
Blizzard: Fast, Cloud-scale Block Storage for Cloud-oblivious
Applications

James Mickens, Edmund B. Nightingale, Jeremy Elson, Krishna Nareddy, Darren Gehring
Microsoft Research

Bin Fan∗

Carnegie Mellon University
Asim Kadav†, Vijay Chidambaram‡

University of Wisconsin-Madison

Osama Khan§

Johns Hopkins University

Abstract
Blizzard is a high-performance block store that ex-

poses cloud storage to cloud-oblivious POSIX and
Win32 applications. Blizzard connects clients and
servers using a network with full-bisection bandwidth,
allowing clients to access any remote disk as fast as if
it were local. Using a novel striping scheme, Blizzard
exposes high disk parallelism to both sequential and ran-
dom workloads; also, by decoupling the durability and
ordering requirements expressed by flush requests, Bliz-
zard can commit writes out-of-order, providing high per-
formance and crash consistency to applications that issue
many small, random IOs. Blizzard’s virtual disk drive,
which clients mount like a normal physical one, provides
maximum throughputs of 1200 MB/s, and can improve
the performance of unmodified, cloud-oblivious appli-
cations by 2x–10x. Compared to EBS, a commercially
available, state-of-the-art virtual drive for cloud appli-
cations, Blizzard can improve SQL server IOp rates by
seven-fold while still providing crash consistency.

1 Introduction
As enterprises leverage cloud storage to process big-data
workloads, there is increasing pressure to migrate tra-
ditional desktop and server applications to the cloud as
well. However, migrating POSIX/Win32 applications to
the cloud has historically required users to select from
a variety of unattractive options. Databases like MySQL
and email servers like Exchange can be trivially migrated
to the cloud by running the server binaries inside of VMs
that reside on cloud servers. Unfortunately, the storage

∗Work completed as a Microsoft intern; now at Google.
†Work completed as a Microsoft intern; now at NEC Labs.
‡Work completed as a Microsoft intern.
§Work completed as a Microsoft intern; now at Twitter.

abstractions exposed to those VMs lack the high perfor-
mance and transparent scaling that are enjoyed by non-
POSIX applications written for scale-out cloud stores
like HDFS [6] and FDS [30]. For example, Azure and
EC2 provide virtual disks that are backed by remote stor-
age and that unmodified POSIX/Win32 applications can
mount. However, each virtual drive only provides 50–
250 MB/s of throughput [1, 28]; in contrast, a raw cloud
store can provide more than a thousand MB/s to clients.

Datacenter operators provide “cloud-optimized” ver-
sions of a few popular applications like SQL and Ac-
tiveDirectory [3, 4, 15, 26, 27], implicitly acknowledg-
ing the difficulty of extracting cloud-scale performance
from unmodified POSIX1 applications. These cloud-
optimized programs directly interface with the network
storage using raw cloud APIs. This strategy provides
higher performance than a naı̈ve VM port, but such
cloud-optimized applications offer fewer customization
options than traditional POSIX/Win32 versions, making
it difficult for users to tweak performance for individ-
ual workloads. More importantly, for the long tail of
the application distribution, there are no pre-built, cloud-
optimized versions. Large or technologically savvy com-
panies may have the resources to write cloud-optimized
versions of their applications, but for safety reasons, da-
tacenter operators do not provide external developers
with full access to the raw cloud APIs that are needed
to maximize performance. Even if customers had such
access, many customers would prefer to simply deploy
their standard binaries to the cloud and automatically re-
ceive fast, scalable IO.

Unfortunately, desktop and server applications have
significantly different IO patterns than traditional cloud-

1For conciseness, we use “POSIX” to mean “POSIX/Win32” in the
rest of this paper.

scale applications. A typical MapReduce-style work-
load issues large, sequential IOs, but POSIX applications
issue small, random IOs that are typically 32–128 KB
in size [25, 41]. POSIX applications also require finer-
grained consistency than many big-data workloads. For
an application like an Internet-scale web crawl, append-
at-least-once semantics [14] are often reasonable, and
losing MBs of append-only data may be an acceptable
risk for higher throughput; in contrast, for a POSIX
database, compiler, or email server that is randomly ac-
cessing small blocks, the loss or duplication of just a
few adversarially-chosen blocks can result in metadata
inconsistencies and catastrophic data loss. To enforce
fine-grained consistency, POSIX applications use disk
flushes to order writes [8, 33, 39], but these flushes intro-
duce write barriers. In the context of cloud storage, these
barriers make it difficult for POSIX applications to issue
large numbers of parallel writes to remote cloud disks.
Lower disk parallelism leads to lower performance.

In this paper, we introduce Blizzard, a high-
performance block store that exposes unmodified, cloud-
oblivious applications to fast, scalable cloud storage.
From the perspective of a client application, Blizzard’s
virtual disk looks like a standard SATA drive. How-
ever, Blizzard translates block reads and writes to par-
allel IOs on remote cloud disks, transparently handling
the removal, addition, or failure of those remote disks.

Blizzard is not the first system to propose a virtual disk
backed by remote storage [2,11,24]. However, Blizzard’s
virtual drive has several unique characteristics:

Locality-oblivious, full-bisection bandwidth block
access: Blizzard is built atop a CLOS network with
no oversubscription [17], i.e., arbitrary client/server
pairs can exchange data at full NIC speeds without
inducing network congestion. Blizzard also pairs
each server disk with enough network bandwidth
to read and write that disk at full sequential speed.
These properties mean that clients can stripe their data
across arbitrary remote disks in a locality-oblivious
manner. This simplifies Blizzard’s striping algorithm
and permits very aggressive sharding (which results
in better performance, since spreading data over more
disks increases IO parallelism).

Nested striping: POSIX applications typically issue
small, random IOs, but even when their IOs are large,
client file systems often break such large operations
into smaller pieces. A naı̈ve stripe of a virtual drive
across remote disks will cause IOp convoy dilation—
as the small requests belonging to a single large
operation travel from the client to a remote disk, the
inter-request spacing will increase due to network
jitter and scheduling vagaries on the client and the

server. The longer the dilation, the less likely that
the remote disk can use a single seek to handle all
of the adjacent disk requests in the convoy. Blizzard
uses a novel striping scheme called nested striping
which avoids these problems. Nested striping ensures
that convoy blocks are spread across multiple disks
in parallel. This amortizes the seek costs for the
individual blocks, and globally acts to prevent disk
hotspots.

Fast flushes with prefix write commits: POSIX ap-
plications use disk flushes to order writes and provide
crash consistency. However, such flushes restrict IO
parallelism, and massive IO parallelism is the primary
technique that clients must leverage to unlock cloud-
scale IO performance. When Blizzard’s virtual disk
receives a flush request, it immediately acknowledges
the flush to the client application, even though Bliz-
zard has not made writes from that flush epoch durable.
Asynchronously, the virtual drive issues writes in a
way that respects prefix epoch semantics. If the client
or the virtual disk crashes, the disk will always re-
cover to a consistent state in which writes from differ-
ent flush epochs will never be intermingled—all writes
up to some epoch N − 1 will be durable; some writes
from epoch N may be durable; and all writes from
subsequent epochs are lost. Blizzard’s asynchronous
writes lengthen the window for potential data loss,
but they permits much higher levels of write perfor-
mance. This approach also reduces the penalty for N-
way data replication, since acknowledging a write no
longer proceeds at the pace of the slowest replica for
that write. Prior work has shown how prefix seman-
tics can be added to the ext4 file system [7], but Bliz-
zard shows how such semantics can be added at the
disk level, in a file-system agnostic manner, and in a
way that also provides high performance to applica-
tions that bypass the file system entirely and issue raw
disk IOs.

Blizzard has several additional features, like support for
disconnected operation2, and tunable levels of disk par-
allelism (§2.4).

We have built a Blizzard prototype consisting of
1,200 disks and 150 servers. Using this prototype,
we demonstrate that Blizzard can improve the perfor-
mance of unmodified IO-intensive applications by 2x–
10x. Importantly, our Blizzard prototype coexists along-
side our FDS [30] deployment, using the same servers,
disks, and networking equipment. FDS is optimized for
large, business-scale computations. Thus, using Bliz-
zard, cloud providers can leverage a single set of clus-
ter hardware for both big-data computations and POSIX

2Not discussed further due to space constraints.

applications, reducing hardware outlays while consoli-
dating administrative costs and providing fast, scalable
IO to both types of workloads. From the perspective of
developers, Blizzard allows POSIX applications to re-
ceive cloud-scale performance and availability without
requiring datacenter operators to expose their raw, un-
safe cloud APIs—instead, developers simply write ap-
plications under the assumption that (virtual) disk drives
are extremely fast.

2 Design
Blizzard has two high-level goals. First, it has to run
unmodified, cloud-oblivious POSIX applications on the
same cloud infrastructure used by traditional big-data ap-
plications. Second, it must provide those POSIX ap-
plications with the storage performance, scalability, and
availability that big-data programs receive. By “cloud-
level performance,” we mean that a single client should
be able to issue hundreds of MBs of IO requests every
second. By “cloud-level scalability and availability,” we
mean that client storage should transparently improve
as the cloud operator adds more remote disks or better
networking capacity. Also, administrative efforts that
help big-data applications should also improve unmod-
ified POSIX applications.

To satisfy these design goals, Blizzard must efficiently
handle two aspects of POSIX workloads:

• POSIX applications typically generate small,
random IOs between 32 KB and 128 KB in
size [25,41]. To offer high performance to such
seek-bound workloads, Blizzard needs to ex-
pose applications to massive disk parallelism.
This allows applications to issue multiple op-
erations simultaneously and overlap the seek
costs.

• POSIX applications use the fsync() system
call to control the ordering and durability of
writes, ensuring consistency after crashes [7,
8, 33, 39]. An fsync() call generates a disk
flush, and the disk flush acts as a write bar-
rier, preventing writes issued after the flush
from completing before all previous writes are
durable. These write barriers limit disk par-
allelism, which results in poor performance.
Thus, Blizzard needs to handle fsync() calls
in a way that preserves notions of write order-
ing, but does not require clients to wait for syn-
chronous disk events before issuing new writes.

In Section 2.3, we describe how Blizzard leverages full-
bisection bandwidth networks to aggressively stripe each
client’s data across a large number of disks. In the ab-
sence of flush requests, this scheme would suffice to
provide clients with massive disk parallelism. How-
ever, POSIX applications commonly issue flush requests.

Thus, as described in Section 2.5, Blizzard uses even-
tual durability semantics [7] to remove synchronous disk
operations from the flush path. When a client issues a
flush, Blizzard records ordering information about pend-
ing writes; then, Blizzard immediately acknowledges the
flush request. Asynchronously, Blizzard writes data to
remote disks in a way that respects the client’s order-
ing constraints, and allows the client to recover a consis-
tent view after a crash. In the extreme, Blizzard can is-
sue writes from multiple flush periods completely out-of-
order (§2.5.3), removing all synchronization constraints
involving writes, but still preserving consistency.

2.1 Blizzard’s Storage Abstraction
Frameworks like pNFS [38] and BlueSky [42] expose
cloud storage to cloud-oblivious applications by trans-
lating (say) NFS operations into operations on cloud
disks. However, these systems lock applications into a
particular set of file semantics which will not be appro-
priate for all applications. For example, some applica-
tions desire NFS’s close-to-open consistency semantics,
but other applications require POSIX-style consistency
in which a newly written block is immediately visible
to readers of the enclosing file [20]. Since all file sys-
tems eventually issue reads and writes to a block device
(and since some applications issue raw disk commands),
we decided to implement Blizzard as a virtual block de-
vice which stripes data across remote disks. This allowed
us to support heterogeneous POSIX and Win32 file sys-
tems like ext3 and NTFS; it also allowed us to expose
fast storage to applications like databases that issue raw
block-level IOs.

2.2 The Low-level Storage Substrate
Blizzard stripes each virtual drive across several remote
physical disks. As the striping factor increases, the
virtual drive benefits from greater spindle parallelism
(and thus higher IO performance). However, a tradi-
tional oversubscribed network constrains how aggres-
sively Blizzard can stripe. In an oversubscribed net-
work, the available cross-rack bandwidth is lower than
the available intra-rack bandwidth; thus, for a system
with medium-to-high utilization, clients access rack-
local disks faster than they access disks in external racks.
If Blizzard restricted each virtual drive to use rack-local
disks, this would limit spindle parallelism, constrain the
total capacity of the virtual drive, and makes job allo-
cation more difficult, since a single job could not har-
ness idle disks spread across multiple racks. However, if
Blizzard allowed a virtual disk to span racks, contention
in the oversubscribed cross-rack links would prevent the
client from fully utilizing rack-external disks.

To avoid this dilemma, Blizzard uses Flat Datacenter
Storage (FDS) as its low-level storage substrate [30].

Bytes in Virtual Disk

…

 Segment1 (2 tracts)

…

 Tract1 on Disk X Tract2 on Disk Y

Figure 1: An example of nested striping with a segment
size of 2. Virtual disk blocks are striped across tracks,
and tracks are scattered across disks.

FDS is a datacenter-scale blob store that connects all
clients and disks using a network with full-bisection
bandwidth, i.e., no oversubscription [17]. FDS also pro-
visions each storage server with enough network band-
width to match its aggregate disk bandwidth. For exam-
ple, a single physical disk has roughly 128 MB/s of max-
imum sequential access speed. 128 MB/s is 1 Gbps, so if
a storage server has ten disks, FDS provisions that server
with a 10 Gbps NIC; if the server has 20 disks, it receives
two 10 Gbps NICs. The resulting storage substrate pro-
vides a locality-oblivious storage layer—any client can
access any remote disk at maximum disk speeds3.

A Blizzard virtual disk is backed by a single FDS blob
(although Blizzard does not use a linear mapping be-
tween a virtual disk address and the corresponding byte
in the FDS blob (§2.3 and §2.5)). FDS breaks each blob
into 8 MB segments called tracts, and uses these tracts
as the striping unit. Blizzard typically instructs FDS to
stripe a blob across 64 or 128 physical disks; optionally,
FDS performs N-way replication of each tract.

2.3 Data Placement
FDS provides Blizzard with some nice properties out-of-
the-box, and allows Blizzard to satisfy the design goal
of running on the same infrastructure that supports tradi-
tional big-data applications. However, FDS is optimized
for large, sequential IOs. In particular, FDS divides each
FDS blob into a series of large tracts. A tract resides in a
contiguous location on a particular disk, but FDS scatters
a blob’s tracts across a large number of different disks.
Tracts are 8 MB in size, and FDS’s primary read/write in-
terface works at the granularity of tracks. POSIX IOs are
typically much smaller than 8 MB. Thus, we had to de-
vise a way for Blizzard’s virtual disk to map these small,
random IOs onto FDS tracts (which FDS would then map
to remote disks).

3This assumes that RTTs between clients and storage servers are
much smaller than a seek time. We explore the impact of network
latency in Section 4.6.

FDS natively supports a raw, low-level interface that
lets applications read and write data in chunks that are
smaller than a tract. This interface allows applications
to process small pieces of tract metadata without having
to read or write entire 8 MB tracts. Our first prototype
of Blizzard’s virtual disk used this interface, and a very
simple block mapping, to translate virtual disk addresses
to tract-level offsets. In this initial prototype, the virtual
disk split its linear address space into contiguous, tract-
sized chunks, and assigned each chunk to a separate FDS
tract. A virtual disk IO with offset byteOffset would go
to tract byteOffset/TRACT SIZE BYTES. This mapping
was straightforward, but it led to disappointing perfor-
mance. A convoy of sequential IOs often hit the same
tract (and thus the same remote disk), eliminating oppor-
tunities for disk parallelism. Even worse, sequential con-
voys often experienced dilation. Even if the client used
a tight loop to issue writes to adjacent offsets, the tem-
poral spacing between those operations often grew as the
operations traveled from client to remote disk. Client-
side scheduling jitter increased the spacing, as did ran-
dom network delays and scheduling jitter on the remote
server. Thus, a sequential convoy that initially had lit-
tle inter-request spacing at the client often arrived at the
remote hard disk with larger inter-request gaps. In many
cases, this prevented the remote disk from efficiently ser-
vicing the entire convoy with a single seek. Instead, the
convoy operations were handled with multiple seeks and
rotational delays, increasing the total IO latency for all
operations on that disk.

Given these observations, we designed a new mecha-
nism called nested striping that maps linear byte ranges
to FDS tracts. We define a segment as a logical group
of one or more tracts; a segment of N bytes contains
striped data for a linear byte range of N bytes. Fig-
ure 1 demonstrates nested striping when each segment
contains two tracts. Intuitively, increasing the segment
size allows Blizzard to provide greater disk parallelism
for sequential workloads. For example, a segment size of
one restricts sequential IOs to one disk. As shown in Fig-
ure 1, a segment size of two spreads sequential IOs across
two disks. Figure 1 also demonstrates why we call this
striping scheme “nested”: Blizzard stripes blocks across
FDS tracts, and FDS distributes the tracts in a blob across
many remote disks. By default, our Blizzard implemen-
tation uses a segment size of 128 tracts.

Experiments show that nested striping dramatically
decreases the impact of convoy dilation. Using a seg-
ment size of 128 provides over 1000 MB/s of sequential
read throughput (§4.1). In contrast, using a segment size
of one tract results in sequential read throughput of 222
MB/s.

2.4 Role-based Striping
Up to this point, we have assumed that Blizzard is de-
ployed in a shared, public cloud that is utilized by mul-
tiple customers. However, Blizzard can also be used in
private, enterprise-local clouds. Indeed, one deployment
model for Blizzard is a building-scale deployment—all
of the rooms in the building are connected via a full-
bisection bandwidth network, and all desktop and server
machines use Blizzard virtual drives to store and manip-
ulate data. Datacenters already deploy full-bisection net-
works at the scale of thousands of machines [17], so this
deployment model is technically feasible, and it would
allow an enterprise to consolidate storage and IT effort
for a particular building.

In such a building-scale deployment, different users
will have different performance needs. For exam-
ple, a programmer that runs large compilations re-
quires better storage performance than a receptionist who
mainly sends emails and performs word processing. For
building-wide Blizzard deployments, segment sizes offer
a convenient knob that administrators can use to control
the amount of disk parallelism that Blizzard exposes to
different users with different roles.

2.5 Write Semantics
Blizzard’s virtual disk provides three types of data con-
sistency: write-through commits, flush epoch commits
with fast acknowledgments, and out-of-order commits
with fast acknowledgments. We describe each approach
below. Note that, when we say that Blizzard “acknowl-
edges” an operation to a “client,” the client is either a
file system or an application that issues raw disk IOs. A
write request or a flush request is “acknowledged” when
that operation returns to the client.

2.5.1 Write-through

In this mode, Blizzard does not acknowledge a virtual
disk write until the associated FDS operation has become
durable on the relevant remote disk. This approach pro-
vides the smallest window of potential data loss if a crash
occurs. However, write-through consistency provides the
lowest performance, since a thread which issues a block-
ing write must wait for that write to become durable be-
fore issuing additional IOs.

2.5.2 Flush epoch commits with fast acks

Let a flush epoch be a period of time between two flush
requests from the client. Each flush epoch contains one
or more writes. A flush epoch is issued if all of its writes
have been sent to remote disks. The epoch is retired if
all of those writes have been reported as durable by the
remote disks.

Setup: Blizzard maintains a counter called
epochToIssue; this counter starts at 0 and repre-
sents which writes Blizzard can send to FDS. Blizzard
maintains another counter called currEpoch that also
starts at 0. This counter represents the total number
of flush requests that the client has issued. As ex-
plained below, currEpoch will often be greater than
epochToIssue.

Acknowledging writes: When Blizzard receives a write
request or a flush request, it immediately acknowledges
that operation, allowing the client to quickly issue more
IO requests. If the incoming operation was a flush,
Blizzard increments currEpoch by 1. If the operation
was a write, Blizzard tags the write with the currEpoch
value and places the write request in a queue that is
ordered by epoch tags.

Draining the write queue: Once a new write is en-
queued and acknowledged to the client, Blizzard tries
to issue enqueued writes to remote disks. Blizzard it-
erates from the front of the write queue to the end, i.e.,
from the oldest unretired epoch to the newest. If the cur-
rently examined write is from epochToIssue, Blizzard
dequeues the write and issues it immediately; otherwise,
Blizzard terminates the queue traversal. Later, when a
write from epoch N completes, Blizzard checks whether
epoch N has now retired. If so, Blizzard increments
epochToIssue and tries to release new writes from the
head of the write queue.

When Blizzard issues a write, it removes it from the
write queue. However, Blizzard keeps the write in a
separate cache until the write is durable. Meanwhile, if a
read arrives for the write’s byte range, Blizzard services
the read using the cached, fresh data, instead of issuing a
read to the underlying remote disk and possibly getting
old data.

Consistency semantics: In this consistency scheme,
Blizzard treats a flush as an ordering constraint, but not a
durability constraint; using the terminology of optimistic
crash consistency, Blizzard provides “eventual durabil-
ity” [7]. This means that Blizzard issues writes in a way
that respects flush-order durability, but a flush epoch may
retire at an arbitrarily long time after the flush was ac-
knowledged to the client. Indeed, the epoch may never
retire if the client crashes before it can issue the associ-
ated writes. However, the rebooted client is guaranteed
to see a consistent prefix of all writes that were acknowl-
edged as flushed; this suffices for many applications [9].

2.5.3 Out-of-order commits with fast acks

To maximize the rate at which writes are issued, Blizzard
defines a scheme that allows writes to be acknowledged

immediately and issued immediately, regardless of their
flush epoch. This means that writes may become durable
out-of-order. However, Blizzard enforces prefix consis-
tency using two mechanisms. First, Blizzard abandons
nested striping and uses a log structure to avoid updating
blocks in place; thus, if a particular write fails to become
durable, Blizzard can recover a consistent version of
the target virtual disk block. Second, even though
Blizzard issues each new write immediately, Blizzard
uses a deterministic permutation to determine which log
entry (i.e., which <tract,offset>) should receive the
write. To recover to a consistent state after a crash, the
client can start from the last checkpointed epoch and
permutation position, and roll the permutation forward,
examining log entries and determining the last epoch
which successfully retired.

Setup: Let there be V blocks in the virtual disk, where
each block is of equal size, a size that reflects the aver-
age IO size for the client (say, 64 KB or 128 KB). The V
virtual blocks are backed by P >V physical blocks in the
underlying FDS blob. Blizzard treats the physical blocks
as a log structure. Blizzard maintains a blockMap that
tracks the backing physical block for each virtual block.
Blizzard also maintains an allocationBitMap that in-
dicates which physical blocks are currently in use. When
the client issues a read to a virtual block, Blizzard con-
sults the blockMap to determine which physical block
contains the desired data. Handling writes is more com-
plicated, as explained below.

Blizzard maintains a counter called currEpoch;
this counter is incremented for each flush request, and
all writes are tagged with currEpoch. Blizzard also
maintains a counter called lastDurableEpoch which
represents the last epoch for which all writes are retired.

The virtual-to-physical translation: When Blizzard
initializes the virtual disk, it creates a deterministic per-
mutation of the physical blocks. This permutation repre-
sents the order in which Blizzard will update the log. For
example, if the permutation begins 18, 3,. . . , then the
first write, regardless of the virtual block target, would
go to physical block 18, and the second write, regardless
of the virtual block target, would go to physical block
3. Importantly, Blizzard can represent a permutation of
length P in O(1) space, not O(P) space. Using a linear
congruential generator [44], Blizzard only needs to store
three integer parameters (a, c, and m), and another inte-
ger representing the current position in the permutation.
As we will describe later, the serialized permutation will
go into the checkpoints that Blizzard creates.

Handling reads is simple: when the client wants
data from a particular virtual block, Blizzard uses the
blockMap to find which physical block contains that
data; Blizzard then fetches the data. Handling writes re-

quires more bookkeeping. When a write arrives, Bliz-
zard iteratively calls the deterministic permutation func-
tion, and immediately sends the write to the first physical
block that is not marked in the allocationBitMap as
used. However, once the write is issued, Blizzard does
not update the allocationBitMap or the blockMap—
those structures are reflected into checkpoints, so they
can only be updated in a way that respects prefix seman-
tics. So, after Blizzard issues the write, it places the write
in a queue. Blizzard uses the write queue to satisfy reads
to byte ranges with in-flight (but possibly non-durable)
writes. When a write becomes durable, Blizzard checks
whether, according to the permutation order, the write
was the oldest unretired write in lastDurableEpoch+1.
If so, Blizzard removes the relevant write queue entry,
and updates blockMap and allocationBitMap. Oth-
erwise, Blizzard waits for older writes to commit first.
Once all writes in the associated epoch are durable, Bliz-
zard increments lastDurableEpoch.

When Blizzard issues a write to FDS, it actually writes
an expanded block. This expanded block contains the
raw data from the virtual block, as well as the virtual
block id, the write’s epoch number, and a CRC over the
entire expanded block. As we explain below, Blizzard
will use this information during crash recovery.

If the client issues a write that is smaller than the size
of a virtual block, Blizzard must read the remaining parts
of the virtual block before calculating the CRC and then
writing the new expanded block. This read-before-write
penalty is similar to the one suffered by RAID arrays that
use parity bits. This penalty is suffered for small writes,
or for the bookends of a large write that straddles multi-
ple blocks. For optimal performance, Blizzard’s virtual
block size should match the expected IO size of the
client. For example, POSIX applications like databases
and email servers often have a configurable “page size”;
these applications try to issue reads and writes that are
integral multiples of the page size, so as to minimize disk
seeks. For these applications, Blizzard’s virtual block
size should be set to the application-level page size.
For other applications that 1) frequently generate writes
that are not an even multiple of Blizzard’s block size,
or 2) generate writes that are not aligned on Blizzard’s
block boundaries, Blizzard should be configured to use
write-through mode, or fast acknowledgment mode with
nested striping (§4.7).

Checkpointing: Periodically, the client checkpoints the
blockMap, the allocationBitMap, the four permuta-
tion parameters, lastDurableEpoch, and a CRC over
the preceding quantities. For a 500 GB virtual disk,
the checkpoint size is roughly 16 MB. Blizzard does
not update the checkpoint in place; instead, it reserves
enough space on the FDS blob for two checkpoints, and
alternates checkpoint writing between the two locations.

Blizzard Virtual Drive

wx(1)
 wy(1)

wy(0)

CRC
epoch:0
VID:y

wx(1)

CRC
epoch:1
VID:x

wy(1)

CRC
epoch:1
VID:y

wy(2)

CRC
epoch:2
VID:y

allocated
Not

wx(1) wy(2)

.. x y ..VID
flu

sh wy(2) Blizzard Cache

next write goes here

Physical log threaded across multiple remote disks

wy(0)

flu
sh

allocated
Not

1

1 2 3 4 5

6 7 7 8

5

3

Figure 2: An example of Blizzard’s log-based, out-of-
order commit scheme. Disks with thick borders contain
durable writes. See the main paper text for an explana-
tion of what happens at each time step.

Recovery: To recover from a crash, Blizzard loads the
two serialized checkpoints and initializes itself using
the checkpoint with the highest lastDurableEpoch
and a valid CRC. Blizzard then rolls forward from
the permutation position in the checkpoint, scanning
physical blocks in permutation order. Since Blizzard
issues log writes in epoch order, the recovery scan will
process writes in epoch order. If the allocationBitMap
says that the current physical block is in use, Blizzard
inspects the next physical block in the permutation. If
the allocationBitMap says that the current physical
block is not in use, Blizzard inspects the physical
block’s epoch number. If the number is less than
lastDurableEpoch, Blizzard terminates roll-forward.
If the CRCs from all of the physical block’s replicas
are inconsistent or do not match each other, Blizzard
terminates roll-forward. Otherwise, Blizzard updates
the allocationBitMap to mark the physical block as
used (and the old physical block for the virtual block as
unused); Blizzard also updates the relevant blockMap
entry to point to the physical block. Finally, Blizzard sets
lastDurableEpoch to the epoch value in the physical
block. The permutation position at which roll-forward
terminates will be the position to which Blizzard sends
the next write.

Example: Figure 2 provides an example of Blizzard’s
log-based, out-of-order commits. For simplicity, this ex-
ample uses the permutation generator (writeNumber %
logSize), such that physical log entries are scanned in
linear order, from left to right. At time (1), a write ar-
rives for virtual block Y. Blizzard issues the write to re-
mote storage immediately, and places the write in an in-
memory cache, so that reads for Y’s data can access the
fresh data without having to wait for the remote write to
finish. A flush request arrives at (2), which Blizzard ac-

knowledges immediately. The current flush epoch is now
1. At (3), writes to virtual blocks X and Y arrive. Blizzard
acknowledges those writes immediately, issuing them in
parallel to the next positions in the log, and updating the
write cache entries for blocks X and Y (in the latter case,
overwriting the old cache value for Y). At (4), another
flush arrives, and Blizzard increments the flush epoch to
2. At (5), another write arrives for Y, causing Blizzard
to issue a new write to the next position in the log, and
updating Y’s write cache value. At (6), the first write to
Y becomes durable on a remote disk, causing Blizzard to
update the blockMap entry for Y to point to that log entry.
At time (7), the write to X becomes durable, and Blizzard
updates the blockMap appropriately. However, at time
(7), the second write to Y has not committed. At time (7),
the client takes a checkpoint (note that the last permuta-
tion index that the client knows is durable is the second
log entry). At time (8), the client learns that the third
write to Y is durable. However, since the second write
to Y is not durable yet, the client does not change the
blockMap–thus, virtual block Y still points to the write
from epoch 0.

Suppose that the client crashes immediately after it
makes a checkpoint at (7). Further suppose that this
crash prevents the write to the third physical block from
becoming durable, e.g., because the client needed to
retry the write, but crashed before it could do so. After
the client reboots, it looks at the checkpoint and extracts
the last permutation index known to be durable (log
entry two). The client then rolls forward through the
log in permutation order. The client examines the third
physical log entry and sees that it is marked as unused by
the allocationBitMap. The client examines the entry’s
epoch number and CRC. Since the associated write
failed, one or both of those quantities will have invalid
values. At this point, the client stops the roll-forward.
Even though the write to the fourth log block completed,
that write is lost to the client. However, the client has
recovered to a prefix-consistent view of the virtual block
Y (and the rest of the disk).

IOp dilation: Even though log-based consistency does
not use nested striping, the linear congruential generator
produces striping patterns that “jump around” enough
to prevent convoy dilation. Adversarial write patterns
can still result in dilation, but such patterns are rare in
practice.

2.6 Application-perceived Consistency
In write-through mode, Blizzard minimizes application-
perceived data loss. Since all writes are synchronous and
go directly to remote disks, writes can only be lost if the
application transfers write data to the virtual drive, but

the drive or the client machine crashes before Blizzard
can write the data to the remote disks. Once Blizzard has
acknowledged a write operation to the client, the client
knows that the write data is durable.

For the fast acknowledgment schemes, Blizzard trades
higher performance for an increased possibility of data
loss. In these schemes, if a crashed client issued writes
belonging to flush epochs F0,F1, . . . ,FN , the client will
recover to a virtual disk which contains all writes from
epochs F0 . . .FR; some, all, or no writes from epoch FR+1;
and no writes from epochs FR+2 . . .FN . Denote these
three write segments as the preserved epochs, the ques-
tionable epoch, and the disavowed epochs, respectively.
With traditional flush semantics for a local physical disk,
there are no disavowed epochs—clients cannot issue new
writes across a flush barrier if prior writes are outstand-
ing, so, at worst, a client can lose some or all writes
from its last, questionable epoch. With Blizzard’s fast ac-
knowledgment schemes, N−R may be greater than zero,
i.e., there may be a questionable epoch and disavowed
epochs.

When operating in fast acknowledgment mode, Bliz-
zard can minimize data loss (i.e., N−R) by issuing writes
as quickly as possible; the log-based write scheme does
precisely this. However, for all three of Blizzard’s write
schemes, unmodified POSIX file systems and applica-
tions will always recover to a prefix-consistent version of
the Blizzard drive. Using fast acknowledgments, appli-
cations are more likely to share acknowledged (but cur-
rently non-durable) writes to external parties, meaning
that, if the application crashes, it may not be able to re-
cover those externalized writes from the Blizzard drive.
In practice, we do not believe that this is a problem,
since many users are willing to receive high performance
and crash consistency in exchange for potentially exter-
nalizing non-durable data [9]. Users that wish to never
externalize non-durable data can run Blizzard in write-
through mode.

2.7 Server-side Failure Recovery
Blizzard relies on FDS to recover failed tracts belonging
to a virtual drive. However, FDS clients are responsible
for retrying aborted writes caused by remote disk fail-
ures. Thus, if Blizzard detects that an FDS write was
unsuccessful, it must contact the FDS metadata server,
download the new mapping between tracts and remote
disks, and retry the write. If replication is enabled, Bliz-
zard also ensures that each write to a virtual block results
in R successful writes to the R replica disks.

2.8 Coexisting Workloads
Blizzard is built atop FDS, and both systems use a
shared physical infrastructure of servers, disks, and net-
work equipment. The network provides full-bisection

Read,Write,Flush

Kernel space

User space

FDS Cluster

Blizzard disk driver

FDS Library

Blizzard Client

NTFS driver

Virtual SATA
interface

ALPC shared
sections

Figure 3: A Blizzard virtual disk on Windows.

bandwidth, and FDS uses a request-to-send/clear-to-send
mechanism which ensures that senders cannot overrun
receivers [30]. Thus, neither Blizzard workloads nor
native FDS applications can induce network congestion
at the core or the edge. This lack of congestion does
not guarantee any notion of application-level “network
fairness,” so operators that desire such properties must
use client-side mechanisms like admission control or rate
limiting.

Both Blizzard and FDS use aggressive, randomized
striping across disks. As the aggregate client IO pres-
sure increases, service times at each disk degrade grace-
fully, since the workload is spread evenly across each
disk (§4.5). In principle, a single disk can store data
for both Blizzard applications and native FDS applica-
tions. In practice, we typically allocate a single disk to
either Blizzard or native FDS applications, but not both.
POSIX applications often require low-latency IO in ad-
dition to high throughput, so our allocation scheme pre-
vents small POSIX IOs from getting queued behind the
much larger IOs from big-data applications.

3 Implementation
Figure 3 shows the architecture for our Blizzard imple-
mentation on Windows. The virtual disk contains two
pieces: a kernel-mode SATA driver, and a user-mode
component which links to the FDS client library. File
systems (and applications which issue raw disk IO) send
IO request packets (IRPs) to the SATA driver. The driver
forwards these requests to the user-mode client, which
translates the requests into the appropriate FDS oper-
ations. For IRPs that correspond to reads and writes,
Blizzard issues reads or writes to the appropriate re-
mote disks. Once the client receives a response from a

remote disk, it hands the response to the kernel mode
driver, which then informs the requesting application that
the IRP has completed. To minimize the overhead of
exchanging data across the user-kernel boundary, Bliz-
zard uses Window’s Advanced Local Procedure Calls
(ALPC); ALPC provides zero-copy IPC using shared
memory pages.

To maximize performance, Blizzard uses asyn-
chronous interfaces to exchange data between the kernel
driver, the FDS client, and the FDS cluster. The user-
mode component of the virtual disk is multi-threaded,
and it maximizes throughput by handling multiple ker-
nel requests and FDS operations in parallel. Such high
levels of concurrency and asynchrony make it tricky to
preserve the prefix semantics discussed in Section 2.5.
In terms of wall-clock time, reads and writes arrive at
the user-mode component in the order that the kernel is-
sued them. However, the user-mode component handles
each read and write in a separate thread; lacking guid-
ance from the kernel, writes might issue to FDS in a
nondeterministic fashion, based on whichever user-mode
write threads happened to grab more CPU time. To al-
low the user-mode component to implement prefix se-
mantics, the kernel driver tags each write request with
its flush epoch, its sequence number within that epoch,
and the maximum sequence number for writes from the
previous epoch. This way, different user-mode threads
can use lightweight interlocked-increment operations on
integers to track the number of writes that have issued
for each epoch. Blizzard does eventually require heavy-
weight locking to add writes to the write queue (§2.5),
but this locking takes place in the latter part of the write
path, leaving the first part contention-free.

4 Evaluation
In this section, we use a variety of experiments to
demonstrate that Blizzard provides low-latency, high-
throughput IO to unmodified, cloud-oblivious applica-
tions. Unless stated otherwise, when we refer to “Bliz-
zard in fast acknowledgment mode,” we refer to the sec-
ond consistency scheme in Section 2.5, not the log-based
approach.

4.1 Microbenchmarks
Figure 4 depicts the raw performance of a Blizzard vir-
tual disk backed by 128 remote disks and using single
replication. To generate these results, we ran a cus-
tom client program that issued asynchronous, block-level
reads and writes to the virtual disk as quickly as possible.
Blizzard was configured in write-through mode, to iden-
tify the steady-state performance that Blizzard could pro-
vide to a completely IO-bound client. The results show
that, depending on the block size and the segment size,
Blizzard can provide throughputs of 700 MB/s for se-

0

200

400

600

800

1000

1200

32 KB 64 KB 128 KB 256 KB

Th
ro

u
gh

p
u

t
(M

B
/s

)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(a) Segment size: 1

0

200

400

600

800

1000

1200

32 KB 64 KB 128 KB 256 KB

Th
ro

u
gh

p
u

t
(M

B
/s

)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(b) Segment size: 64

0

200

400

600

800

1000

1200

32 KB 64 KB 128 KB 256 KB

Th
ro

u
gh

p
u

t
(M

B
/s

)

Block Size

Seq. Writes

Seq. Reads

Rand. Writes

Rand. Reads

(c) Segment size: 128

Figure 4: Throughput microbenchmarks.

quential writes, and over 1000 MB/s for sequential reads,
random reads, and random writes.

From the perspective of a client, increasing the seg-
ment size is roughly analogous to adding disks to a pri-
vate RAID-0 array—it increases the number of disks that
a client can access in parallel, improving both perfor-
mance and load balancing. As shown in Figure 4(a),
small segment sizes lead to poor sequential IO perfor-
mance due to convoy dilation effects (§2.3). However,
even for a segment size of one, Blizzard services random
IOs at 400 MB/s or faster. This is because, at any given
time, a random workload accesses more disks than a se-
quential workload, improving disk parallelism (and thus
aggregate throughput). In the rest of this section, unless
otherwise specified, all experiments use a segment size
of 128, and 128 backing disks.

Increasing the block size beyond 32 KB improves
performance, since disks can fetch more data per seek.
However, increasing the block size beyond 128 KB leads
to diminishing throughput returns.

Figure 5 compares Blizzard’s write latency under sev-
eral consistency settings and replication levels. For this
experiment, we intentionally included some old, slow

0

10

20

30

40

50

4 KB 64 KB 128 KB 1 MB

W
ri

te
 la

te
n

cy
 (

m
s)

8 threads

BlizzardWriteThrough-1rep
BlizzardWriteThrough-3reps
BlizzardFastACK-3reps

Figure 5: Write latency: Blizzard in write-through mode
(1 and 3 replicas) and Blizzard in fast acknowledgment
mode (3 replicas).

0

20

40

60

80

100

120

4 KB 64 KB 128 KB 1 MB

IO
p

 L
at

en
cy

 (
m

s)

16 Threads

Rd-EBS

Rd-BlizzardWriteThrough

Rd-BlizzardFastACK

Wr-EBS

Wr-BlizzardWriteThrough

Wr-BlizzardFastACK

Figure 6: IOp latency: EBS and Blizzard.

disks that we typically exclude from production work-
loads. Figure 5 shows that fast acknowledgments dra-
matically reduce the cost of data redundancy—despite
the presence of known-slow disks, the write latency of
triple replication with fast acknowledgments is 2x–5x
lower than the latency of single replication with write-
through semantics. Blizzard clients obviously cannot is-
sue an infinite number of low-latency IOs, since, at some
point, some resource (e.g., the network or a remote disk)
will become saturated. However, our results show that,
until that point is reached, Blizzard’s fast acknowledg-
ments provide very low-latency IOs.

4.2 Blizzard vs. EBS
In this section, we compare Blizzard’s virtual drive to
Amazon’s Elastic Block Store (EBS) drive. Our EBS
deployment used one Amazon EC2 instance (an EBS-
optimized m1.xlarge) which had 4 CPUs and 15 GB of
memory, and which ran 64-bit Windows 2008 R2 SP1
Datacenter Edition. The virtual EBS drive was backed
by 12 disks, each of which was provisioned for 100 IOps
and 10 GB of storage; we constructed a RAID-0 striped
volume as the backing storage for the EBS drive. The
disks and the EC2 instance were connected by a 1 Gbps
network connection. To provide a fair comparison to
Blizzard, we configured Blizzard’s virtual drive to use 12
backing disks, and we used FDS’s built-in rate-limiter to
restrict the Blizzard client to 1 Gbps of network band-

0

20

40

60

80

100

120

140

1 4 12 16

SQ
L

IO
s

p
e

r
se

co
n

d

Number of Threads

Bl-FastACK

Bl-WThroughBl-FastACK-wpf-20

EBS

Figure 7: SQL read and write IOs per second: EBS, Bliz-
zard in write-through mode, Blizzard in fast acknowledg-
ment mode, and Blizzard in fast acknowledgment mode
with forced epochs every 20 writes. Each pair of circled
lines represents the read and write speeds for a particular
configuration.

width. The Blizzard client had 4 CPUs and 12 GB of
RAM, similar to the EBS client.

Using a multithreaded synthetic load generator, we
tested IO latency in EBS, Blizzard in write-through
mode, and Blizzard with fast acknowledgments enabled.
Since the load generator did not generate flush requests,
the latter Blizzard configuration provided good perfor-
mance, but not prefix consistency; this configuration is
still a useful one to investigate, because many people
disable disk flushes for the sake of performance [7, 31].
Figure 6 shows that the read latencies for both Blizzard
schemes were 2x–4x lower than EBS’s latency. Both
Blizzard schemes had similar read latencies because de-
layed durability tricks do not directly affect the comple-
tion times of reads (although a client may generate more
reads per second if writes require less time to complete).

For write latencies, Blizzard with fast acknowledg-
ments was 7x–14x faster than EBS. Blizzard in write-
through mode was essentially equivalent to EBS for
small to medium operations, but much faster for 1 MB
writes. It is unclear to us why EBS was so much slower
for large writes. Throughput tests (which we elide due to
space constraints) showed that, even for large IO sizes,
EBS only utilized about 80% of the available network
bandwidth; thus, the EBS client may be exchanging con-
trol traffic with other nodes that we cannot see.

Figure 7 shows the performance of sqliosim, a pop-
ular SQL benchmark tool, on EBS and several different
configurations of Blizzard. We used sqliosim in a con-
figuration that had several threads doing random IO to 4
databases in parallel. Each database was 4 GB in size,
with its own log file. In the background, read-ahead
and bulk updates occurred. Note that sqliosim uses
write-through IO, not flushes, to provide consistency, so
Blizzard with fast acknowledgment simply writes data
to remote disks as quickly as possible and provides no
crash consistency. We also ran a variant of fast ac-

0

100

200

300
Th

ro
u

gh
p

u
t

(M
B

/s
)

Local Disk

Blizzard Disk

Figure 8: Macrobenchmarks: Blizzard’s virtual drive
(write-through, single replication) versus a local physi-
cal drive.

knowledgment mode which inserted a fake flush every
20 writes. That variant, which immediately acknowl-
edges writes but bounds data loss to 20 writes, performs
slower than Blizzard with write-through or vanilla fast
acknowledgments; this is because the fake flushes re-
duced the amount of write parallelism. Nonetheless, all
three versions of Blizzard issued significantly more IOps
than EBS.

4.3 Macrobenchmarks
Figure 8 shows Blizzard’s performance for several IO-
intensive Win32 workloads; Blizzard was configured in
write-through mode and used single replication. The
WIM-create workload represents the time needed to
generate a bootable WinPE [29] .iso file using the
Windows Automated Installation Kit (a WinPE im-
age is a minimal Windows installation that is useful
for creating recovery CDs and other diagnostic tools).
JetStress [23] is a seek-intensive application with 16
threads that emulates the IO load of an Exchange email
server. Gzip is a file compression program that uses four
IO threads. Virus scan represents the throughput of a
full system analysis performed by System Center 2012
Endpoint. DirCopy is derived from the built-in Win-
dows robocopy tool, and it recursively copies directo-
ries using eight threads. Grep is an eight-way threaded
program that evaluates regular expressions over file data.
SQL refers to the sqliosim tool that database administra-
tors use to characterize disk performance. By default, the
tool launches eight threads that perform random database
queries, eight threads that perform sequential queries,
and eight threads that perform bulk database updates.

In Figure 8, throughput numbers refer to application-
level performance, not disk-level performance. For ex-
ample, Gzip throughput refers to how many MBs of file
data the program can compress per second. Similarly,
SQL throughput refers to how quickly the SQL engine can
read or write the database. Figure 8 shows that Blizzard
can improve unmodified application’s performance by a

0

50

100

150

200

Ex
ch

an
ge

 t
h

ro
u

gh
p

u
t

(M
B

/s
)

Figure 9: Exchange throughput. For the log-based com-
mit results, Blizzard’s block size was set to 64 KB, to
match the size of Exchange’s transactional IOs. Other
Blizzard configurations used a block size of 128 KB.

factor of 2x–10x. Blizzard provides the greatest boost to
programs like DirCopy and Grep which spend very little
time on CPU operations.

4.4 Log-based Commit
To test the performance of Blizzard’s out-of-order, log-
based commit scheme (§2.5), we ran several tests involv-
ing the JetStress tool, which emulates the workload for
an Exchange email server. Unlike sqliosim, which is-
sues write-through operations to implement consistency,
JetStress uses disk flushes. As shown in Figure 9,
Blizzard in write-through mode with single replication
provides a 4x throughput improvement over a local phys-
ical disk, and Blizzard in single replicated, fast acknowl-
edgment mode provides a 9x improvement. Using single
replication, Blizzard’s log-based, out-of-order commit
scheme was only 3% slower than single-replicated fast
acknowledgment, despite occasionally needing to per-
form read-before-writes (§2.5.3). The triple-replicated
log scheme was only 5% slower, since Blizzard could
hide much of the latency associated with slow replicas
(§4.1).

Log-based commits do not provide faster throughput
or lower IO latency than simple fast acknowledgments
because both schemes acknowledge writes and flushes
immediately. However, the log-based scheme issues all
writes immediately, whereas the simple scheme issues
writes in epoch order, waiting for writes from epoch N to
commit before issuing writes from epoch N+1. Thus, the
simple scheme is more prone to data loss in the case of a
client crash, since it buffers more writes in-memory than
the log-based scheme (§4.7). The increased buffering re-
quirement will also cause client-submitted IO requests to
block more often, until Blizzard can deallocate memory
belonging to newly retired epochs.

4.5 Multiple Active Clients
Blizzard clients stripe their data across a shared set of
disks. As the number of active clients grows, the aggre-

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20
IOp Latency (ms)

100-Med

100-High

130-Med

130-High

175-AllHeavy

Figure 10: CDF of IOp latency (VDI workloads). The
legend format is XXX-YYY, where XXX is the number
of clients and YYY describes the client IOp rates. There
were 130 remote disks.

gate request pressure on the disks increases. We designed
nested striping (§2.3) and log-based permutation maps
(§2.5) so that clients would spread their requests across
multiple disks, preventing hotspots from emerging and
leading to graceful degradation of disk IO queues. To
test our design, we issued IO requests using a synthetic
load generator that simulated a variable number of clients
with varying levels of IOs per second (IOps). Each emu-
lated client received 10 Gbps of network connectivity,
and each client’s virtual user was marked as “Light,”
“Normal,” “Power,” or “Heavy” based on its IOps rate (5,
10, 20, or 40 respectively). The size of each IOp ranged
from 512 bytes to 1 MB, with the statistical distribution
of IOp sizes and read/write ratios governed by empiri-
cal studies of VDI workloads [12, 13]. Note that a single
high-level IOp resulted in multiple FDS operations if the
IOp was larger than a Blizzard virtual block.

Figure 10 provides a CDF of IOp latencies for sev-
eral different client deployments; to measure true IOp
latencies, Blizzard was operated in write-through mode.
The “Medium” deployment was 10% Light, 50% Nor-
mal, 25% Power, and 15% Heavy. The “High” client
split was 10%/30%/40%/20%, and the pessimistic “All-
Heavy” split was 0%/0%/0%/100%. In all cases, there
were 130 remote disks. Figure 10 shows that, with
100 clients (i.e., more than one disk per client) and 130
clients (exactly one disk per client), Blizzard provides
IOp latencies that are competitive with those of a local
physical disk: at least 62% of IOps had 5 ms of latency
or lower, and 85% of IOps had 10 ms of latency or lower.

Interestingly, latencies in the 130 client test were
slightly lower than those in the 100 client test, e.g., in
the “High” IOps test, 65.7% of IOps in the 130 node
deployment had 5 ms or less of latency, but this was
true for only 61.9% of IOps in the 100 node test. The
reason is that nested striping distributes the aggregate
client load evenly across all disks. Thus, each disk sees
a random stream of seek offsets. When the number

0

200

400

600

800

1000

0 ms 5 ms 10 ms 20 ms

Th
ro

u
gh

p
u

t
(M

B
/s

)

Added Latency

Seq. Write

Seq. Read

Rand. Write

Rand. Read

Figure 11: Comparing Blizzard’s performance in our de-
ployed network (far left) and our deployed network with
synthetic latencies added.

of clients increased from 100 to 130, disk queues got
deeper, but this was better for disks that were serving
random workloads—as each disk arm swept across its
platters, there were more opportunities to service queued
IO requests. Of course, longer disk queues will even-
tually increase IOp latency, as demonstrated by the pes-
simistic “AllHeavy” deployment which had 175 clients
(i.e., 1.34 clients for each disk) and 40 IOps per client.
Even in this case, 56% of IOs had latencies no worse
than 5 ms, and 77% had latencies no worse than 10 ms.

4.6 Latency Sensitivity
Blizzard is designed for full-bisection networks in which
clients have fast, low-latency connections to remote
disks. For example, in our current deployment, clients
and storage nodes communicate via links with 500 mi-
croseconds of latency. This is an order of magnitude
smaller than the seek time for a disk, allowing Blizzard
to make network-attached disks as fast to access as local
ones. Figure 11 depicts Blizzard’s performance with syn-
thetic network latencies added, and with write-through
semantics enabled (i.e., the virtual drive does not ac-
knowledge writes to clients until those writes are durable
on remote disks). With five milliseconds of additional
latency, Blizzard’s throughput drops by a factor of 5x–
10x, and with twenty milliseconds of additional latency,
performance is essentially equivalent to that of a single
local disk.

These experiments highlight the importance of Bliz-
zard’s congestion-free, full-bisection bandwidth net-
work. In such a system, network delays are negligible,
and the client-perceived latency for a write-through IO
is governed by the time needed to perform a single seek
on a remote storage server (see Figure 10). Figure 11
shows that if the storage network lacks a fast intercon-
nect, then millisecond-level network latencies effectively
double or triple the seek penalty for accessing a remote
disk. In these scenarios, Blizzard’s fast acknowledgment
schemes are crucial for eliminating remote access penal-
ties from the critical path of writes.

Crash-consistent recoveries
Write workload Write-

through
FastACK FastACK

+ log
Only new physical
blocks targeted

50/50 50/50 50/50

50% new targets, 50%
overwrites

50/50 50/50 50/50

JetStress 50/50 50/50 50/50

Figure 12: For all 450 injected crashes, Blizzard recov-
ered to a prefix-consistent version of the virtual disk.

4.7 Reliability
In this section, we demonstrate two things. First,
Blizzard always recovers a crashed virtual drive to a
prefix-consistent state. Second, if a Blizzard client
primarily issues block-aligned writes for entire blocks of
data, the client should use log-based commit to reduce
data loss and decrease memory pressure. If clients
frequently issue writes that are misaligned, or not an
even multiple of Blizzard’s block size, clients should use
the simple fast acknowledgment scheme (if they wish to
maximize performance), or write-through mode (if they
wish to minimize data loss).

Recovering to consistent virtual drives: To test Bliz-
zard’s reliability in the presence of crashes, we modi-
fied the user-mode portion of the virtual driver so that
it randomly injected emulated failures. At each emu-
lated failure point, the driver logged the set of writes that
were buffered in memory, as well as the subset of those
writes that had been issued to remote disks, but not yet
acknowledged as being durable. Writes that are buffered
but unissued at crash time are lost. Writes that are issued
but unacknowledged at crash time may or may not be
durable—their durability depends on whether the client
OS had actually sent the writes over the network before
the crash, and whether remote disks crashed while han-
dling the writes, and so on.

We used three synthetic workloads to explore Bliz-
zard’s reliability. Our first workload issued 40 writes
per second, such that each write targeted a previously
unwritten portion of the virtual disk. Our second work-
load also issued 40 writes per second, but 50% of the
writes targeted new locations, and 50% targeted previ-
ously written blocks. Note that a write-only workload
of 40 IOps is intense for a POSIX application [12, 13].
We configured Blizzard to use a block size of 128 KB,
with half of the writes being 64 KB in size, and the
other half being 128 KB, ensuring that, when Blizzard
was run in log-based commit mode, the read-after-write
code paths would be stressed. Our final workload was
JetStress [23], a seek-intensive workload that simulates
an Exchange email server. The JetStress tests also used

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

A
ve

ra
ge

 d
at

a
lo

ss
 p

e
r

cr
as

h
 (

K
B

)

IOps

FastACK (wpf=1, blockSize=4KB)

FastACK (wpf=1, blockSize=64KB)

FastACK (wpf=4, blockSize=4KB)

FastACK (wpf=4, blockSize=64KB)

FastACK+log (blockSize=4KB)

FastACK+log (blockSize=64KB)

Figure 13: Blizzard loss rates when the size of each
write is aligned with Blizzard’s block size. “wpf” means
“writes per flush.”

1

10

100

1000

10000

100000

0 25 50 75 100

A
ve

ra
ge

 d
at

a
lo

ss
 p

e
r

cr
as

h
 (

K
B

)

IOps

FastACK (wpf=1)

FastACK (wpf=4)

FastACK+log (blockSize=4KB)

FastACK+log (blockSize=16KB)

Figure 14: Blizzard loss rates for a simulated write-only
VM workload (writes vary between 4KB and 1 MB in
size). Note that the y-axis is log-scale.

a Blizzard block size of 128 KB, and in all experiments,
the virtual drive used 128 backing disks.

Figure 12 shows the results of our experiments.
For all 450 injected crashes, Blizzard recovered a
prefix-consistent version of the virtual drive. To validate
whether the recovered drive was prefix-consistent,
we ran Blizzard’s recovery code, and then used the
write log to verify that the recovered disk contained a
prefix-consistent representation of the write stream.

Bounding data loss: In fast acknowledgment mode
and log-based commit mode, Blizzard exchanges per-
formance for the risk of data loss. A recovered virtual
drive is always consistent, but the drive may not con-
tain a trailing set of writes that Blizzard acknowledged
to the client but failed to make durable before the crash
occurred. To measure this data loss, we ran two addi-
tional experiments.

In the first experiment, we generated a synthetic
stream of write operations. Each write was the exact
size of Blizzard’s block size, and it was aligned with a
block boundary, ensuring that, when Blizzard used log-
based commits, there was no read-before-write penalty
(§2.5.3). Using our instrumented Blizzard driver, we
picked random moments to simulate crashes, and logged
the amount of buffered, unacknowledged data that would
be lost in the simulated crash. Our load generator also in-
jected a configurable number of flush requests. Figure 13
shows the results. Each data point represents 100 simu-
lated crashes.

As expected, the loss rate increases as the IO rate in-
creases, because Blizzard must buffer more data. With
one write per flush, i.e., with a total ordering over all
writes, the simple fast acknowledgment scheme can only
have one outstanding write to a remote disk. This
severely limits the rate at which writes can retire, and it
increases the memory pressure needed to buffer writes.
With a write size of 4 KB, the fast acknowledgment
scheme can only handle 100 IOps before too many writes
queue up, and the virtual drive throttles the client to
bound potential data loss; with a write size of 64 KB, the
scheme can only handle 50 IOps before it throttles the
client. The log-based commit scheme can issue writes
immediately, regardless of the flush rate, so this scheme
can gracefully scale up to 300 IOps.

For a flush rate of once-every-four writes, the fast ac-
knowledgment scheme does much better, scaling all the
way to 300 IOps. With a wider flush epoch, the fast ac-
knowledgment scheme can issue more writes in parallel,
and when a write from a new epoch arrives, old writes
from the prior epoch are likely to already be commit-
ted, or at least issued; thus, the new write is unlikely to
be delayed by a full seek time on a remote disk. With a
write size of 4 KB, the difference in average loss rates be-
tween the two schemes is large in relative percentage, but
small in absolute value—at 300 IOps, the fast acknowl-
edgment scheme loses 4.1 writes representing 16.4 KB
of data, and the log-based scheme loses 2.4 writes repre-
senting 11.5 KB of data. For a larger write size of 64 KB,
the data loss per dropped write increases, and the two
schemes show bigger differences in absolute amounts of
data loss. For IOp rates above 100, the log-based scheme
decreases loss rates by 12–30%. For example, at 300
IOps with 64 KB writes, the log-based scheme loses 191
KB per crash, whereas the simple fast acknowledgment
scheme loses 272 KB.

Blizzard’s log-based commit scheme pays a read-
before-write penalty for writes that are smaller than Bliz-
zard’s block size. If writes are frequently misaligned
(or not even multiples of the block size), the log-based
scheme will force many writes to wait for synchronous
reads. This will increase buffering requirements and the

issue latencies for writes, causing loss rates after a crash
to increase. Figure 14 shows this effect. In this example,
the writes are aligned with Blizzard’s block boundaries,
but they range in size from 4 KB to 1 MB, as determined
by empirical distributions of VM write sizes [12, 13]. In
these experiments, the log-based scheme with a block
size of 16 KB could only handle up to 50 IOps—beyond
that, the read-before-write penalty forced Blizzard to
throttle the client’s write rate. Decreasing the block size
to 4 KB resulted in fewer read-before-writes, allowing
the log-based scheme to scale better. At 75 IOps, the
log-based scheme beat the fast acknowledgment scheme
by 37%, with a data loss of 135 KB instead of 214
KB. However, at 100 IOps, the log-based scheme can no
longer hide the read-before-write penalties, and it has an
average data loss of 54 MB, an order of magnitude worse
than fast acknowledgments with a wpf of 1, and two or-
ders of magnitude worse than fast acknowledgments with
a wpf of 4.

5 Related Work
Block-level interfaces: A variety of protocols use
a block interface to expose a single disk to remote
clients. Examples of such protocols include ATA-over-
Ethernet [22] and iSCSI [36]. Blizzard extends the sim-
ple block interface, mapping each virtual drive to mul-
tiple backing disks, and providing high-level software
abstractions like replication and failure recovery across
thousands of disks.

Like Blizzard, Petal [24] defines a distributed,
software-implemented virtual disk that is backed by re-
mote storage. However, Blizzard can coexist with tradi-
tional big-data workloads, and Blizzard leverages a full-
bisection bandwidth network to stripe data more aggres-
sively than Petal; the latter exposes Blizzard clients to
higher levels of disk parallelism. Blizzard also leverages
delayed durability semantics to increase the rate at which
clients can issue writes while still achieving crash consis-
tency.

Salus [43] is another example of a virtual block store.
Salus is built atop HDFS/HBase [5, 6], and it provides
ordered-commit semantics during normal operation, and
prefix semantics when failures occur. Salus achieves
these properties with pipelined commit, a protocol
that resembles two-phase commit. In contrast, Bliz-
zard achieves consistency with only a single round of
communication between the client and the remote data
stores. This reduces both network traffic and software
complexity.

Mapping schemes: Using techniques like nested
striping (§2.3) and deterministic permutations (§2.5),
Blizzard translates virtual block accesses to FDS-level
block accesses. This is similar to how SSDs use a

Flash Translation Layer (FTL) to map virtual blocks to
physical ones. SSDs employ a variety of optimizations
to minimize the size of the mapping table that is kept
in the SSD’s small, on-board SRAM (e.g., [18, 45]).
While these optimizations could be applied to Blizzard’s
mapping structures, we have not found a need for such
approaches, since Blizzard’s tables are small (∼20 MB)
and they easily fit within main memory. FTLs must also
implement compaction and garbage collection, since
SSD writes and SSD erases have different data sizes.
Blizzard’s log-based commit scheme avoids compaction
and garbage collection by using equivalent sizes for
writes and erases in the log.

Cloud-scale storage systems: BlueSky [42] uses NFS
or CIFS proxies to expose commercial cloud storage like
Azure to enterprise clients. BlueSky allows an enterprise
to offload the administrative costs of the storage cluster
to a third party. However, compared to systems in which
clients and servers reside in the same cloud, BlueSky in-
troduces several new sources of overhead. Pulling data
from commercial cloud servers injects wide-area laten-
cies into the IO path. BlueSky proxies also use the
chatty, text-based HTTP protocol to communicate with
remote servers. The HTTP overhead is magnified if the
enterprise has asymmetric upload/download speeds to
the cloud—slower upload speeds mean that even small
HTTP headers can add significant transfer delays [16].

Unlike BlueSky’s focus on WAN access to cloud
storage, Parallel NFS (pNFS) exposes clients to local
(i.e., on-premise) cloud storage [38]. Storage servers
can export a block interface, an object interface, or a
file interface; pNFS clients transparently convert NFS
requests to the appropriate lower-level access format.
pNFS requires applications to adhere to NFS semantics,
and both pNFS and BlueSky lack key Blizzard features
like role-based striping and asynchronous epoch-based
commits for writes.

Desktop/server file systems: OptFS demonstrated how
to decouple durability from ordering in the context
of a journaling file system [7]. Blizzard shows that
these ideas can be applied at the disk level, providing
OptFS-style performance improvements in a file system-
agnostic way that does not depend on knowledge of the
file system’s consistency scheme (e.g., journaling [40]
or shadow paging [21, 35]). OptFS requires disks to
be modified to provide asynchronous durability notifi-
cations; in contrast, Blizzard’s virtual disk implements
prefix consistency using standard, asynchronous write-
through operations on the backing remote disks.

When Blizzard uses log-based commit, it leverages
expanded blocks to enable crash recovery and dis-
connected operation. Transactional Flash [34] and

backpointer-based consistency [8] also embed extra
metadata in out-of-band areas.

BPFS [10] is a file system for use with byte-
addressable, persistent memory hardware (e.g., Phase
Change Memory). BPFS introduces an abstraction,
called an epoch barrier, that allows ordering guarantees
to be expressed without requiring an immediate flush of
dirty data in the CPU cache. Epoch barriers provide data
consistency while preserving the ability of the memory
controller to reorder writes within an epoch. Epoch bar-
riers require custom hardware, and BPFS expects that the
persistent memory resides directly on the memory bus.
Like BPFS, Blizzard also separates ordering from dura-
bility; however, the separation is implemented in the con-
text of a distributed system, rather than a single machine
with access to persistent memory.

The Zebra file system [19] combines ideas from
RAID [32] and log-based file systems [35], striping a
per-client file log across a RAID array. Zebra does not
provide mechanisms for asynchronous flush handling,
and this constrains the level of disk parallelism that Ze-
bra can provide to applications. Zebra uses compaction
and garbage collection to manage dead block data; when
such log cleaning occurs, it can introduce unpredictable
performance fluctuations [37]. In contrast, when Bliz-
zard operates in log-based asynchronous commit mode,
it uses reads-before-writes to only commit full blocks of
data. This smooths out the background IO traffic that
is required for log maintenance. However, Section 4.7
demonstrates that if clients frequently issue misaligned
writes, Blizzard’s read-after-write penalty can be large,
making Blizzard’s simple fast acknowledgment scheme
more attractive.

6 Conclusions
Blizzard exposes unmodified, cloud-oblivious POSIX
applications to a fast, cloud-scale block store. This block
store, which clients mount as a virtual disk, efficiently
supports small, random IOs, but it coexists alongside
big-data file systems, and deploys atop the same servers,
disks, and switches. Using a network with full-bisection
bandwidth, Blizzard provides clients with fast access to
any remote disk. Using a novel striping scheme, Blizzard
maximizes disk parallelism, avoids disk hotspots, and re-
duces IOp convoy dilation. By carefully ordering writes,
Blizzard can immediately acknowledge flush requests
while still providing crash consistency; with fewer write
barriers, clients can issue writes faster, and better lever-
age the spindle parallelism of remote storage. A Bliz-
zard prototype improves the speed of unmodified POSIX
applications by up to an order of magnitude. In sum-
mary, Blizzard makes it much easier for cloud-agnostic
POSIX applications to receive cloud-scale performance
and availability.

References
[1] Amazon. Amazon EBS-Optimized In-

stances. AWS Documentation. http:
//docs.aws.amazon.com/AWSEC2/latest/
UserGuide/EBSOptimized.html. October 15,
2013.

[2] Amazon. Amazon Elastic Block Store (EBS).
http://aws.amazon.com/ebs/. 2014.

[3] Amazon. Amazon Relational Database Service
(Amazon RDS). http://aws.amazon.com/rds/.
2014.

[4] Amazon. Amazon Simple Email Service (Amazon
SES). http://aws.amazon.com/ses/. 2013.

[5] Apache. Apache HBase. http://hbase.apache.
org. 2014.

[6] D. Borthakur. The Hadoop Distributed File Sys-
tem: Architecture and Design. http://hadoop.
apache.org/docs/r0.18.0/hdfs_design.pdf.
2007.

[7] V. Chidambaram, T. Pillai, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. Optimistic Crash Consistency.
In Proceedings of SOSP, pages 228–243, Farming-
ton, PA, November 2013.

[8] V. Chidambaram, T. Sharma, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. Consistency Without Or-
dering. In Proceedings of FAST, pages 101–116,
San Jose, CA, February 2012.

[9] J. Cipar, G. Ganger, K. Keeton, C. Morrey III,
C. Soules, and A. Veitch. LazyBase: Trading
Freshness for Performance in a Scalable Database.
In Proceedings of EuroSys, pages 169–182, Bern,
Switzerland, April 2012.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. Lee, D. Burger, and D. Coetzee. Better I/O
Through Byte-addressable, Persistent Memory. In
Proceedings of SOSP, pages 133–146, Big Sky,
MT, 2009.

[11] A. Edwards and B. Calder. Exploring Windows
Azure Drives, Disks, and Images. Microsoft. http:
//blogs.msdn.com/b/windowsazurestorage/
archive/2012/06/28/exploring-windows-
azure-drives-disks-and-images.aspx. June
27, 2012.

[12] D. Feller. Virtual Desktop Resource Allocation.
The Citrix Blog. http://blogs.citrix.com/
2010/11/12/virtual-desktop-resource-
allocation. November 12, 2010.

[13] R. Fellows. Storage Optimization for VDI.
Tutorial: Storage Networking Industry As-
sociation. http://www.snia.org/sites/
default/education/tutorials/2011/fall/
StorageStorageMgmt/RussFellowsSNW_Fall_
2011_VDI_best_practices_final.pdf. 2011.

[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. ACM SIGOPS Operating Sys-
tems Review, 37(5):29–43, December 2003.

[15] Google. Google Cloud SQL. https://cloud.
google.com/products/cloud-sql. 2014.

[16] Google. Performance Best Practices: Minimize re-
quest overhead. https://developers.google.
com/speed/docs/best-practices/request.
March 28, 2012.

[17] A. Greenberg, J. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. Maltz, P. Patel, and S. Sen-
gupta. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of SIGCOMM, pages 51–
62, Barcelona, Spain, 2009.

[18] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a
Flash Translation Layer Employing Demand-Based
Selective Caching of Page-Level Address Map-
pings. In Proceedings of ASPLOS, pages 229–240,
Washington, DC, March 2009.

[19] J. Hartman and J. Ousterhout. The Zebra Striped
Network File System. ACM Transactions on Com-
puter Systems, 13(3):274–310, 1995.

[20] D. Hildebrand, A. Nisar, and R. Haskin. pNFS,
POSIX, and MPI-IO: A Tale of Three Semantics.
In Proceedings of the Workshop on Petascale Data
Storage, pages 32–36, Portland, OR, November
2009.

[21] D. Hitz, J. Lau, and M. Malcolm. File System De-
sign for an NFS File Server Appliance. In Proceed-
ings of the USENIX Winter Technical Conference,
San Francisco, CA, January 1994.

[22] S. Hopkins and B. Coile. AoE (ATA over Ether-
net). http://support.coraid.com/documents/
AoEr11.txt. February 2009.

[23] N. Johnson. JetStress 2010: JetStress Field
Guide. Microsoft. http://gallery.technet.
microsoft.com/Jetstress-Field-Guide-
1602d64c. March 27, 2012.

[24] E. Lee and C. Thekkath. Petal: Distributed Virtual
Disks. ACM SIGOPS Operating Systems Review,
30(5):84–92, December 1996.

[25] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Net-
work File System Workloads. In Proceedings of
USENIX ATC, pages 213–226, Boston, MA, June
2008.

[26] Microsoft. Introducing Windows Azure SQL
Database. http://msdn.microsoft.com/en-
us/library/windowsazure/ee336230.aspx.
2014.

[27] Microsoft. Windows Azure Active Direc-
tory. http://www.windowsazure.com/en-us/
services/active-directory/. 2014.

[28] Microsoft. Windows Azure Storage Scalability
and Performance Targets. Windows Azure Doc-
umentation. http://msdn.microsoft.com/en-
us/library/windowsazure/dn249410.aspx.
June 20, 2013.

[29] Microsoft. Windows PE Technical Refer-
ence. http://technet.microsoft.com/en-us/
library/dd744322(WS.10).aspx. October 22,
2009.

[30] E. Nightingale, J. Elson, O. Hofmann, Y. Suzue,
J. Fan, and J. Howell. Flat Datacenter Storage. In
Proceedings of OSDI, pages 1–15, Hollywood, CA,
October 2012.

[31] E. Nightingale, K. Veeraraghavan, P. Chen, and
J. Flinn. Rethink the Sync. In Proceedings of OSDI,
pages 1–14, November 2006.

[32] D. Patterson, G. Gibson, and R. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID).
ACM SIGMOD Record, 17(3):109–116, 1988.

[33] V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau. Analysis and Evolution of Journaling File
Systems. In Proceedings of USENIX ATC, pages
105–120, Anaheim, CA, April 2005.

[34] V. Prabhakaran, T. Rodeheffer, and L. Zhou. Trans-
actional Flash. In Proceedings of OSDI, pages 147–
160, San Diego, CA, December 2008.

[35] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. ACM Transactions on Computer Systems,
10(1):26–52, February 1992.

[36] J. Satran, K. Meth, C. Sapuntzakis, M. Chadala-
paka, and E. Zeidner. Internet small computer
systems interface (iSCSI). Technical report, RFC
3720, April, 2004.

[37] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File System
Logging Versus Clustering: A Performance Com-
parison. In Proceedings of the USENIX Winter
Technical Conference, pages 249–264, New Or-
leans, LA, January 1995.

[38] S. Shepler, M. Eisler, and D. Noveck. Network File
System (NFS) Version 4 Minor Version 1 Protocol.
Technical report, RFC 5661, January, 2010.

[39] M. Steigerwald. Imposing Order. Linux Magazine,
May 2007.

[40] S. Tweedie. Journaling the Linux ext2fs File Sys-
tem. In Proceedings of the Fourth Annual Linux
Expo, Durham, North Carolina, May 1998.

[41] W. Vogels. File system usage in Windows NT 4.0.
In Proceedings of SOSP, pages 93–109, Kiawah Is-
land Resort, SC, December 1999.

[42] M. Vrable, S. Savage, and G. Voelker. BlueSky:
A Cloud-Backed File System for the Enterprise.
In Proceedings of FAST, pages 237–250, San Jose,
CA, 2012.

[43] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan,
J. Kirubanandam, L. Alvisi, and M. Dahlin. Ro-
bustness in the Salus Scalable Block Store. In Pro-
ceedings of NSDI, pages 357–370, Lombard, IL,
April 2013.

[44] E. Weisstein. Linear Congruence Method.
MathWorld: A Wolfram Web Re-
source. http://mathworld.wolfram.com/
LinearCongruenceMethod.html. 2014.

[45] Y. Zhang, L. Arulraj, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. De-indirection for Flash-based
SSDs with Nameless Writes. In Proceedings of
FAST, pages 1–16, San Jose, CA, February 2012.

