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Abstract

Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions glob-

ally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investi-

gate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly

variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering

model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs

from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC

predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points

that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of

openness with regard to describing and making available the model inputs and model code; (2) the difficulties of con-

ducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the

model predictions to help inform their own analyses and policy decisions. We further draw comparisons between

tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and

suggest that recent changes in the climate change and species distribution modelling communities may provide a

pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models

have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all

political levels. We suggest that tropical LULC change models have an equally high potential to influence public

opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably

may require further improvements in the discipline.
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Introduction

Land-use and land-cover (LULC) change is a process

that is present in all environments across the globe

(Lambin et al., 2001; Geist & Lambin, 2002). It is driven

by many natural and anthropogenic factors, and it is

the largest driver of biodiversity loss at global scales

(Pereira et al., 2010). Tropical deforestation is probably

the most paradigmatic example of LULC change,

because of the huge detrimental impacts forest loss can

have on the future of the planet and human wellbeing

(Foley et al., 2005). During the last two decades, 80% of

new agricultural land across the world has across the

world has come from conversion of tropical forest

(Gibbs et al., 2010). Furthermore, emissions from global

land-use change are the second largest anthropogenic

source of carbon dioxide (CO2), just behind fossil fuel

emissions, with Southeast (SE) Asia and South America

being the two main contributors (Le Quere et al., 2009).

Losing biodiversity-rich ecosystems at such a fast rate

is a major threat to the world’s biodiversity (Myers,

1988; Brook et al., 2003; Ahrends et al., 2010; Sangerma-

no et al., 2012). In addition, the rapid destruction of

tropical forests is compromising the future of many

indigenous people (Alcorn, 1993) as well as the future

of local populations (Laurance, 1999).

Numerous models of tropical LULC conversion have

been developed to understand the complex interactions

among human and biophysical factors that drive

change (Ludeke et al., 1990; Mertens & Lambin, 1997;

Verburg et al., 2002; Soares-Filho et al., 2006). Several

reviews have been written dealing with LULC models

(Verburg et al., 2004; Matthews et al., 2007); nearly a

decade ago Verburg et al. (2004) highlighted several

shortfalls in LULC modelling but even today there are
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still many issues within the discipline and improve-

ments still need to be made (Brown et al., 2013).

Tropical LULC models are employed to address

questions concerning why changes happened in the

past, to help understand the main drivers of change in

the present, to predict how much and where change

will occur in the future and to examine plausible sce-

narios of landscape modification. Predicting not only

the amount of forest that will be lost in the future, but

also the location of this loss, is vital for successfully

implementing conservation strategies (Mertens & Lam-

bin, 1997). Current predictions of tropical LULC change

differ in their modelling approaches, and predictions of

future change vary among models and, given the self-

obvious difficulties of validating models that predict a

future that has not yet happened, the reliability of tropi-

cal LULC models remains uncertain. Thus, modelling

the processes of tropical LULC change remains a great

challenge. This challenge arises partly because the

physical environment can vary greatly from one region

to another, and can also be in constant change. In addi-

tion, the underlying processes that drive tropical LULC

change are usually very complex, combining many

socio-economic, cultural, political and environmental

factors (Geist & Lambin, 2002).

In the literature, there are a variety of predictive trop-

ical LULC change models, which vary greatly in terms

of methodology (e.g. agent-based, cellular automata,

statistical), time frame, and the region where, and scale

at which, they were calibrated. This review provides a

quantitative summary of spatially-explicit predictive

models of tropical LULC change, using the tropical

rainforests located in the Amazon basin, SE Asia and

the Congo basin as a case study. We aim to highlight

the different methodologies that exist specifically with

regards to differences in prediction goals, model inputs

and outputs, and model calibration and validation tech-

niques. Furthermore, we aim to evaluate the transpar-

ency, reliability and utility of tropical LULC models

working in tropical regions. On the basis of the findings

of this analysis, we highlight several shortcomings in

the approaches taken in tropical LULC change model-

ling, and draw on the experience of other modelling

communities to make specific recommendations with a

view to strengthening the tropical LULC change model-

ling discipline.

Material and methods

Bibliographical search

We focussed our review on the three tropical rainforest zones

in the Amazon, the Congo and SE Asia. Together, these three

regions encompass more than 10 million km2 of rainforest

across 15 countries (Supporting Information – Study regions).

Using ISI Web of Knowledge, we searched for papers using

the keywords ‘land-use change model’ in combination with

the additional keywords ‘Congo’, ‘Amazon’, ‘Indonesia’, ‘Phil-

ippines’, ‘Malaysia’ or ‘Brunei’ (insular SE Asia), on the 27th

of June 2013, which returned a total of 1100 papers. From this,

we selected a set of papers (45 in total) that specifically model

tropical LULC change in these tropical regions (Supporting

Information – Appendix 1). Three of these papers presented

two independent models, which we treated as separate enti-

ties in our quantitative review, giving a total of 48 models. We

excluded book chapters, reviews, any papers published pre-

1990, papers presenting models that made no spatial predic-

tions and papers that focussed on land uses other than forest

(e.g. ‘cerrado’ and urban).

Quantitative summaries of the literature

To test for the transparency of this set of tropical LULC change

models, we extracted the methodological information from the

published papers, referring to the associated supplementary

material of those papers where necessary (Table S1). Models

that lack transparency are those for which we were unable to

extract the information needed to replicate the model in its

entirety. We covered aspects such as: (1) the spatial (cell size

and extent of study area) and temporal (time period for which

the model was calibrated and simulation years) scale of mod-

els. We assessed the correlation between the model extent and

the cell size used, and calculated basic statistics to identify

trends in the time period of models; (2) model type (e.g. cellu-

lar automata, agent-based); and (3) data inputs used. We

assessed the reliability of models by (4) examining the methods

used to calibrate and validate the models and (5) by running

our own independent validations of model predictions.

Finally, the utility was determined by (6) our ability to obtain

the modelled predictions in a form that could be used by other

researchers and decision makers.

We classified models into one of five categories: (1) mod-

els that were based on the decisions of agents were consid-

ered ‘Agent-based’ (Parker et al., 2008); (2) models that

accounted for the neighbourhood when determining change

were defined as ‘Cellular automata’ (White & Engelen,

2000); (3) models purely based on the extrapolation of past

trends were defined as ‘Statistical’ (Millington et al., 2007);

(4) models developed with the goal of optimizing income or

minimizing losses were considered ‘Optimization’ (Chuvi-

eco, 1993); and (5) models that used any other algorithms

were defined as ‘Other’ (Table S1). We used a Chi-squared

test to identify any significant bias in the type of models

used, and further categorized them as being deterministic or

stochastic. Deterministic models use inputs and create out-

puts that are fixed, meaning the same model run multiple

times will always give the same result. By contrast, stochas-

tic models use inputs that are described by a probability dis-

tribution of some description and so contain a degree of

statistical uncertainty that can be propagated to estimate the

level of uncertainty around model predictions (Rosa et al.,

2013; Verburg et al., 2013).

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1707–1722

1708 I . M. D. ROSA et al.



We define model inputs as the factors or parameters that a

model takes into account to make predictions. Landscape

change modelling often uses many inputs because models are

attempting to replicate the inherently complicated phenomena

of future tropical LULC change, which is heavily influenced

by human behaviour. As such, we divided model inputs into

four broad categories; (1) geographic, (2) economic, (3) social

and (4) biological inputs (Table S1). Geographic inputs play a

vital role in tropical LULC change modelling, providing the

environmental setting that describes the real world on top of

which the model can make predictions. Economic inputs cover

factors relating to monetary gains and losses, for example the

amount of capital available or land prices. Social inputs con-

sider what people value, how people live, and include factors

such as family size and family demography. Biological inputs

are used to predict the utility of converting land from forest to

another land use, using soil fertility for instance (Carpentier

et al., 2000). Model inputs were also divided into categories

according to whether they were static or dynamic. Static

inputs differ from dynamic inputs in that they do not change

through time in the model. For example, the location of key

cities or topographical patterns can be considered static over

the time periods modelled. By contrast, dynamic inputs are

continuously updated within the model itself (Supporting

Information – Drivers of deforestation in the tropics).

To assess the reliability of the 48 models, we recorded

how the model calibration was carried out, as well as how

model outputs were validated against observed data. We

define reliability as how well the model reflects reality, i.e. a

model with high predictive ability is more reliable than a

model with low predictive ability. Calibration is formally

defined as ‘the estimation and adjustment of model parame-

ters and constants to improve the agreement between model

output and a data set’ (Rykiel, 1996). The process of validat-

ing and assessing a model’s predictive power involves com-

paring the model predictions against observed data (Table

S1). We also conducted a series of standardized validation

tests on published tropical LULC change models from the

Brazilian Amazon, so we requested via e-mail digital maps

of model predictions from the authors of each model we

considered in this review. We e-mailed the corresponding

author of each paper up to three times, and if we received

no response, we e-mailed the co-authors for which we were

able to find e-mail addresses.

Models for which we were unable to obtain the predictions

represent models that have only limited utility for decision

makers and other researchers, who will typically require

access to detailed spatial information about projected tropical

LULC changes [e.g. Wearn et al. (2012) used the tropical defor-

estation models of Soares-Filho et al. (2006) to map and predict

the spatial and temporal patterns of extinction in the Brazilian

Amazon]. It could be assumed that it is more difficult to

obtain data from older papers, thus we conducted a binomial

regression to test for the effect of paper age on our success/

failure to obtain model outputs.

For the models that we were able to obtain model

predictions in a format that could be compared with reli-

able observed data, we made quantitative comparisons of

the model outputs and accuracy. Due to data availability,

we focussed our quantitative comparisons on the Brazilian

Amazon, for which good quality annual deforestation

data over a period of more than a decade is readily

available.

Using annual deforestation maps for the Brazilian Ama-

zon (INPE, 2012), we created binary raster files representing

annual (deforestation in that year) and cumulative (accumu-

lated deforestation that occurred between 2002 and that

year) observed deforestation from 2002 through 2010. For

each model that we validated, we converted the vector data

into raster format, matching exactly the spatial extent and

resolution of the observed data to that used in model pre-

dictions. Then, using the raster maps of deforestation predic-

tions collected from the authors, we compared on a pixel-

by-pixel basis where deforestation was perfectly predicted

(=match), omitted or committed. Errors of omission (false

negatives; model predicted no deforestation in a location

where deforestation occurred) and commission (false posi-

tives; deforestation was predicted but did not occur) differ

from the sources of prediction error identified by Pontius

et al. (2008), who compared the LULC categories between

observed and predicted maps. We preferred metrics of omis-

sion and commission because it focuses the validation onto

the predictions of the LULC change itself, which is almost

always a very small fraction of a modelled region, rather

than allowing very high, but spurious, levels of apparent

model accuracy arising from the accurate prediction of loca-

tions of no change, which can be ‘accurately’ predicted by a

null model in which no land use has changed (Wu et al.,

2009). Thus, the metrics we compute and present represent

a more stringent test of model reliability than other metrics.

We assigned all pixels in the landscape to one of the match,

omission or commission categories, and summed all the pix-

els that matched and divided the sum by the amount of

change observed to get the percentage match. There is fur-

ther reluctance to use pixel-by-pixel comparison methods for

tropical LULC model validation, because there is no differ-

entiation between ‘near miss’ and ‘far miss’ errors (Pontius,

2002; Pontius et al., 2004; Carlson et al., 2012).

We agree that these simple metrics of match, omission

and commission represent extremely stringent tests of model

reliability, but we also argue that they represent exactly the

ability of tropical LULC models to predict the spatial pat-

terns of tropical LULC change, and ably represent the two

cases in which those predictions can be wrong. However, to

allow for near and far misses, we also calculated a distance-

based measure of model match, annually and cumulatively,

by defining a set of buffer zones (1, 5, 10, 50 pixels in

radius) around each pixel of predicted deforestation and cal-

culated the proportion of observed deforestation that was

found within those buffers. We used pixels rather than dis-

tance, as pixel size was correlated with model extent and

therefore represents a standardized metric of scale that

accounts for the differences in the extent and resolution

of the models we compared. This distance-based valida-

tion metric quantifies the degree of spatial error in model

predictions.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1707–1722
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Results

Spatial and temporal scales

Of the 48 models, one was pan-tropical (i.e. covered all

three tropical areas), two were based in the Congo

basin, 13 in SE Asia and 32 in the Amazon. The differ-

ence in number of papers found in each region may

reflect differences in data availability, interest or differ-

ences in tropical LULC change pressures, with the

Amazon having better data, a higher public profile and

undergoing higher amounts of absolute forest loss. SE

Asia and the Congo basin are more commonly studied

as part of global deforestation models or as part of his-

torical change studies (Delire et al., 2001). Both Congo

basin papers covered the whole Congo basin (Fig. 1b).

Of the 13 SE Asia papers, seven were in the Philippines,

four in Indonesia and two were in Malaysia (Fig. 1c).

Only three of the Amazon forest papers covered the

whole Amazon basin; 17 were applied only in the Bra-

zilian Amazon (Fig. S1), six were in Ecuador and the

remaining models were distributed among Colombia

(2), Peru (1) and Bolivia (3) (Fig. 1a).

The spatial extent of tropical LULC change models

was generally biased towards regional-scale models,

with a median of 16 019 km2, ranging from about

58 km2 to more than 15 million km2, but the extent did

not significantly differ among the three regions (ANOVA:

F = 2.76, P = 0.07; Amazon papers; median =
23 500 km2, range = 290 to >10 million km2, SE Asia

papers; median = 456 km2, range = 15–131 600 km2;

Congo basin papers = 4 million km2). The spatial

extent of models was closely correlated with the resolu-

tion, or cell size (Pearson’s correlation on log extent

(km2) with log cell size (km2); r = 0.79, df = 41,

P < 0.001) (Fig. 2, for regional breakdown see Support-

ing Information – Spatial and temporal scales). Most

tropical LULC change models selected one particular

scale at which to work, and we identified just one paper

that operated at multiple scales, integrating small-scale

and regional-scale modelling approaches through a

combination of linked models (Moreira et al., 2009).

(a)

(c)

(b)

Fig. 1 Number of papers included in our review based in (a) South America, (b) the Congo basin and (c) South-East Asia. Number of

papers within the Brazilian Amazon can be found in Figure S1.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1707–1722
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We detected large amounts of variation in the tempo-

ral scale over which models were used to predict future

tropical LULC changes. Of the 48 models, three did not

provide any future predictions apart from the initial

year (Etter et al., 2006b; Lopez & Sierra, 2010; Mann

et al., 2010). The other 45 models that made predictions

extended a median of 20 (SD = 20) years into the

future, ranging from just 6 years (Verburg et al., 1999;

Etter et al., 2006a; Mello & Hildebrand, 2012) to a maxi-

mum of 120 years (Zelazowski et al., 2011). This did not

vary significantly between regions (ANOVA on log-trans-

formed data: F = 1.69, P = 0.20; median model time in

the Amazon was 25 (SD = 13), SE Asia median = 18

(SD = 5), Congo basin median = 55 (SD = 7) years).

The distribution of number of years predicted was left-

skewed, meaning that most papers tend to focus on

short and medium temporal extents. This is likely due

to a perceived tendency of model predictions to become

increasingly uncertain into the future due to the very

large number of dynamically adjusting variables that

cannot be accurately accounted for in models (Dead-

man et al., 2004).

Model type

Across the set of 48 papers, we identified five broad cat-

egories of model types: statistical (n = 16), cellular auto-

mata (n = 13), agent-based (n = 9), optimization (n = 1)

and other types of models (n = 9). Overall, there is a

significant bias towards the use of cellular automata

and statistical models (Chi-squared test, v2 = 13.25,

df = 4, P = 0.01). Some models fell into more than one

category, such as agent-based models that were com-

bined with cellular automata (Walsh et al., 2008; Sarkar

et al., 2009). Our search criteria only found agent-based

models for the Amazon. Across all models, agent-based

approaches were most commonly used when model-

ling tropical LULC change at local and regional scales

(mean extent = 9000 km2 � 8500, 95% CI), whereas cel-

lular automata were used in the Amazon and SE Asia

and were more commonly used for larger scale models

(mean extent = 2 217 000 km2 � 220 000, 95% CI).

There was, however, no significant effect of model type

on model extent (ANOVA: F = 0.42, P = 0.79). Of the nine

models classified as ‘Other’, the methods implemented

included rule based models, the use of Markov chains

and neural networks (Lambin, 1997; Pijanowski et al.,

2002). Finally, we found a balance between determinis-

tic (n = 27) and stochastic (n = 21) models, with a sig-

nificant relationship between model type and

stochasticity (v2 = 25.16, df = 4, P < 0.001). Nearly all

cellular automata models (90%) were stochastic,

whereas 75% of statistical models were deterministic.

Fifty-six per cent of models in the Amazon were

stochastic, while only 15% of SE Asian models were

stochastic.

Drivers of deforestation in the tropics

Tropical LULC change models used an average of 10

(SD = 7.6) inputs, with some models using as few as

five (Walker et al., 2004; Nepstad et al., 2009; M€uller

et al., 2011) and one as many as 47 (Moreira et al., 2009).

The average number of inputs did not vary between

the three tropical regions (ANOVA: F = 0.51, df = 44,

P = 0.60; Amazon average = 9 (SD = 7.4), SE Asia aver-

age = 11 (SD = 6.9), Congo basin average = 6

(SD = 0.7)). Across papers, we found that model inputs

fell into four broad categories; (1) geographical, (2)

economic, (3) social and (4) biological inputs (Fig. 3, for

regional break down see Fig. S2).

Every model considered in our review used a geo-

graphical input of some description, and typically used

these inputs to aid in determining the spatial location

of changes. The three geographical inputs that were

used most consistently were roads (34/48 papers),

landscape factors (30/48) and soil factors (25/48). Dis-

tance to roads, urban centres and past deforestation are

typically negatively correlated with future deforesta-

tion, with higher deforestation occurring in close prox-

imity to these locations (De Koning et al., 1999b;

Verburg et al., 2002; Soler et al., 2007; Mann et al., 2010;

Maeda et al., 2011). The suitability of land for agricul-

ture influences deforestation probabilities, with nutri-

ent rich soils more likely to be deforested than nutrient

poor soils (Etter et al., 2006b; Soler et al., 2007). Further,

Fig. 2 Correlation between the spatial scale of all models

(model extent in km2) and their model resolution (given by the

cell/pixel area in km2).
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deforestation tends to occur on flat land at low eleva-

tion and is much less likely on slopes which are harder

to farm (M€uller et al., 2011).

Economic inputs such as the price of farm goods, the

value of land and gross domestic product (GDP) were

used in 15 of the 48 models and are typically used to

predict the amount, rather than the spatial location, of

tropical LULC changes (De Koning et al., 1999b). Given

that the vast majority of tropical LULC change is associ-

ated with development (e.g. agriculture and resource

extraction), it is not surprising that economic indicators,

such as agricultural goods prices, make good predictors

of how people and/or governments are likely to alter

the land cover and land use of an area. For instance,

Soares-Filho et al. (2004) found that 71% of the variance

in annual deforestation rates was explained by gross

national product, although Ewers et al. (2008) used

time-series analyses to demonstrate there is no statisti-

cal evidence that any economic variables, including per

capita GDP, have systematically caused variation in

deforestation rates.

More than half of the models (25/48) made use of

social inputs to connect people to tropical LULC change

decisions based on assumptions about their behaviour.

For example, Walker et al. (2004) showed that house-

hold demography was the main factor affecting land

allocation (conversion) decisions. They suggested that a

household economy framework, which takes into

account social and economic factors, may be a more

appropriate approach than simple profit maximization

approaches to tropical LULC modelling (Walker et al.,

2004). Nearly all tropical LULC change over the last

century has been a direct result of individual and social

responses to changes in the economic climate (Lambin

et al., 2003), and a key assumption of many economic-

based models is that people will seek to maximize util-

ity (Evans et al., 2001), which can be in the form of

financial or commodity gains. This, however, may not

be appropriate for the Amazon, which represents a

frontier setting, where the institutions necessary for

profit maximization may not be present or fully func-

tional (Walker et al., 2004).

Research at both local and regional scales have found

complex relationships, feedbacks and interactions

between human (social, political, economic) and envi-

ronmental systems (Deadman et al., 2004). One such

Fig. 3 Number of models using each input type. Inputs are divided according to class; geographic, economic, social or biological. Soil

factors have been put into a single group that consists of factors such as soil moisture and soil texture. Landscape factors include inputs

such as altitude and slope; climate includes rainfall, temperature, dry season length etc. If a paper uses multiple inputs from a group it

is still counted only once e.g. if soil fertility, moisture and texture are used, it counts as one soil factor. The same information for each

region is given in Figure S2.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 20, 1707–1722

1712 I . M. D. ROSA et al.



relationship is that between road construction and

deforestation, with this causal interaction driven by

economic and cultural factors (Geist & Lambin, 2002).

Another common relationship is found between prop-

erty rights and deforestation; Araujo et al. (2009) found

that insecurity in property rights and social conflicts

increased deforestation, because landowners needed to

assert use of the land to avoid expropriation and squat-

ters deforested in the hope that property rights will be

awarded in the future. Differences in how models

assume people will behave can exert large effects on

model predictions, as shown by scenarios modelled by

Dale et al. (1994), that compared alternative behaviours

of farmers and their farming practices. In one scenario,

it was assumed that farmers will make innovative use

of their land and implement positive agro-forestry

practices, leading to predictions that 40% of forested

land would be cleared by farmers after 40 years. By

contrast, when the model assumes that farmers will not

use innovative practices and do not implement agro-

forestry, the model predicted that 100% of the land

would be deforested within just 10 years.

Finally, biological inputs included variables such as

plant growth rates, agricultural yield and crop nutrient

demands (i.e. the soil requirements of various crops).

For example, crop nutrient demands in conjunction with

soil fertility determines the viability of different crop

types that might replace a forest, with highly fertile

areas likely to become arable land (e.g. coffee or maize)

and low fertility areas more likely to become pastoral

land. Another biological input that was often used (17/

48 models) was forest regrowth rate and/or the proba-

bility of forest regrowth (Soares-Filho et al., 2002). Dis-

tance to regrowth has also been used to predict

deforestation, with the observation that deforestation

and distance to regrowth are negatively correlated

(Soares-Filho et al., 2002). However, only papers from

the Amazon appeared to use regrowth as a model input.

The relative importance of inputs variedwith location,

not only between models, but also within models work-

ing in different regions. For example, Wassenaar et al.

(2007) found that existing fragmentation was one of the

most significant model inputs across seven Amazonian

regions modelled, however there were regional differ-

ences inmodel structure. Altitude was an important pre-

dictor of deforestation within the Ecuadorian Amazon,

along the edge of the Andes mountain range, but was

not important in the other six regions that were much

less topographically complex. Also, Etter et al. (2006b)

found that distance to towns and roads were important

predictors of deforestation in both Andean and Amazo-

nian regions, while soil fertility was important in the

Andean but not Amazonian regions, whereas the num-

ber of rain dayswasmore important in the Amazon.

Regional differences in the causes of deforestation

patterns make it important that papers explicitly state

the inputs they are modelling, but this was not always

the case. For example, Moreira et al. (2009) used ‘40

environmental, demographical, agrarian structure,

technological and market connectivity indicators’, but

these were not listed. In other cases, the definitions

associated with model inputs were not always clear.

For example, Dale et al. (1994) and Soler et al. (2007)

used ‘soils’ as an input variable, but did not specify if

they were referring to soil type, soil fertility, soil tex-

ture, or some other metric associated with soil. By con-

trast, De Koning et al. (1999b) explicitly stated that they

used soil texture and fertility, finding that in the

Andean region, texture and soil fertility were both

important modelling parameters, while in the Amazon

region neither played a role at the scales modelled.

Landscape factors were typically static inputs to trop-

ical LULC models, although the LULC map itself repre-

sents an obvious exception, changing at each time step

of a model as tropical LULC change progresses (Mes-

sina & Walsh, 2001; Soares-Filho et al., 2004; Verburg

et al., 2006; Walsh et al., 2008). Dynamic economic

inputs were also used, with each year’s activities (con-

version into farmland for instance) resulting in new

stocks of finances and/or resources that become the

foundation of the next year’s activities (Carpentier

et al., 2000). Not all dynamic inputs build through time

as these examples above. For example, Messina &

Walsh (2001) used a cellular automata module to select

locations for deforestation based on neighbourhood

rules, implementing a random number generator to

recreate the dispersiveness of deforestation and to

allow for stochastic deforestation events, and Walker

et al. (2004) determined the number of deforestation

events through a probability model that used a uniform

distribution. In both cases, the use of a probabilistic or

stochastic selection of deforestation events makes the

amount and location of deforestation a dynamic input.

Some inputs are actually dynamic but were treated as

static in models, and this is particularly true of roads.

Most models we examined used roads as an input, but

more than two-thirds of those (34/48) treated roads as

a static input. Only papers that use the DINAMICA or

IDRISI road constructor modules used roads as a

dynamic and spatially explicit phenomenon (Messina

& Walsh, 2001; Soares-Filho et al., 2004, 2006; Lapola

et al., 2010; Carlson et al., 2012).

Model calibration

In tropical LULC change modelling, there are three key

aspects of LULC change that need to be estimated: the

rate, the type and the location of change. There are
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several calibration methods employed by the papers

modelling tropical LULC change in the tropics, but

only one direct comparison of different methods on the

same datasets (Etter et al., 2006b), making it difficult to

quantify the relative reliability of the various options.

All calibration techniques applied statistical methods to

empirical observations of historical data to estimate

parameter values and weights (Supporting Information

– Model calibration). Some model calibrations were

combined with expert knowledge to capture inputs

known to be important despite a statistical model sim-

plification process removing them (Soler et al., 2007)

and one-off events such as changes to agricultural sub-

sidies (Wassenaar et al., 2007), while others utilized

rules to determine outcomes (Justice et al., 2001).

Economic approaches to modelling tropical LULC

change tended to use more process-based methods for

calibrating models than did other techniques that relied

more heavily on extrapolating spatial patterns. Some

models developed a ‘demand module’ that estimated

the economic demand for particular agricultural prod-

uct and used that to determine the amount of land

needed to be converted (De Koning et al., 1999b). Simi-

larly, where a key aim is to maximize utility or mini-

mize costs, calibration techniques such as linear

programming have been used to derive model input

values that give rise to optimal solutions. This approach

was employed by Lusiana et al. (2012), who used an

agent-based, farm-level modelling where the main goal

was to maximize land returns.

Across all 48 models we reviewed, 19 were missing

at least one important piece of information required to

replicate the results. One of the most common issues

was the availability of the code used to generate the

model. Thirty of 48 models used available software that

could be used to replicate the construction and running

of the model IDRISI using Land change modeller or

GEOMOD (n = 5), DINAMICA (n = 8), LandSHIFT

(n = 2), CLUE/CLUE-S (n = 12), TerraME (n = 1), SITE

(n = 1) and FALLOW (n = 1), while others did not use

commercially or freely available software. These latter

models cannot be replicated as none made the source

code, or pseudo-code that would allow competent pro-

grammers to replicate the authors’ code, available.

Most SE Asia papers utilized CLUE/CLUE-S (8/13),

while the most commonly used software in the

Amazon was DINAMICA (7/32).

The difficulties of model validation

We found that 27 models validated a single year of pre-

dictions and in several of those models, the time period

used in the validation was the same as used to calibrate

the model, suggesting a degree of circularity in the

validations (Verburg et al., 2002; Soler et al., 2007;

Wassenaar et al., 2007; Lopez & Sierra, 2010; Maeda

et al., 2011; Lusiana et al., 2012), even when spatial par-

titioning the data for calibration and validation. It is

important that a clear distinction is made between cali-

bration and validation, preferably from different time

periods, in order for model results to be trusted

(Estoque & Murayama, 2012). Three of 48 models were

validated at two points in time (Soares-Filho et al., 2002;

Michalski et al., 2008; Carlson et al., 2012), two models

were validated at three points in time (Deadman et al.,

2004; Silvestrini et al., 2011), and one study validated

their predictions at four points (Evans et al., 2001).

Fifteen models did not clearly state a validation method

(Justice et al., 2001; Laurance et al., 2001; Ferraz et al.,

2005; Priess et al., 2007; Sarkar et al., 2009; Mena et al.,

2011; Zelazowski et al., 2011), used just visual compari-

son (Moreira et al., 2009; Mann et al., 2010), argued that

the modelling approach had been validated elsewhere

(Dale et al., 1994; De Koning et al., 1999a; Soares-Filho

et al., 2004, 2006; Nepstad et al., 2009), or cited lack of

data availability (Verburg et al., 2006) (Table S1).

It is self-obviously problematic to validate predic-

tions for a future that has not yet happened and this

certainly contributes to the issues raised above. One

solution that is available is to spatially partition data,

using one subset of the data to calibrate the model and

the other to validate the model. Another solution that is

available in some, but not all, cases is to employ back-

ward validation, which involves running a model in

‘reverse’ to predict historical rather than future land-

use patterns. For instance, De Koning et al. (1999b)

modelled deforestation in Ecuador from 1991 to 2010

and validated their model by using it to backcast tropi-

cal LULC changes from 1991 to 1974. This allowed

them to validate their model against an extensive land-

use dataset based on an agricultural census carried out

in that year. They found a strong positive correlation

between their model predictions and observed tropical

LULC patterns with correlation coefficients varying

between 0.71 and 0.96.

Availability of model predictions

Of 48 published models, we were able to collect 25 pre-

dicted data sets either directly from the authors or via

downloadable content (Supporting Information – Avail-

ability of model predictions). This is suggestive of a

general lack of utility of tropical LULC models. Some of

the papers we reviewed are old and it could be

expected that it is more difficult to contact authors of,

and obtain model predictions from, older as opposed to

recent publications. This does not appear to be the

case, however, as we were able to obtain just 5 model
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predictions from the 12 papers published post-2010.

Furthermore, there was no significant effect of year of

publication on our ability to obtain the model predic-

tions (binomial regression; z = �0.03, df = 26, P = 0.97).

Quantitative assessment of model performance

We focus our quantitative assessment on models con-

ducted in the Brazilian Amazon for which we were able

to obtain independent deforestation data (INPE, 2012)

against which to validate the model predictions. We

recognize two important caveats that must be associ-

ated with this analysis: (1) such a tight geographical

restriction applies arbitrary limits to the wider general-

ity of our conclusions; and (2) our analysis focuses on

authors and models who have made their model pre-

dictions freely available, pointing a potentially unfair

spotlight on authors that we believe are making impor-

tant contributions to the transparency and utility of the

discipline.

There were three papers that contributed models that

we were able to submit to our validation exercise (out

of 21 models from the Brazilian Amazon), two of which

comprised a complete time series of model predictions

(Soares-Filho et al., 2006; Yanai et al., 2012), whereas the

other comprised a single map of predicted tropical

LULC at the end of the model prediction period

(Wassenaar et al., 2007). Different model scenarios, such

as the Business as Usual and Governance scenarios of

Soares-Filho et al. (2006), and the Baseline, with leakage

and with reduced leakage scenarios of Yanai et al.

(2012) were treated as separate models in our valida-

tions, giving a total of five models. We hasten to add

that were able to obtain predicted outputs from an

additional 4 of the 21 models in the Brazilian Amazon,

but the predicted maps were available only for a time

that has not yet occurred and so could not be included

in this analysis (e.g. we cannot yet validate predictions

made for the year 2020).

When assessed year-by-year (annually), model match

was very low for all models (0–3%; Fig. 4a and Table

S2). Cumulative match, which compares the accumu-

lated deforestation patterns from the start of the model

until a given time point in the future (2003–2010), was

also low but increased as model duration extended,

reaching 1–10% by 2010 (Fig. 4b). Errors of commission

also tended to increase through time, both on annual

and cumulative comparisons (Fig. 4a and b, respec-

tively), whereas omission errors decreased through

time for both annual cumulative comparisons (Fig. 4a

and b). All models had similar proportions of match,

but there were large differences in the errors of omis-

sion and commission, both in terms of error rates

through time (Fig. 4b) and the spatial distribution of

those errors (Fig. S3–S5). For example, the Wassenaar

et al. (2007) model tended to have higher omission

errors in the eastern Amazon and higher commission

errors in the south (Fig. S3), whereas the Soares-Filho

et al. (2006) models had highest commission errors in

the north and relatively evenly distributed omission

and commission errors along the Arc of Deforestation

(Fig. S4 and S5).

For all models, annual predictions still had very low

match rates at the smallest buffer size (1 pixel), but

cumulative model predictions performed better, reach-

ing 32%, 33% and 42% matches (Table S2). Unsurpris-

ingly, model predictions improved with increasing

buffer size, with nearly 100% of all deforestation events

falling within 50 pixels of model. For the two papers

that presented alternative scenarios, the scenario

that predicted higher overall rates of deforestation

invariably had higher levels of match, indicating

that overpredicting deforestation rates, and simulta-

neously ignoring patterns of omission and commission

errors may generate misleading estimates of model

accuracy.

Discussion

Our quantitative review of the tropical deforestation

modelling literature has demonstrated several short-

falls in the discipline that can be strengthened in the

future, uncovering three key points that we believe

need addressing to improve the transparency, reliabil-

ity and utility of tropical LULC change models. First, it

was sometimes difficult to understand the construction

of models and the variables used in the modelling pro-

cess. Second, there were few attempts to assess the

accuracy of models through rigorous and multi-year

validation. Third, it was difficult to obtain the outputs

of many models, meaning the difficult work put in by

tropical LULC modellers to predict future forest pat-

terns is often not available as an input for researchers

in other disciplines.

Appropriate scales are process-specific

There is no optimal scale (resolution/cell size, extent/

study area) over which to model tropical LULC change;

each scale allows different insights into the processes

and outcomes of tropical LULC change (Walsh et al.,

1999; Rindfuss et al., 2004, 2008). It has been suggested

that multi-scale studies provide complementary

insights required for effective environmental manage-

ment (Verburg & Veldkamp, 2004; Verburg et al., 2006).

However, the spatial scale applied in modelling is often

a limitation imposed by available data and computa-

tional power rather than research choice; this can
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inevitably influence the applicability of the model

results (Verburg & Veldkamp, 2004). Working at any

particular scale has strengths and weaknesses. For

example, farm-level models can simulate farmers’ deci-

sions and reactions to market variations such as changes

in commodity prices. However, these models are usu-

ally site-specific, making it very difficult to generalize

them to larger areas or other tropical regions. Larger

scale models, on the other hand, tend to use aggregated

data which often average variability across the region

modelled and therefore lose detail when interpreted at

fine spatial scales (Mertens & Lambin, 1997).

The biggest weakness in model formulation?

Road maps and distance to roads were the most com-

monly used inputs for tropical LULC change model-

ling. Despite knowing that road networks in the tropics

are highly dynamic (Brand~ao & Souza, 2006; Laporte

et al., 2007), with almost 17 000 km of new roads

(a) (b)

(c) (d)

Fig. 4 Pixel-by-pixel comparisons between observed deforestation and predictions made (a) annually and (b) cumulatively by Soares-

Filho et al. (2006) at 1 9 1 km grid cells, from both governance (GOV) and business-as-usual scenarios between 2003 and 2010, and by

Yanai et al. (2012) for 2009 and 2010 at 250 m grid cells for the baseline, with leakage and with reduced leakage scenarios. Proportion of

observed deforestation within four distance classes (1, 5, 10 and 50 pixels) of predicted deforestation, calculated (c) annually and (d)

cumulatively. In addition, (b) and (d) show comparisons between observed deforestation and predictions made by Wassenaar et al.

(2007) (5 km pixel size).
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constructed each year in the Brazilian Amazon alone

(Ahmed et al., 2013b), most models treated road net-

works as a static pattern. Roads are the key spatial

determinant of deforestation patterns (Forman & Alex-

ander, 1998; Fearnside, 2005; Finer et al., 2008), deter-

mining the accessibility of land and cost of

transportation which in turn determines the viability of

land-use change in a given area. We suggest the reason

for treating roads as a static phenomenon is that model-

ling the expansion of road networks is itself a formida-

ble challenge, and one that has been identified as a key

weakness in our ability to predict tropical LULC

change in the Amazon (Barlow et al. 2011, Supporting

Information – Modelling road expansion).

Certainly, there are several modelling frameworks

available to predict the development of road networks

and that were used in the tropical LULC models

included in our review (Messina & Walsh, 2001; Soares-

Filho et al., 2004, 2006; Lapola et al., 2010), but we were

unable to find any peer-reviewed presentation of these

particular road models, nor any numerical validations

of the road model predictions. While it is clearly desir-

able to have a dynamic road model integrated with

deforestation models, it is not so clear that an untested

road model represents an improvement over the use of

static road networks alone. There are road modelling

approaches that have been validated (Arima et al.,

2005, 2008; Ahmed et al., 2013a; Walker et al., 2013),

and we expect that the future of tropical LULC change

modelling will begin to incorporate such advances.

How certain are we about tropical LULC model
predictions?

Although we recognize that the choice of number of

years to validate model predictions is, in almost all situ-

ations, limited by the data available, we suggest that

the relatively limited amounts of rigorous model vali-

dation in the literature places bounds on the degree to

which tropical LULC model predictions can be consid-

ered reliable. We found three of the most recent models

developed in SE Asia utilized the most recent valida-

tion methods put forward by Pontius & Millones (2011)

of any of the papers in our review (Estoque & Muray-

ama, 2012; Lusiana et al., 2012; Memarian et al., 2012).

All three of these models were published in 2012,

among the most recent models we reviewed and per-

haps indicating a positive trend towards more rigorous

model validation. There are many methods available to

validate tropical LULC models; for example, Pontius

et al. (2008) and Pontius & Millones (2011) presented

logical frameworks for validating model predictions.

Choosing among the options is, however, a difficult

task, partly because the basic question of ‘what is a

good fit’ for tropical LULC change models is a difficult

one to answer (Messina & Walsh, 2001; Messina et al.,

2008) (Supporting Information – The difficulties of

model validation).

We found remarkably low rates of prediction accu-

racy from the three Brazilian tropical LULC models we

were able to test ourselves, and this was particularly

true of year-by-year predictions. However, because our

analysis was arbitrarily confined to a small number of

models from just one tropical region, we have no way

of determining if the rates of model success we quanti-

fied are typical of the field as a whole. When accumu-

lated over longer time periods, model accuracy

invariably improved, suggesting that over long time

frames, it is possible to predict the spatial patterns of

tropical LULC change with reasonable certainty.

Despite the extensive literature detailing the impor-

tance of uncertainty and sensitivity of models (Pontius

& Batchu, 2003; Pontius et al., 2003, 2006; Ligmann-Zie-

linska & Sun, 2010; Pontius & Petrova, 2010), it was sur-

prising that few of the models we reviewed presented

any estimate of uncertainty around their model predic-

tions. Uncertainty estimates can be achieved by devel-

oping and modelling alternative scenarios (Soares-Filho

et al., 2006; Overmars et al., 2007; Priess et al., 2007;

Moreira et al., 2009), or by using the statistical errors

quantified during model calibration to estimate proba-

bilities of tropical LULC change (Carlson et al., 2012;

Rosa et al., 2013; Verburg et al., 2013). Across the mod-

els we reviewed, the most common approach to quanti-

fying uncertainty was to present competing scenarios

of tropical LULC change, thereby providing bounds on

the likely patterns of tropical LULC under different

possible futures. Scenarios are the only method

available to handle uncertainty about certain types of

one-off events (Soler et al., 2007), such as unpredictable

policy decisions.

Apart from scenarios, there remain additional oppor-

tunities to quantify the uncertainty surrounding model

predictions under a given set of assumptions, based

primarily on methods that propagate the statistical

errors quantified during model calibration. Few of the

models in our review incorporated stochastic elements

that allowed for the uncertainty to be directly quanti-

fied but these techniques for quantifying uncertainty

have only recently been developed and applied to

LULC models in the tropics or elsewhere (Van Asselen

& Verburg, 2012; Rosa et al., 2013), explaining why they

are not more widely applied.

In the absence of data against which to validate

model predictions, we strongly recommend authors

attempt to quantify the uncertainty associated with

their model predictions, thereby providing readers and

users with an indication of the reliability of model
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predictions. We anticipate that making the quantifica-

tion of uncertainty, either in the form of scenarios or

propagation of statistical uncertainty, a common prac-

tice will represent an important step for the tropical

LULC modelling discipline.

How transparent are tropical LULC models?

We were unable to obtain the information required to

replicate authors’ results for nearly half of the pub-

lished tropical LULC models we reviewed. We believe

that this is important: the requirement to describe

methods in enough detail to allow them to be replicated

forms a basic tenet in many sciences and there is no rea-

son why the discipline of tropical LULC modelling

should be any different. We suggest that this highlights

a considerable shortcoming of the tropical LULC

change field, but it is one for which there are relatively

straightforward solutions available.

The fact that program codes developed to run tropi-

cal LULC change models were often not available does

not mean that all models are not repeatable, as many

used freely or commercially available software that

could be used to reconstruct the published models. For

bespoke models, it is obviously a very challenging exer-

cise to provide source code that is documented in the

detail required for others to replicate, but that argu-

ment does not apply to presenting pseudo-code, which

represents a reasonable short-cut to making code avail-

able to others.

Having access to source code or the software used by

authors to construct their models does not guarantee an

ability to replicate analyses, because a sizeable number

of papers did not provide adequate details about their

model inputs, again preventing others from replicating

their results. We believe that presenting a full list of the

data used in a tropical LULC model should be a basic

requirement that is enforced through the peer review

process, but even when presented, there are important

metadata required to fully interpret the data. There are

frameworks available for describing detailed metadata

to associate all data inputs that could accompany data

generated by the authors themselves (e.g. http://www.

v-c-s.org/methodologies/VM0015), and this would

represent best practice. However, many authors do not

themselves generate the primary data used in their

models, and the responsibility for generating such

metadata should most appropriately lie with those who

create the data and make it available for wider use.

The future of tropical LULC change modelling

Tropical LULC change models have been prominent

in the literature for many years, but our review has

uncovered three key points that need attention to

improve the transparency, reliability and utility of

tropical LULC change models applied in the tropics.

These three issues have been raised individually in the

past by various authors, and by drawing them

together here we hope to stimulate improvements to

the discipline. First, we have identified a lack of open-

ness with regard to presenting and making available

the model inputs, model code and model outputs that

prevents the community from fully understanding and

rigorously comparing models (Grimm et al., 2006). Sec-

ond, there are considerable difficulties involved in val-

idating model outputs, and indeed a lack of consensus

on the appropriate techniques (Verburg & Veldkamp,

2005; Messina et al., 2008). Third, there is no standard-

ized model framework that can be used as a basis for

comparing tropical LULC models and generating

multi-model inference (Grimm et al., 2006; Messina

et al., 2008).

We suggest that the rise of climate change models

provide a pathway that tropical LULC change model-

lers may emulate to improve the discipline. While we

recognize tropical LULC modelling approaches in the

tropics differ substantially from each other (and cer-

tainly exhibit more model-to-model variation than the

modelling approaches used in predicting climate

change), the key aim of predicting tropical LULC

change is the same regardless of the approach taken

(i.e. to predict the future of the landscape), thus model

outputs should be made available for people to use and

to compare. We certainly do not advocate a move

towards producing a unified methodology where every

model uses the same code and approach, recognizing

that there is strength in having a diversity of

approaches. However, we do believe that to harness

that strength, we need to be able to overlap the spatial

predictions of all models, weight those predictions by

either the validation errors or the quantified uncer-

tainty of the models that generated them, and thereby

gain informative among-model comparisons and

provide a basis from which to make predictions based

on model averaging.

Climate change modelling exists in what is likely to

prove a simplified context relative to tropical LULC

change, but has made considerable progress towards

solving some of the aforementioned problems that

may have instructive value for our discipline. The

World Climate Research Programme’s (WCRP’s) Cou-

pled Model Intercomparison Project (CMIP3) set up an

archive (WCRP CMIP3 Multi-Model Dataset) to pro-

vide IPCC model outputs in a standardized format

(WCRP, 2012). Similarly, the discipline standard and

requirement of most journals covering the field of

Genomics, Transcriptomics and Proteomics, research
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have to register sequence data in an online repository

or as supplementary material (e.g. GenBank). This

transparency of data has allowed greater progress and

has been recognized as aiding ‘one of the greatest sci-

entific revolutions of the last century’ (Reichman et al.,

2011). Furthermore, evidence suggests that papers

with available data are cited more often when com-

pared with papers that do not make data available

(Reichman et al., 2011). In the context of tropical LULC

models, the most important data are the predictions

themselves, as they can form an important base for

other purposes such as predicting future patterns of

extinction risk (Hubbell et al., 2008; Feeley & Silman,

2009; Bird et al., 2012; Wearn et al., 2012) or feeding

into climate models via vegetation-atmosphere feed-

backs (Feddema et al., 2005; Zaehle et al., 2007; Moss

et al., 2010). With the increasing support for open data

from governments (e.g. UK government, http://data.

gov.uk/; and The National Science Foundation,

http://www.nsf.gov/news/news_summ.jsp?cntn_id=

127043), funding bodies and scientists (Reichman et al.,

2011; Costello et al., 2013), we should expect tropical

LULC model outputs to become more widely available

in the future.

Since the early 1990s, atmospheric climate modellers

adopted a standard protocol for GCMs (General Circu-

lation Models) (Gates, 1992). The protocol provided a

framework for model diagnosis, validation and inter-

comparison (Tebaldi & Knutti, 2007), and has since

been used widely. The field of tropical LULC change

modelling would benefit from a similar framework,

and particularly so to ensure a progressive raising of

the standards with respect to model validation. Agent-

based modelling has made headway towards this with

the Overview, Design concepts and Details (ODD)

framework (Grimm et al., 2006), the MR POTATOE-

HEAD framework (Parker et al., 2008) and work done

by Polhill & Gotts (2009). Another recent attempt to

standardize the presentation and documentation of

tropical LULC models used in REDD projects was pro-

posed by the Voluntary Carbon Standards (http://

www.v-c-s.org/methodologies/VM0015), so there are

avenues open to the discipline for increasing the trans-

parency of tropical LULC models.

One advantage to be gained from improved model

documentation and availability of model predictions is

that they allow the analysis of multi-model ensembles,

which are now commonly used in climate modelling

and form important components of reports from the

IPCC. Similar approaches have been developed for spe-

cies distribution models (Diniz-Filho et al., 2009, 2010)

on the back of pre-emptive calls for such approaches

(Ara�ujo & New, 2007) and aided by quantitative model

comparison exercises such as those conducted by Elith

et al. (2006). Combining models in an ensemble

increases the reliability and consistency of predictions

(Tebaldi & Knutti, 2007), and this approach has found

utility in other disciplines such as public health (Thom-

son et al., 2006) and agriculture (Cantelaube & Terres,

2005). Disparities among tropical LULC models applied

in the tropics, in terms of scale, resolution, model type

and model inputs, combined with a more basic failure

to make model predictions available, currently prevents

such methods from being applied to questions of tropi-

cal LULC change.

Climate change models have exerted considerable

influence over public perceptions of climate change

and now impact policy decisions at all political levels.

It is clear that LULC models have an equally high

potential to influence public opinion and impact the

development of land-use policies based on plausible

future scenarios. This has already been demonstrated

in European contexts (Verburg et al., 2008), but to

obtain that impact more widely, and to further improve

the confidence with which tropical LULC models can

be used to impact policy, requires changes to the stan-

dard practice that is currently prevalent in the disci-

pline, as revealed by our quantitative review. We found

that it was often difficult to understand how models

were constructed, that there were few attempts to

assess the accuracy or quantify the statistical uncer-

tainty of models, that model accuracy was surprisingly

low when independently validated, and that it was

often difficult to obtain the outputs of models. We sug-

gest that further improvements to the transparency of

tropical LULC models, increasing the frequency with

which uncertainty in such models is quantified and

making model predictions more widely available

would greatly increase the utility of tropical LULC

models, and will be a necessary step towards generat-

ing scenarios that can be confidently used to influence

environmental policy.
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