ > 0 and requiring that, for each j ∈ St

p

there exists ξj ∈ ∂uj such that

δj = (gtp)
j + ξj , |δj | ≤ ǫ|(dtBp

)j | ∀ j ∈ St
p (8)

Method used for solving (3). Now (3) is an l1 regu-
larized problem restricted to wSt

p
. It has to be solved within

node p using a suitable sequential method. Going by the
state of the art for sequential solution of such problems [25]
we use the coordinate-descent method described in [25] for
solving (3).

3.2 Variable selection
Let us now turn to step (a) of Algorithm 1. We propose

two schemes for variable selection, i.e., choosing St
p ⊂ Bp.

Gauss-Seidel scheme. In this scheme, we form cycles -
each cycle consists of a set of consecutive iterations - while
making sure that every variable is touched once in each cycle.
We implement a cycle as follows. Let τ denote the iteration
where a cycle starts. Choose a positive integer T (T may
change with each cycle). For each p, randomly partition Bp

into T equal parts: {St
p}

τ+T−1
t=τ . Use these variable selections

to do T iterations. Henceforth, we refer to this scheme as
the R-scheme.

Distributed greedy scheme. This is a greedy scheme
which is purely distributed and so more specific than the
Gauss-Southwell schemes in [24].3 In each iteration, our
scheme chooses variables based on how badly (2) is violated
for various j. For one j, an expression of this violation is as
follows. Let gt andHt denote, respectively, the gradient and
Hessian at wt. Form the following one variable quadratic
approximation:

qj(wj) = (gt)j(wj − (wt)j) +
1

2
(Ht

jj + ν)(wj − (wt)j)2 +

λ|wj | − λ|(wt)j | (9)

where ν is a small positive constant. Let q̄j denote the opti-
mal objective function value obtained by minimizing qj(wj)
over all wj . Since qj((wt)j) = 0, clearly q̄j ≤ 0. The more
negative q̄j is, the better it is to choose j.

3Yet, our distributed greedy scheme can be shown to imply the
Gauss-Southwell-q rule for a certain parameter setting. See Ap-
pendix for details.

Our distributed greedy scheme first chooses a positive in-
teger k and then, in each node p, it chooses the top k vari-
ables from Bp according to smallness of q̄j , to form St

p. Here-
after, we refer to this scheme as the S-scheme.

3.3 Line search
Line search (step (c) of Algorithm 1) forms an important

component for making good decrease in F at each iteration.
For non-differentiable optimization, there are several ways
of doing line search. For our context, Tseng and Yun [24]
and Patriksson [14] give two good ways of doing line search
based on Armijo backtracking rule. In this paper we use
ideas from the former. Let β and σ be real parameters in
the interval (0, 1). (We use the standard choices, β = 0.5
and σ = 0.01.) We choose αt to be the largest element of
{βk}k=0,1,... satisfying

F (wt + αtdt) ≤ F (wt) + αtσ∆t, (10)

∆t def
= (gt)Tdt + λu(wt + dt)− λu(wt). (11)

3.4 Convergence
We now establish convergence for the class of algorithmic

choices discussed in Sections 3.1-3.3. To do this, we make di-
rect use of the results of Tseng and Yun [24]. An interesting
aspect of this use is that, whereas the results of Tseng and
Yun [24] are stated only for f t

p being quadratic, we employ
a simple trick that lets us apply the results to our algorithm
which involves non-quadratic approximations.

Apart from the conditions in P1 (see Section 3.1) we need
one other technical assumption.

P2. For any given t, wBp and ŵBp , ∃ a positive definite

matrix Ĥ ≥ µI (note: Ĥ can depend on t, wBp and ŵBp)
such that

gtp(wBp)− gtp(ŵBp) = Ĥ(wBp − ŵBp) (12)

Except Proximal-Jacobi, the other instantiations of f t
p men-

tioned in Section 3.1 are quadratic functions; for these, gtp
is a linear function and so (12) holds trivially. Let us turn
to Proximal-Jacobi. If f t

p ∈ C
2, the class of twice continu-

ously differentiable functions, then P2 follows directly from
mean value theorem; note that, since f t

p −
µ

2
‖w‖2 is convex,

Hp ≥ µI at any point, where Hp is the Hessian of f t
p. Thus

P2 easily holds for least squares loss and logistic loss. Now
consider the SVM squared hinge loss, which is not in C2. P2
holds for it because g =

∑
i ℓ

′(yi; ti)xi and, for any two real

numbers z1, z2, ℓ
′(z1; t

i) − ℓ′(z2; t
i) = κ(z1, z2, t

i)(z1 − z2)
where 0 ≤ κ(z1, z2, t

i) ≤ 1.
The main convergence theorem can now be stated. Its

proof is given in the Appendix.
Theorem 1. Suppose, in Algorithm 1: (i) step (a) is

done via the Gauss-Seidel or distributed greedy schemes of
Section 3.2; (ii) f t

p in step (b) satisfies P1 and P2; (iii) (8)
is used to terminate (3) with ǫ = µ/2 (where µ is as in P1);
and (iv) in step (c), αt is chosen via Armijo backtracking
of Section 3.3. Then Algorithm 1 is well defined and pro-
duces a sequence, {wt} such that any accumulation point of
{wt} is a solution of (1). If, in addition, the total loss, f
is strongly convex, then {F (wt)} converges Q-linearly and
{wt} converges at least R-linearly.4

4See chapter 9 of [12] for definitions of Q-linear and R-linear
convergence.

4. RELATED WORK
Our interest is mainly in parallel/distributed computing

methods. There are many parallel algorithms targeting a
single machine having multi-cores with shared memory (see [4],
[19], [2], [16]). In contrast, there exist only a few efficient al-
gorithms to solve (1) when the data is distributed ([20], [17])
and communication is an important aspect to consider. In
this setting, the problem (1) can be solved in several ways de-
pending on how the data is distributed across machines [16,
3]: (a) example (horizontal) split, (b) feature (vertical) split
and (c) combined example and feature split (a block of exam-
ples/features per node). While methods such as distributed
FISTA [16] or ADMM [3] are useful for (a), the block split-
ting method [13] is useful for (c). We are interested in (b),
and the most relevant and important class of methods is
parallel/d istributed coordinate descent (PCD/DCD) meth-
ods, as abstracted in Algorithm 1. Table 1 compares these
methods along various dimensions; most dimensions arise
naturally from the steps of this algorithm, as explained in
Section 2. (Due to space limitation, it is difficult to give
a thorough discussion of these papers (see Table 1) from a
theoretical convergence perspective on various assumptions
and conditions under which results hold.) Two important
points to note are: (a) except [20] and our method, none of
the PCD methods target and sufficiently discuss distributed
setting involving communication and (b) from a practical
view point, it is difficult to ensure stability and get good
speed-up with no line search and non-monotone methods.
For example, methods such as [4, 18, 19, 16] that do not
do line search are shown to have the monotone property
only in expectation and that too under certain conditions.
Furthermore, variable selection rules, proximal coefficients
and other method-specific parameter settings play impor-
tant roles in achieving monotone convergence and improved
efficiency. As we show in Section 6, our method and the
PCD Newton method [2] (see below for a discussion) enjoy
robustness to various settings and come out as clear winners.

Generic Coordinate Descent Method [21, 22] Scherrer
et al [21, 22] presented an abstract framework for coordinate
descent methods (GenCD) suitable for parallel computing
environments. Several coordinate descent algorithms such as
stochastic coordinate descent (SCD) [23], Shotgun [4] and
GRock [16] are covered by GenCD. GRock is a thread
greedy algorithm [21] in which the variables are selected
greedily using gradient information. One important issue is
that algorithms such as Shotgun and GRock may not con-
verge in practice due to their non-monotone nature with no
line search; we faced convergence issues on some datasets in
our experiments with GRock. Therefore, the practical util-
ity of such algorithms is limited without ensuring necessary
descent property through certain spectral radius conditions
on the data matrix.

Flexible Parallel Algorithm (FPA) [7] This method
has some similarities with our method in terms of the ap-
proximate function optimized at the nodes. Though [7] sug-
gests several approximations, it uses only (4) in its final
implementation. More importantly, FPA is a non-monotone
method using a stochastic approximation step size rule. Tun-
ing this step size rule along with the proximal parameter Lj

to ensure convergence and speed-up is hard. Unlike our
method, FPA’s inner optimization stopping criterion is un-

verifiable (for e.g., with (5)); also, FPA does not address the
communication cost issue.

Distributed Coordinate DescentMethod [20]Richtárik
and Takác [20] extended their initial multi-core parallel coor-
dinate descent method [19] to the distributed setting. With
no line search, their algorithmHydra (HY briD cooRdinAte
descent) has (expected) descent property only for certain
sampling types of selecting variables and Lj values. One key
issue is setting the right Lj values for good performance. Do-
ing this accurately is a costly operation; on the other hand,
inaccurate setting using cheaper computations (e.g., using
number of non-zero elements as suggested in their work) re-
sults in slower convergence (see Section 6).

Parallel Coordinate Descent Newton (PCDN) [2]
One key difference between other methods discussed above
and our DBCD method is the use of line search. Note that
the PCDN method can be seen as a special case of DBCD

(see Section 3.1). In DBCD, we optimize per-node block
variables jointly, and perform line search across the blocks
of variables; as shown later in our experimental results, this
has the advantage of reducing the number of outer iterations,
and overall wall clock time due to reduced communication
time (compared to PCDN).

Synchronized Parallel Algorithm [15] Patriksson [15]
proposed a Jacobi type synchronous parallel algorithm with
line search using a generic cost approximation (CA) frame-
work for differentiable objective functions [14]. Its local lin-
ear rate of convergence results hold only for a class of strong
monotone CA functions. Necora and Clipici [10] proposed
an iterative algorithm where they solved (9) for all coor-
dinates (block wise) in parallel, using coordinate Lipschitz
constants for the gradient. The weights are updated in par-
allel as a weighted combination of previous weight and the
incremental update obtained from solving (9). So it is only
a minor variant of the GenCD class.

ADMM Methods Alternating direction method of multi-
pliers is a generic and popular distributed computing method.
This method can be used to solve (1) in different data split-
ting scenarios([3],[13]). Several variants of global conver-
gence and rate of convergence (e.g., O(1

k
)) results exist un-

der different weak/strong convexity assumptions on the two
terms of the objective function [6],[5]. Recently, an acceler-
ated version of ADMM [9] derived using the ideas of Nes-
terov’s accelerated gradient method [11] has been proposed;
this method has dual objective function convergence rate of
O(1

k2) under a strong convexity assumption. ADMM per-
formance is quite good when the augmented Lagrangian pa-
rameter is set to the right value; however, getting a reason-
ably good value comes with computational cost. In Section
6 we evaluate our method and find it to be much faster.

5. COST ANALYSIS
In this section, we analyze the cost of Algorithm 1 for

different methods. For ease of reference, we list the meth-
ods that we implemented and studied: (1)ADMM: acceler-
ated alternating direction method of multipliers [9], (2)Hyd:
Hydra [20], (3) GRock: GReedy coOrdinate-block [16],
(4) FPA: Flexible Parallel Algorithm [7], (5) PCD: Paral-
lel Coordinate Descent Newton method [2] and (6) DCD:
Distributed block Coordinate Descent - our method. We
use these abbreviations for ease of reference in the plots
and discussion below. We considered two variable selection

schemes (i.e., R-scheme and S-scheme) discussed in Section
3.2 for our method and PCD [2]. We refer these variants as
DCD-R, DCD-S, PCD-R and PCD-S with variable selec-
tion rule indicated after hyphenation.

Let nz and |S| =
∑

p
|St

p| denote the number of non-zero
entries in the data matrix X and number of variables up-
dated in each iteration respectively. β(≫ 1) is the rela-
tive computation to communication speed in a typical dis-
tributed system. Recall n, m and P denote the number of
examples, features and nodes respectively. Table 2 gives cost
expressions for different steps of the algorithm in one outer
iteration. Here c1, c2, c3, c4 and c5 are method dependent
parameters. We briefly discuss different costs below.

Table 2: Cost of various steps of Algorithm 1.
Cost Steps of Algorithm 1.

a b c d

Comp. c1
nz
P

c2
nz
P

|S|
m

c3|S|+ c4n c5
nz
P

|S|
m

Comm. - - c4βlogP βnlogP

Table 3: Values of cost parameters for different
methods. Note that q lies in the range: 1 ≤ q ≤ m

|S|
.

Method c1 c2 c3 c4 c5
Hyd 0 1 1 0 1

GRock 1 q 1 0 q
FPA 1 q 1 1 q
PCD 0 1 tls tls 1
PCD-S 1 q tls tls q
DCD-R 0 k tls tls 1
DCD-S 1 kq tls tls q

Step a: Methods like our DCD-S, GRock, FPA and
PCD-S need to calculate the gradient and model update
to determine which variables to update. Hence, they need
to go through the whole data once (c1 = 1). On the other
hand Hyd, PCD and DCD-R select variables randomly or
in a cyclic order. As a result variable subset selection cost
is negligible for them.

Step b: All the methods except DCD-S and DCD-R use
the decoupled quadratic approximation (4). ForDCD-R and
DCD-S, an additional factor of k comes in c2 since we do
k inner cycles of CDN in each iteration. Hyd, PCD and
DCD-R do a random or cyclic selection of variables. Hence,

a factor of |S|
m

comes in the cost since only a subset |S| of
variables is updated in each iteration. However, methods
that do selection of variables based on magnitude of update
or expected objective function decrease (DCD-S, GRock,
FPA and PCD-S) favour variables with low sparsity. As a
result, c2 for these methods has an additional factor q where
1 ≤ q ≤ m

|S|
.

Step c: For methods that do not use line-search, c3 = 1
and c4 = 05. The overall cost is |S| to update the variables.
For methods like DCD-S, DCD-R, PCD and PCD-S that
do line-search, c3 = c4 = tls where tls is number of line
search steps. For each line search step, we need to recom-
pute the loss function which involves going over n examples
once. Moreover, AllReduce step needs to be performed to
sum over the distributed l1 regularizer term. Hence, an ad-
ditional βlog(P) cost is incurred to communicate the local
5For FPA, c4 = 1 since objective function needs to be computed
to automatically set the proximal term parameter

Table 1: Properties of Various Methods. + indicates distributed versions (like our method) implemented in our experiments.

△ represents the class of smooth function optimization and all variables are updated in parallel; variants are possible.

Method F descent Feature limit/selection Proximal term Line search Convergence Convergence rate
Shotgun [4] Non-monotone Limited/Random Lipschitz None In expectation Sub-linear
PCD [18] Non-monotone No limits/Random Maximal bound None In expectation Linear
Hyd [19]+ Non-monotone No limits /Random Maximal bound None In expectation Linear
GRock [16]+ Non-monotone Limited/Greedy Lipschitz None Deterministic Sub-linear
PCDN [2]+ Descent No limits/Random Hessian diag Armijo In expectation Sub-linear

FPA [7]△ Non-monotone No limits/Random Lipschitz None Deterministic None

PCD [10]△ Descent Full Lipschitz None Deterministic Linear

SPA [15]△ Descent Full None Armijo Deterministic Locally linear
DBCD Descent No limits/Random,Greedy Free Armijo Deterministic Locally linear

regularizer. As pointed out in [2], the line search steps typ-
ically increase with increasing number of nodes. Hence we
expect this cost to increase with P .

Step d: This step involves computing and doing AllReduce
on updated local predictions to get the global prediction
vector for next iteration and is common for all the methods.

The analysis given above is only for CP
comp and CP

comm,
the computation and communication costs in one iteration.
If TP is the number of iterations to reach a certain op-
timality tolerance, then the total cost of Algorithm 1 is:
CP = TP (CP

comp + CP
comm). For P nodes, speed-up is

given by C1/CP . To illustrate the ill-effects of communica-
tion cost, let us take the method of Richtárik and Takác [19].
For illustration, take the case of |S| = P , i.e., one vari-
able is updated per node per iteration. For large P , CP ≈
TPCP

comm = TP βn logP ; both β and n are large in the dis-
tributed setting. On the other hand, for P = 1, CP

comm = 0

and CP = CP
comp ≈

nz
m
. Thus speedup = T1

TP
C1

CP =
T1

TP

nz
m

βn logP
. Richtárik and Takác [19] show that T 1/TP in-

creases nicely with P . But, the term βn in the denomi-
nator of C1/CP has a severe detrimental effect. Unless a
special distributed system with efficient communication is
used, speed up has to necessarily suffer. When the training
data is huge and so the data is forced to reside in distributed
nodes, the right question to ask is not whether we get great
speed up, but to ask which method is the fastest. In that
sense, our analysis gives great insight: when CP

comm domi-
nates CP

comp, reducing T
P is crucial; this is exactly what our

method does. We see in Table 3 that, DCD-R and DCD-

S have the maximum computational cost. On the other
hand, communication cost is more or less the same for all
the methods (except for few scalars in the line search step)
and dominates the cost. As we will see in Section 6, by do-
ing more computation, our methods reduce TP substantially
over the other methods while incurring a small computation
overhead (relative to communication) per iteration.

6. EXPERIMENTAL EVALUATION
In this section, we present experimental results on real-

world datasets. We compare our methods with several state
of the art methods listed in the previous section. To the best
of our knowledge, such a detailed study has not been done for
parallel and distributed l1 regularized solutions in terms of
(a) accuracy and solution optimality performance, (b) vari-
able selection schemes, (c) computation versus communica-
tion time and (d) solution sparsity. The results demonstrate
the effectiveness of our methods in terms of total (computa-
tion + communication) time on both accuracy and objective

function measures.

6.1 Experimental Setup
Datasets: We conducted our experiments on two popular
benchmark datasetsKDD and URL

6.KDD has n = 8.41M ,
m = 20.21M and nz = 0.31B. URL has n = 2.00M ,
m = 3.23M and nz = 0.22B. These datasets have suffi-
ciently interesting characteristics of having large number of
examples and features such that (1) feature partitioning, (2)
l1 regularization and (3) communication are important.

Methods and Metrics: We evaluate the performance of
all the methods using (a) Area Under Precision-Recall Curve
(AUPRC) [1] and (b) Relative Function Value Difference
(RFVD) as a function of time taken. RFVD is computed as

log(F (wt)−F∗

F∗
) where F ∗ is taken as the best value obtained

across the methods after a long duration. We stopped the
algorithm after a fixed number of outer iterations in each
method. We also report per node computation time statis-
tics and sparsity pattern behavior of all the methods.

Parameter Settings: We experimented with the λ values
of (123, 13.7, 4.6)×10−7 and (727, 242, 9)×10−8 for the KDD
and URL datasets respectively. These values are chosen in
such a way that they are centered around the respective
optimal λ value and have good sparsity variations over the
optimal solution. With respect to Algorithm 1, the work-
ing set size (WSS) per node and number of nodes (P) are
common across all the methods. We set WSS as a fraction
(r) of the number of features per node, i.e., WSS=rm/P .
Note that WSS will change with P for a given fraction r.
For KDD and URL, we used three r values (0.01, 0.1, 0.25)
and (0.001, 0.01, 0.1) respectively. We experimented with
P = 25, 100. Also, r does not play a role in ADMM since
all variables are optimized in each node.

Platform: We ran all our experiments in a Hadoop cluster
with 200 nodes. Each node has Intel (R) Xeon (R) E5-
2450L (2 processors) running at 1.8 GHz and 192 GB RAM.
(Though both the datasets can fit in this memory configura-
tion, our intention is to test the performance in a distributed
setting.) All our implementations were done in C# includ-
ing our binary tree AllReduce support [1] on Hadoop.

6.2 Experimental Results
Method Specific Parameter Setting: We discuss method
specific parameter setting used in our experiments and as-
sociated practical implications.

6See http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ .
We refer to kdd2010 (algebra) dataset as KDD.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0 200 400 600 800

−2

0

2

4

Iterations

R
el

. F
un

c.
 V

al
ue

 D
iff

.

url, µ=1e−12
url, µ=1e−4
url, µ=1
kdd, µ=1e−12
kdd, µ=1e−4
kdd, µ=1

0 200 400 600 800
−3

−2

−1

0

1

2

Iterations

R
el

. F
un

c.
 V

al
ue

 D
iff

.

url, k=1
url, k=5
url, k=10
kdd, k=1
kdd, k=5
kdd, k=10

Figure 1: Left: the effect of µ. Right: the effect of the

number of cycles to minimize f t
p. µ = 10−12 and k = 10

are good choices. P = 100.

0 500 1000 1500

−2

0

2

4

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

GRock, WSS − 0.1%
GRock, WSS − 0.01%
DCD−S, WSS − 0.1%

0 2000 4000 6000 8000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

FPA, γ − 0.1
FPA, γ − 0.9
DCD−S

Figure 2: Left: Divergence and slow convergence of

GRock on the URL dataset (λ = 2.4 × 10−6 and P = 25).

Right: Extremely slow convergence of FPA on the KDD

dataset (λ = 4.6× 10−7 and P = 100).

InADMM, the augmented Lagrangian parameter (ρ) plays
an important role in getting good performance. While many
schemes have been discussed in the literature [3] we found
that selecting ρ using the objective function value gave a
good estimate; we selected ρ∗ from a handful of values with
ADMM run for 10 iterations (i.e., not full training). How-
ever, this step incurred some computational/communication
time. In our time plots shown later, late start of ADMM re-
sults is due to this cost. Note that this minimal number of
iterations was required to get a decent ρ∗.

To get a practical implementation that gives good perfor-
mance in our method, we deviate slightly from the condi-
tions of Theorem 1. First, we find that the proximal term
does not contribute usefully to the progress of the algorithm
(see the left plot in Figure 1). So we choose to set µ to a
small value, e.g., µ = 10−12. Second, we replace the stop-
ping condition (8) by simply using a fixed number of cycles
of coordinate descent to minimize f t

p. The second plot in
Figure 1 shows the effect of number of cycles, k. We found
that a good choice for the number of cycles is 10 and used
this value in all our experiments.

For GRock, FPA and Hyd we set the constants (Lj)
as suggested in respective papers. Unfortunately, we found
GRock to be either unstable and diverging or extremely
slow. The first plot in Figure 2 depicts these behaviors.
The solid red line shows the divergence case. FPA requires
an additional parameter (γ) setting for the stochastic ap-
proximation step size rule. Our experience was that setting
right values for these parameters to get good performance
can be tricky and highly dataset dependent. The second
plot in Figure 2 shows the extremely slow convergence be-
havior of FPA. Therefore, we do not include GRock and
FPA further in our study.

Performance Evaluation We compare the performance of
all methods by studying the time versus AUPRC and RFVD
plots for various choices of λ, working set size (WSS) and
the number of nodes (P) on KDD and URL. Due to space

limitation, we provide only representative plots; but, the
observations that we make below hold for other plots too.

Figure 3 shows the objective function plots for (KDD)
with λ set to 4.6 × 10−7. We see that DCD-S clearly out-
performs all other methods; for example, if we set the RFVD
value to 0.01 as the stopping criterion, DCD-S is faster by
an order of magnitude. PCD-S comes as the second best.
The S-scheme gives significant speed improvement over the
R-scheme. As we compare the performance for two different
WSS (see Figure 3(a)(b)), larger WSS gives some improve-
ment and this speed-up is significant for Hyd, PCD-R and
DCD-R. Note that ADMM is WSS independent since all
the variables are updated. Because all variables are up-
dated, ADMM performs slightly better than Hyd, PCD-R

and DCD-R when WSS is small (see Figure 3(a)(c)). In
this case, other methods take some time to reach optimal
values, when the working set is selected randomly using the
R-scheme.

Table 4: Computation and communication costs per
iteration (in secs.) for KDD, P = 25.

Method Comp. Comm. Comp. Comm.
WSS - 1% WSS - 10%

Hyd 0.022 5.192 0.131 4.888
PCD-R 0.138 5.752 0.432 5.817
PCD-S 1.564 7.065 1.836 7.032
DCD-R 0.991 6.322 1.978 6.407
DCD-S 5.054 6.563 5.557 8.867

Figure 4 shows the objective function plots for (URL) with
λ set to 9× 10−8. Here again, DCD-S gives the best RFVD
performance with order of magnitude speed-up. Hyd suffers
slow convergence and ADMM gives a decent second best
performance. Interestingly, the new variable selection rule
did not help PCD-R for large WSS. On comparing the per-
formance for two different WSS, some speed improvement is
achieved as in the case of KDD with similar observations.
All these objective function progress behaviors are consistent
with the AUPRC plots (Figures 5 and 6) as well except in
one case. For example, the AUPRC performance of PCD-

S is quite good although it is a bit slow on the objective
function.

Figures 7 and 8 show the performance plots for another
choice of different λ values for the datasets. DCD-S gives
the best performance on URL. On KDD, it is the second
best. This happens because the S scheme selects features
having a large number of non-zero feature values. As a re-
sult, computation cost goes up a bit as we do more inner
iterations compared to PCD-S. Nevertheless, it is still the
second best. Overall, the results clearly show that DCD-S

is preferred as it is highly effective with order of magnitude
improvement under almost all conditions. Note that our
proposal of using the S-scheme with the PCDN method [2]
is of significant help.

Computation and Communication Time: As empha-
sized earlier, communication plays on important role in the
distributed setting. To study this effect, we measured the
computation and communication time separately at each
node. Figure 9 shows the computation time per node on
the KDD dataset. In both cases, ADMM incurs significant
computation time compared to other methods. This is be-

0 2000 4000 6000 8000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) P = 25, WSS = 8086

0 2000 4000 6000 8000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) P = 25, WSS = 80867

0 2000 4000 6000 8000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) P = 100, WSS = 2021

0 2000 4000 6000 8000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) P = 100, WSS = 20216
Figure 3: KDD dataset. Relative function value difference in log scale. λ = 4.6× 10−7

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) P = 25, WSS = 1292

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) P = 25, WSS = 12927

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) P = 100, WSS = 323

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) P = 100, WSS = 3231
Figure 4: URL dataset. Relative function value difference in log scale. λ = 9.0× 10−8

cause it optimizes over all variables in each node. DCD-S

and DCD-R come next because our method involves both
line search and 10 inner iterations. PCD-R and PCD-S take
a little more time than Hyd because of the line search. As
seen in both DCD and PCD cases, a marginal increase in
time is incurred due to the variable selection cost with the
S-scheme compared to the R-scheme.

We measured the computation and communication time
taken per iteration by each method for different P and WSS
settings. From Table 4 (which gives representative results for
one situation, KDD and P = 25), we see that the communi-
cation time dominates the cost in Hyd and PCD-R.DCD-R

takes more computation time than PCD-R and Hyd since
we run through 10 cycles of inner optimization. Note that
the methods with S-scheme take more time; however, the
increase is not significant compared to the communication
cost. DCD-S takes the maximum computation time and is
quite comparable to the communication time. Recall our
earlier observation of DCD-S giving order of magnitude
speed-up in the overall time compared to methods such as
Hyd and PCD-R (see Figures 3-8). Though the computa-
tion times taken by Hyd, PCD-R and PCD-S are lesser,
they need significantly more number of iterations to reach
some specified objective function optimality criterion. As
a result, these methods become quite inefficient due to ex-
tremely large communication cost compared to DCD. All
these observations point to the fact our DCD method nicely
trades-off the computation versus communication cost, and
gives an excellent order of magnitude improvement in overall
time. With the additional benefit provided by the S-scheme,
DCD-S clearly turns out to be the method of choice for the
distributed setting.
Sparsity Pattern To study weight sparsity behaviors of
various methods during optimization, we computed the per-
centage of non-zero weights (ρ) as a function of outer iter-
ations. We set the initial weight vector to zero. Figure 10
shows similar behaviors for all the random (variable) selec-
tion methods. After a few iterations of rise they fall expo-
nentially and remain at the same level. For methods with

0 500 1000 1500 2000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) WSS = 2021

0 500 1000 1500 2000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) WSS = 20216
Figure 9: Per-node computation time on the KDD

dataset (λ = 1.2× 10−5 and P = 100).

0 200 400 600 800
0

0.5

1

1.5

Iterations

%
 o

f n
on

−
ze

ro
 d

im
s.

PCD−S
PCD−R
DCD−R
DCD−S
ADMM
Hyd

(a) WSS = 2021

0 200 400 600 800
0

0.5

1

1.5

2

Iterations

%
 o

f n
on

−
ze

ro
 d

im
s.

PCD−S
PCD−R
DCD−R
DCD−S
ADMM
Hyd

(b) WSS = 20216
Figure 10: KDD dataset: Percentage of non-zero

weights. λ = 1.2× 10−5 and P = 100.

the S-scheme, many variables remain non-zero for some ini-
tial period of time and then ρ falls a lot more sharply. It
is interesting to note that such an initial behavior seems
necessary to make good progress in terms of both function
value and AUPRC (Figure 7(a)(b) and Figure 8(a)(b)) In all
the cases, many variables stay at zero after initial iterations;
therefore, shrinking ideas can be used to improve efficiency.

7. CONCLUSION
In this paper we have proposed a class of efficient block

coordinate methods for the distributed training of l1 regu-
larized linear classifiers. In particular, the proximal-Jacobi
approximation together with a distributed greedy scheme for
variable selection came out as a strong performer. There are

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) P = 25, WSS = 8086

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) P = 25, WSS = 80867

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) P = 100, WSS = 2021

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) P = 100, WSS = 20216
Figure 5: KDD dataset. AUPRC Plots. λ = 4.6× 10−7

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) P = 25, WSS = 1292

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) P = 25, WSS = 12927

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) P = 100, WSS = 323

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) P = 100, WSS = 3231
Figure 6: URL dataset. AUPRC plots. λ = 9.0× 10−8

several useful directions for the future. It would be useful to
explore other approximations such as block GLMNET and
block L-BFGS suggested in Section 3.1. Like Richtárik and
Takác [19], developing a complexity theory for our method
that sheds insight on the effect of various parameters (e.g.,
P) on the number of iterations to reach a specified optimality
tolerance is worthwhile. It is possible to extend our method
to non-convex problems, e.g., deep net training, which has
great value.

8. REFERENCES
[1] A. Agarwal, O. Chapelle, M. Dudik, and J. Langford.

A reliable effective terascale linear system.
arXiv:1110.4198, 2013.

[2] Y. Bian, X. Li, and Y. Liu. Parallel coordinate descent
Newton for large scale L1 regularized minimization.
arXiv:1306.4080v1, 2013.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, pages 1–122, 2011.

[4] J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin.
Parallel coordinate descent for l1-regularized loss
minimization. ICML, pages 321–328, 2011.

[5] W. Deng, M.-J. Lai, and W. Yin. On the o(1
k
)

convergence and parallelization of the alternating
direction method of multipliers. arXiv:1312.3040,
2013.

[6] W. Deng and W. Yin. On the global and linear
convergence of the generalized alternating direction
method of multipliers. 2012.

[7] F. Facchinei, S. Sagratella, and G. Scutari. Flexible
parallel algorithms for big data optimization.
arXiv:1311.2444, 2013.

[8] J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,

33:1–22, 2010.

[9] T. Goldstein, O’Donoghue, S. Setzer, and
R. Baraniuk. Fast alternating direction optimization
methods. Technical Report, UCLA Mathematics, 2012.

[10] I. Necoara and D. Clipici. Efficient parallel coordinate
descent algorithm for convex optimization problems
with separable constraints: application to distributed
MPC. arXiv:1302.3092, 2013.

[11] Y. Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. SIAM Journal of
Optimization, pages 341–362, 2012.

[12] J. M. Ortega and W. C. Rheinboldt. Iterative solution
of nonlinear equations in several variables. Academic
Press, New York, 1970.

[13] N. Parikh and S. Boyd. Block splitting of distributed
optimization. Math. Prog. Comp., 2013.

[14] M. Patriksson. Cost approximation: A unified
framework of descent algorithms for nonlinear
programs. SIAM J. Optim., 8:561–582, 1998.

[15] M. Patriksson. Decomposition methods for
differentiable optimization problems over cartesian
product sets. Comput. Optim. Appl., 9:5–42, 1998.

[16] Z. Peng, M. Yan, and W. Yin. Parallel and distributed
sparse optimization. Preprint, UCLA, 2013.

[17] C. Ravazzi, S. M. Fosson, and E. Magli. Distributed
soft thresholding for sparse signal recovery.
arXiv:1301.2130, 2012.

[18] P. Richtárik and M. Takác. Iteration complexity of
randomized block-coordinate descent methods for
minimizing a composite function. arXiv:1212.0873,
2012.

[19] P. Richtárik and M. Takác. Parallel coordinate descent
methods for big data optimization. arXiv:1212.0873,
2012.

[20] P. Richtárik and M. Takác. Distributed coordinate
descent method for learning with big data.
arXiv:1310.2059, 2013.

[21] C. Scherrer, M. Halappanavar, A. Tewari, and

0 1000 2000 3000 4000 5000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) KDD, WSS = 2021

0 1000 2000 3000 4000 5000
−3

−2

−1

0

1

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) KDD, WSS = 20216

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) URL, WSS = 323

0 1000 2000 3000 4000 5000
−2

−1

0

1

2

Time (in secs.)

R
el

. F
un

c.
 V

al
ue

 D
iff

.

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) URL, WSS = 3231
Figure 7: Relative function value difference in log scale. KDD dataset: λ = 1.2× 10−5. URL dataset: λ = 7.3× 10−7

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(a) KDD, WSS = 2021

0 2000 4000 6000
0.35

0.4

0.45

0.5

0.55

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(b) KDD, WSS = 20216

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(c) URL, WSS = 323

0 500 1000 1500
0.97

0.98

0.99

1

Time (in secs.)

A
U

P
R

C

Hyd
PCD−R
DCD−R
DCD−S
ADMM
PCD−S

(d) URL, WSS = 3231
Figure 8: AUPRC plots. KDD dataset: λ = 1.2× 10−5. URL dataset: λ = 7.3× 10−7

D. Haglin. Scaling up coordinate descent algorithms
for large l1 regularization problems. Technical Report,
PNNL, 2012.

[22] C. Scherrer, A. Tewari, M. Halappanavar, and
D. Haglin. Feature clustering for accelerating parallel
coordinate descent. NIPS, pages 28–36, 2012.

[23] S. Shalev-Shwartz and A. Tewari. Stochastic methods
for l1 regularized loss minimization. JMLR, 2011.

[24] P. Tseng and S. Yun. A coordinate gradient descent
method for nonsmooth separable minimization.
Mathematical Programming, 117:387–423, 2009.

[25] G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin.
A comparison of optimization methods and software
for large-scale l1-regularized linear classification.
JMLR, pages 3183–3234, 2010.

[26] G. X. Yuan, C. H. Ho, and C. J. Lin. An improved
GLMNET for L1-regularized logistic regression and
support vector machines. JMLR, pages 1999–2030,
2012.

[27] S. Yun, P. Tseng, and K. Toh. A coordinate gradient
descent method for L1-regularized convex
minimization. Computational Optimization and
Applications, 48:273–307, 2011.

APPENDIX
Proof of Theorem 1. First let us write δj in (8) as δj =
Ejj(d

t
Bp

)j where Ejj = δj/(dtBp
)j . Note that |Ejj | ≤ µ/2.

Use (12) with wBp = w̄t
Bp

and ŵBp = wBp in (8) together
with the gradient consistency property of P1 to get

gtSt
p
+Ht

St
p
dtSt

p
+ ξSt

p
= 0, (13)

where Ht
St
p
= ĤSt

p
−ESt

p
and ĤSt

p
is the diagonal submatrix

of Ĥ corresponding to St
p. Since Ĥ ≥ µI and |Ejj | ≤ µ/2,

we get Ht
St
p
≥ µ

2
I . Let us extend the diagonal matrix Et

St
p
to

EBp by defining Ejj = 0 ∀j ∈ Bp \ S
t
p. This lets us extend

Ht
St
p
to HBp via Ht

Bp
= ĤBp −EBp .

Now (13) is the optimality condition for the quadratic
minimization,

dtBp
= argmin

dBp

(gBp)
TdBp +

1

2
(dBp)

THBpdBp +

∑

j∈Bp

λ |(wt)j + djBp
| s.t. djBp

= 0 ∀ j 6∈ Bp \ S
t
p (14)

Combined over all p,

dt = argmin
d

(gt)Td+
1

2
dTHd+ u(wt + d)

s.t. dj = 0 ∀ j 6∈ ∪p(Bp \ S
t
p) (15)

where H is a block diagonal matrix with blocks, {HBp}.
Thus dt corresponds to the minimization of a positive defi-
nite quadratic form, exactly the type covered by the Tseng-
Yun theory [24].

The line search condition (10)-(11) is a special case of the
line search condition in [24]. The Gauss-Seidel scheme of
Section 3.2 is an instance of the Gauss-Seidel scheme of [24].
Now consider the distributed greedy scheme in Section 3.2.
Let jmax = argmax1≤j≤m q̄j . By the way the St

p are chosen,

jmax ∈ ∪pS
t
p. Therefore,

∑
j∈∪pSt

p
q̄j ≤ 1

m

∑m

j=1 q̄
j , thus

satisfying the Gauss-Southwell-q rule condition of [24]. Now
Theorems 1-3 of [24] can be directly applied to prove our
Theorem 1.

	1 Introduction
	2 A generic algorithm
	3 DBCD method
	3.1 Function approximation.
	3.2 Variable selection
	3.3 Line search
	3.4 Convergence

	4 Related Work
	5 Cost analysis
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	8 References

