

Microsoft Research

Conversational Knowledge Graphs

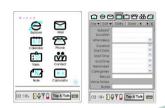
Larry Heck Microsoft Research

Conversational Systems

Brief History

Multi-modal systems

e.g., Microsoft MiPad, Pocket PC



TV Voice Search e.g., Bing on Xbox

Task-specific argument extraction

(e.g., Nuance, SpeechWorks)

User: "I want to fly from Boston
to New York next week."

Early 2000s

Intent Determination

(e.g. Nuance's Emily™, AT&T HMIHY)

User: "Uh...we want to move...we

want to change our phone line

from this house to another house"

Keyword Spotting

(e.g., AT&T)

Early 1990s

System: "Please say collect, calling card, person, third number, or operator"

Virtual Personal Assistants:

2014

e.g., Siri, Google now

The Need: Where are we now?

Conversational systems crafted for each domain

Select domain

Manually construct schema/ontology

Manually collect and annotate data

Train models/build grammars

Result

Narrow breadth of domains

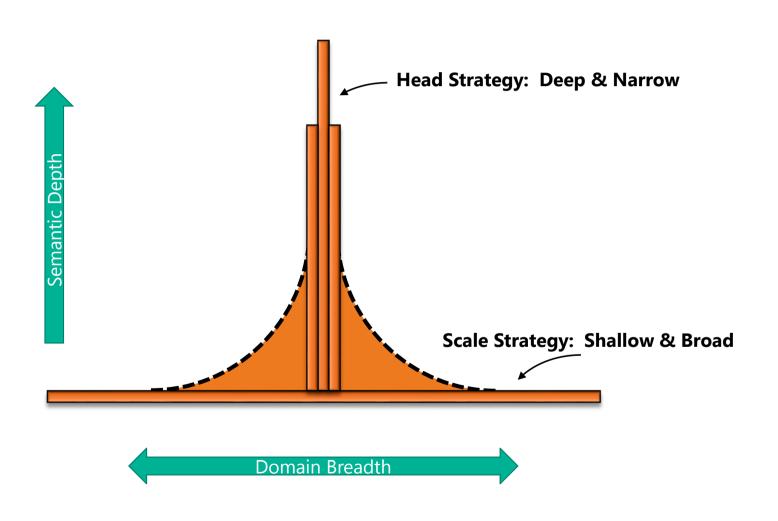
Limited sharing of data/schemas between domains

Limited ability to incorporate disparate knowledge sources

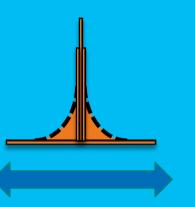
Inflexible to changes in task definition

How will we ever create a "NUI to the world's knowledge"? ...

Conversational Systems Challenge Scaling Depth and Breadth

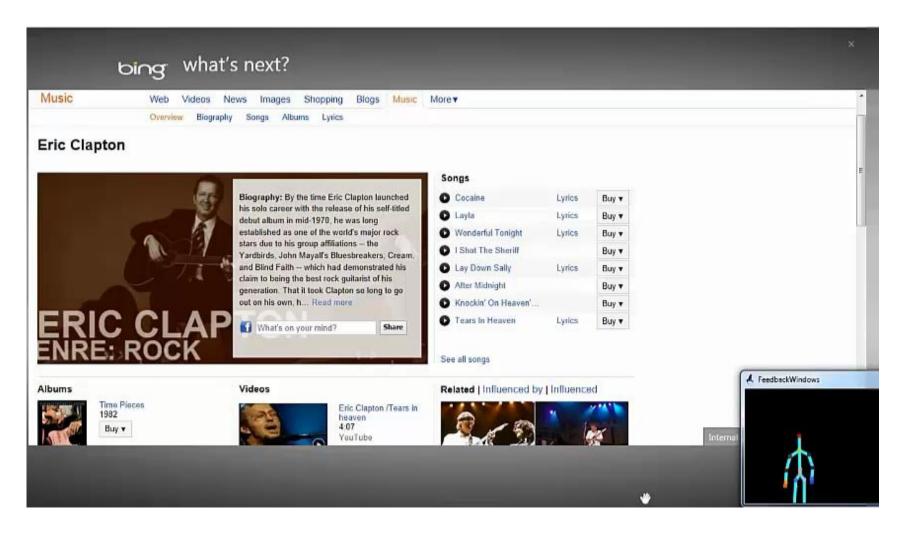


Video

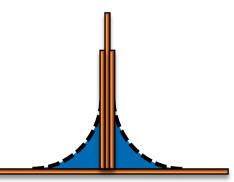


TechFest 2012 Conversational Search and Browse

TechFest 2012 Conversational Search and Browse



The Opportunity



Knowledge is the Foundation of Conversations

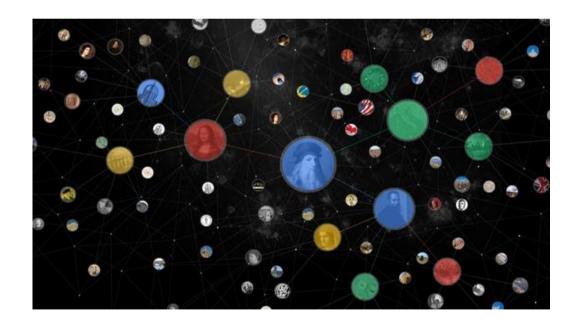
A vast majority of user interactions are with people, locations, things (entities).

Knowledge refers to these **entities**/concepts and to how they are interrelated.

The dual-role of knowledge

People seek to **browse** and **find information** about **entities** and to **transact** on them.

Knowledge serves as a grounding for conversations.



Semantic Knowledge Graphs

What are knowledge graphs?

Graphs of strongly typed and uniquely identified **entities** (nodes) and facts/literals connected by **relations** (edges)

Examples

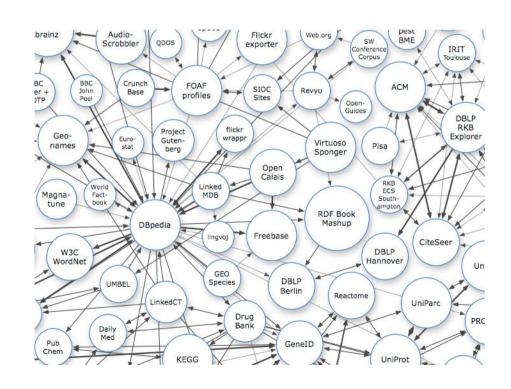
Satori, Google KG, Facebook Open Graph, Freebase

How large?

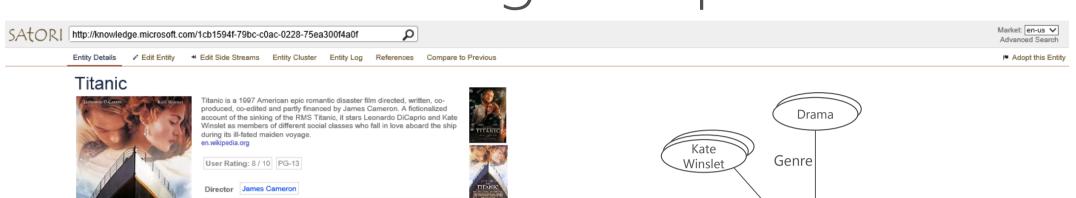
> 500M entities, > 1.5B relations, > 5B facts

How broad is the knowledge?

Wikipedia-breadth: "American Football" ← → "Zoos"



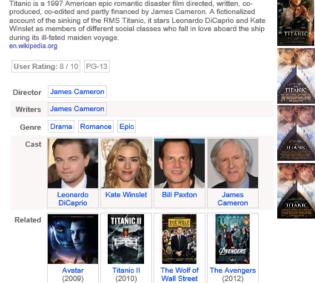
Semantic Knowledge Graphs



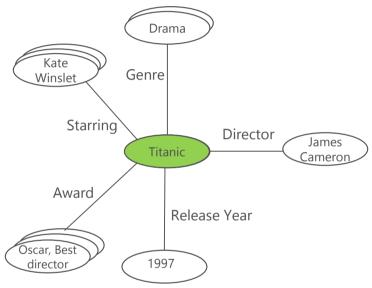
"Nothing On Earth Could Come Between Them."

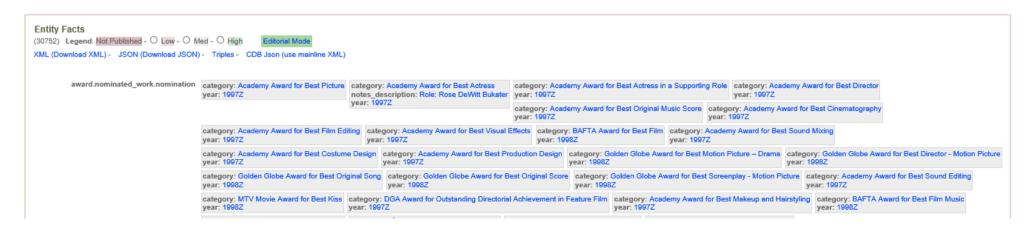
TITANIC

"Experience It Like Never Before (3D re-release)"



(2013)





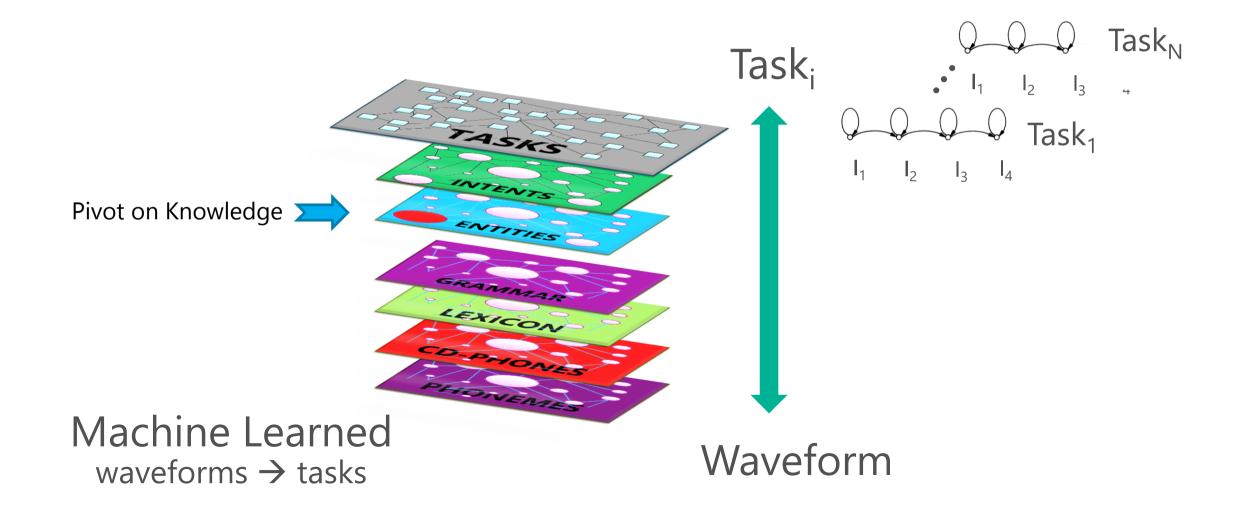
Knowledge "Crystals"

Vision: Push-button NUI from Knowledge Graph



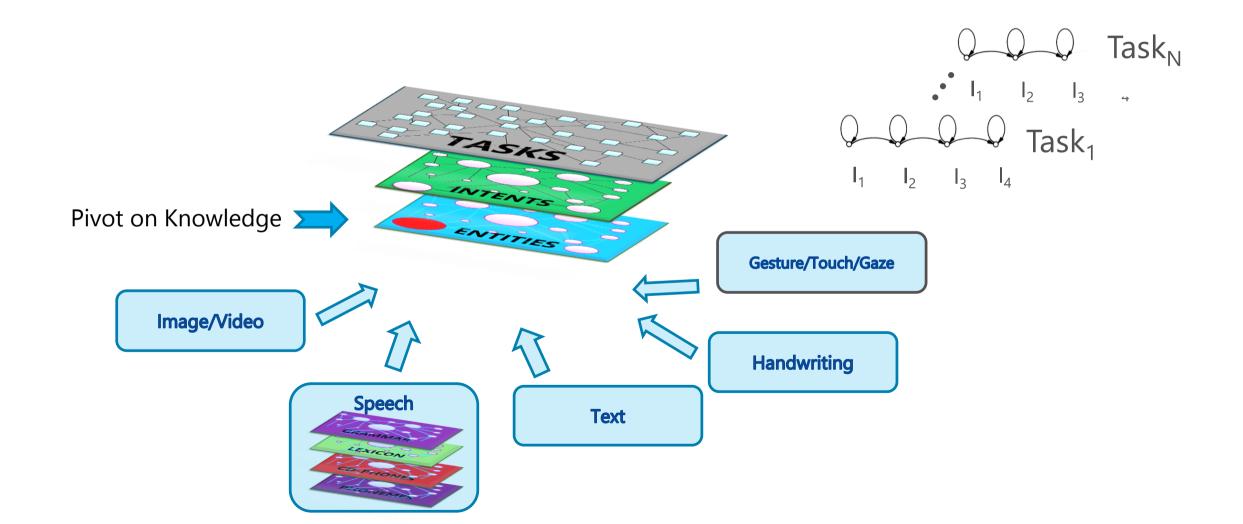
Conversational Knowledge Graphs

Compositionality: Waveforms -> Tasks



Conversational Knowledge Graphs

Multi-Modal



Entity Spotting and Linking

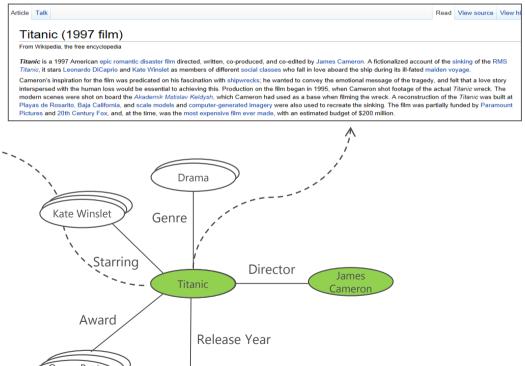
Goal Precise & robust (high-recall) entity linking over a broad knowledge base

Challenge

Requires <u>a lot</u> of *annotated* (labeled) data

Link Satori entities to NL Surface forms:

- Bing queries
- Wikipedia
- Twitter
- MusicBrainz
- IMDB
- etc.



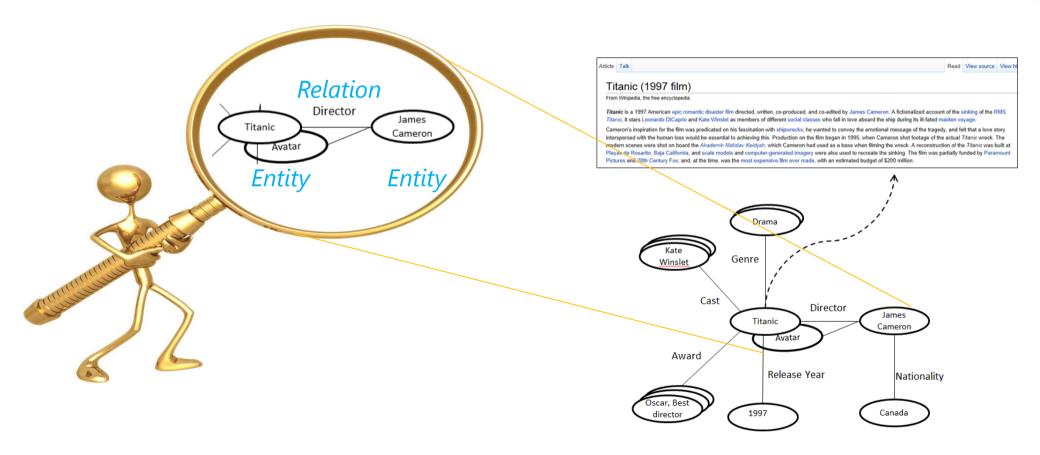
Solution → Start from knowledge graph, mine data, auto-annotate

Entity Spotting and Linking

	Manual Transcriptions				ASR Output					
	Movie	Actor	Genre	Director	All	Movie	Actor	Genre	Director	All
Supervised										
CRF Lexical + Gazetteers	51.25%	86.29%	93.26%	64.86%	66.53%	45.15%	82.56%	88.58%	58.59%	60.96%
CRF Lexical only	46.44%	80.22%	92.83%	52.94%	61.72%	39.21%	74.86%	86.21%	45.36%	54.10%
Unsupervised										
Gazetteers only	69.69%	50.70%	15.76%	2.63%	51.14%	59.66%	47.78%	11.80%	2.82%	43.88%
CRF Lexical only	0.19%	9.67%	0.00%	62.83%	5.61%	0.20%	9.67%	0.00%	57.14%	5.27%
+ Gazetteers	1.96%	72.35%	4.73%	79.03%	31.94%	1.74%	69.76%	3.57%	75.00%	30.77%
+ Adaptation	71.72%	58.61%	29.55%	77.42%	60.38%	55.74%	62.70%	30.95%	73.21%	54.69%
+ Relations				84.62%	61.02%				80.67%	55.40%

Unsupervised learning ≅ *supervised* (F-measure)

Induced Relation Grammars



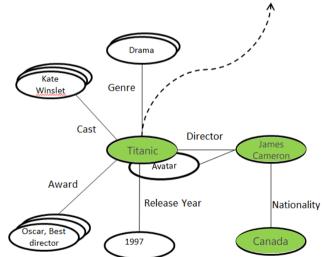
Relation Modeling for Entity Linking

Entities anchor higher-level grammatical structure
Induce grammars over high-confidence entities (anchor points)
"Repair" missing entities

→ "Canadian born ___? __ directed titanic"

Template	Frequency
ent	44.9%
$tupe \sqcap rel(ent)$	12.8%
$ent_0 \sqcap rel(ent_1)$	7.7%
$ent \sqcap type$	5.8%
type	5.8%
attr(ent)	3.8%
$ent_1 \sqcap rel(ent_0)$	3.2%
rel(ent)	1.9%
$ent_0 \sqcap rel(ent_1, rel(ent_2))$	1.3%
$type_1 \sqcap rel(type_0)$	1.3%

Ten most frequently occurring templates among entitybased queries (Pound et al., CIKM'12)



Induced Relation Grammars

	Manual Transcriptions				ASR Output					
	Movie	Actor	Genre	Director	All	Movie	Actor	Genre	Director	All
Supervised										
CRF Lexical + Gazetteers	51.25%	86.29%	93.26%	64.86%	66.53%	45.15%	82.56%	88.58%	58.59%	60.96%
CRF Lexical only	46.44%	80.22%	92.83%	52.94%	61.72%	39.21%	74.86%	86.21%	45.36%	54.10%
Unsupervised										
Gazetteers only	69.69%	50.70%	15.76%	2.63%	51.14%	59.66%	47.78%	11.80%	2.82%	43.88%
CRF Lexical only	0.19%	9.67%	0.00%	62.83%	5.61%	0.20%	9.67%	0.00%	57.14%	5.27%
+ Gazetteers	1.96%	72.35%	4.73%	79.03%	31.94%	1.74%	69.76%	3.57%	75.00%	30.77%
+ Adaptation	71.72%	58.61%	29.55%	77.42%	60.38%	55.74%	62.70%	30.95%	73.21%	54.69%
+ Relations				84.62%	61.02%				80.67%	55.40%

Entity Linking and Relations

To dig deeper...

Larry Heck, Dilek Hakkani-Tur, and Gokhan Tur, <u>Leveraging Knowledge Graphs for Web-Scale Unsupervised Semantic Parsing</u>, in *Proceedings of Interspeech*, International Speech Communication Association, August 2013

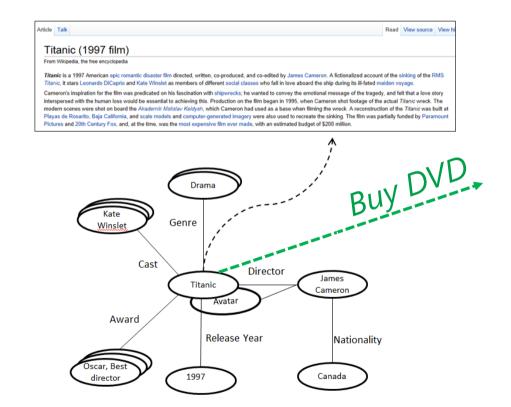
Larry Heck and Dilek Hakkani Tur, <u>Exploiting the Semantic Web for Unsupervised Spoken Language Understanding</u>, IEEE Spoken Language Technology Workshop, December 2012

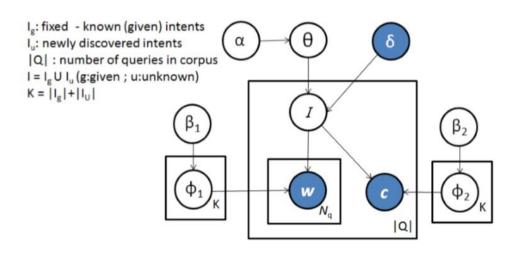
Dilek Hakkani-Tur, Larry Heck, and Gokhan Tur, <u>Using a Knowledge Graph and Query Click Logs for Unsupervised Learning of Relation Detection</u>, IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2013

Gokhan Tur, Minwoo Jeong, Ye-Yi Wang, Dilek Hakkani-Tur, and Larry Heck, <u>Exploiting the Semantic Web for Unsupervised</u> <u>Natural Language Semantic Parsing</u>, in *Proceedings of Interspeech*, International Speech Communication Association, 2012

Growing the Knowledge Graph

Discovering new knowledge



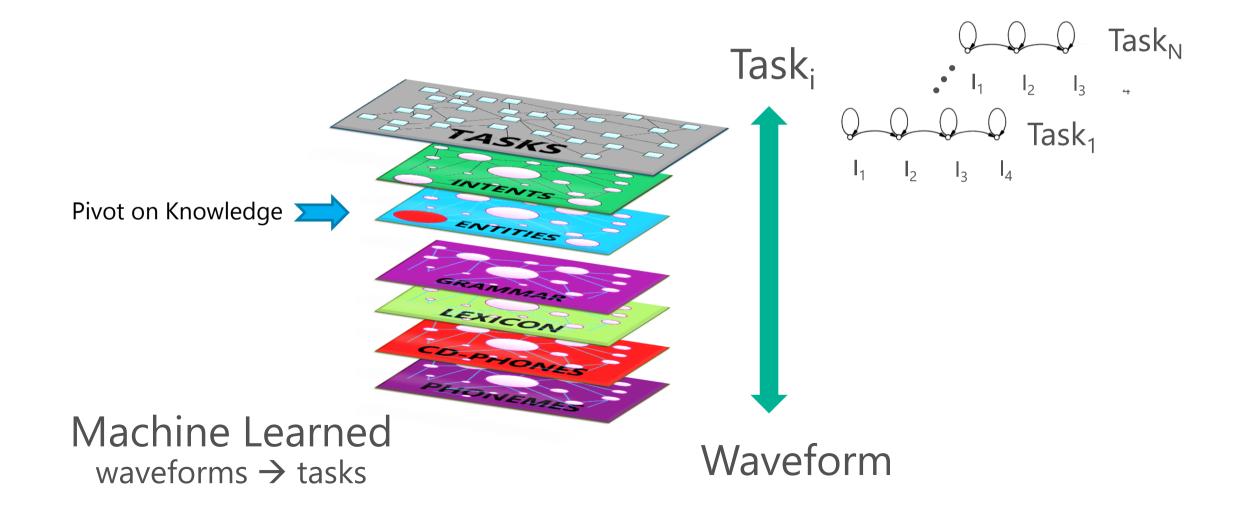


Unsupervised learning ≅ *supervised*

Dilek Hakkani-Tur, Asli Celikyilmaz, Larry Heck, and Gokhan Tur, <u>A Weakly-Supervised Approach for Discovering New User Intents</u> from Search Query Logs, Annual Conference of the International Speech Communication Association (Interspeech), August 2013

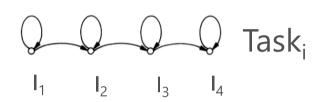
Conversational Knowledge Graphs

Compositionality: Waveforms -> Tasks



Dialog Modeling with Knowledge Graphs

Dynamic multi-turn conversations



Statistical methods for dialog managers is active research topic (e.g., POMDP)

Key Technical Challenge: significant amount of annotated dialogs required for training

Idea: can we leverage Web (IE) session data combined with Knowledge Graphs

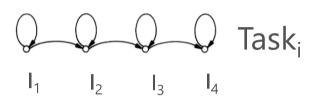
Web search & browse → Conversations/dialog

Massive volume of interactions > 100M queries/day, Millions of users

Coverage of user interactions is high (broad domains across the web)

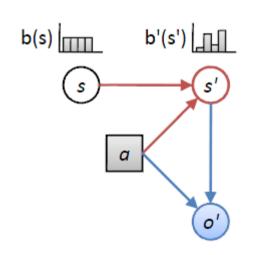
Dialog Modeling with Knowledge Graphs

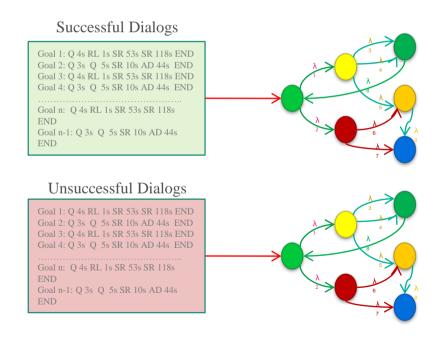
Dynamic multi-turn conversations



New Approach

Step 1. **Learn task completion patterns from web** \rightarrow IE sessions through Satori Knowledge Graph

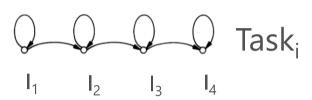




Step 2. Learn "mapping" of web keyword-click language to natural spoken conversations

Dialog Modeling with Knowledge Graphs

Dynamic multi-turn conversations



Results

Successfully learned conversational search and browse models from IE sessions + Satori

Increased F-measures of semantic parsing by > 18% (rel.)

To dig deeper...

Lu Wang, Larry Heck, Dilek Hakkani-Tur, <u>Leveraging Semantic Web Search and Browse Sessions for Multi-Turn Spoken Dialog Systems</u>, *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014*

Deep Learning from Structured Knowledge Current/Future Work

Unsupervised data mining and semantic annotations > unlimited training data over knowledge graphs

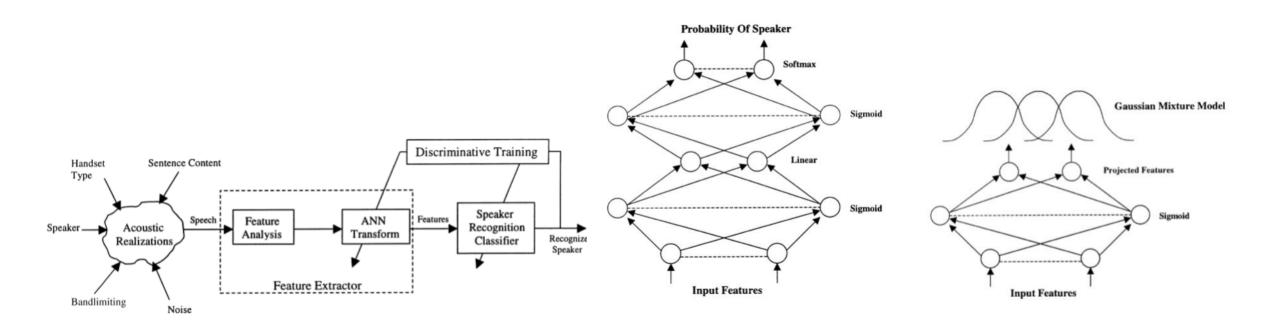
Research Questions:

Can deep learning (neural networks) discover the fundamental features of knowledge?

Can we leverage these features to transfer learning across domains/sub-graphs?

Back to the Future: Deep Learning for Speaker Recognition

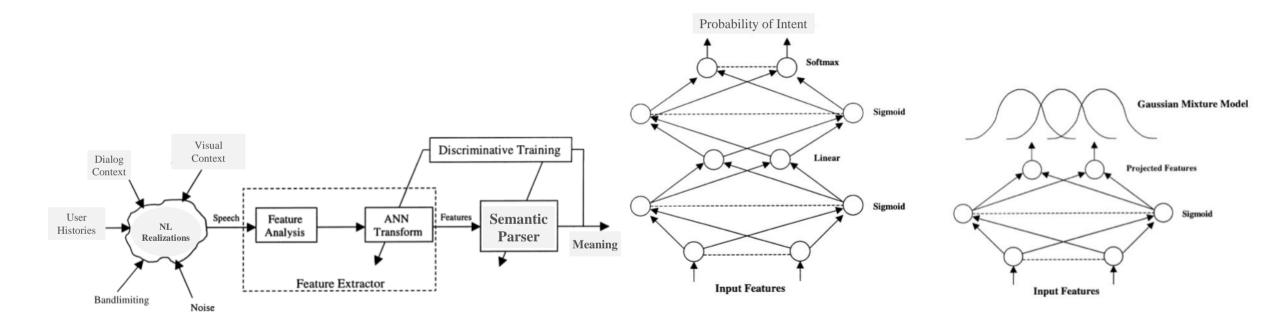
Learning the fundamental features of speakers



#1 Improvement in NIST 1998 Speaker Recognition Evaluations (+28% ERR)

Larry Heck, Yochai Konig, M. Kemal Sonmez, and Mitch Weintraub, <u>Robustness to Telephone Handset Distortion in Speaker Recognition by Discriminative Feature Design</u>, in *Speech Communication*, Elsevier, 2000

Deep Learning for Robust Semantic Parsing Learn the fundamental *features of natural language*



Deep Learning from Knowledge Graphs Learn the fundamental *language of knowledge*

Larry Heck, Yochai Konig, M. Kemal Sonmez, and Mitch Weintraub, <u>Robustness to Telephone Handset Distortion in Speaker Recognition by Discriminative Feature Design</u>, in *Speech Communication*, Elsevier, 2000

Yochai Konig, Larry Heck, Mitch Weintraub, and M. Kemal Sonmez, <u>Nonlinear Discriminant Feature Extraction for Robust Text-Independent Speaker Recognition</u>, in *RLA2C*, 1998

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck, <u>Learning Deep Structured</u> <u>Semantic Models for Web Search using Clickthrough Data</u>, *ACM International Conference on Information and Knowledge Management (CIKM)*, October 2013

Larry Heck, <u>Deep Learning from Structured Knowledge Graphs</u>, *Interspeech (to be submitted), International Speech Communication Association (ISCA), 2014*.

Summary Conversational Systems with Depth & Breadth

Breadth

Conversational Search and Browse

Depth

Conversational Knowledge Graphs (replacing manually crafted domains) "Crystals" of knowledge

Breadth and Depth

Unsupervised/Weakly-supervised learning methods

Data mining directed by the knowledge graph - enriched knowledge graphs

Multi-turn dialog models compose entities: learned from Web (IE)

Deep learning from structured knowledge graphs

Research Vision Strategy HIII hank you Microsoft CONVERSATIONAL KNOWLEDGE GRAPHS