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ABSTRACT 
Context: Software testing is a crucial step in most software 

development processes. Testing software is a key component to 

manage and assess the risk of shipping quality products to 

customers. But testing is also an expensive process and changes to 

the system need to be tested thoroughly which may take time. Thus, 

the quality of a software product depends on the quality of its 

underlying testing process and on the effectiveness and reliability 

of individual test cases.  

Goal: In this paper, we investigate the impact of the organizational 

structure of test owners on the reliability and effectiveness of the 

corresponding test cases. Prior empirical research on organizational 

structure has focused only on developer activity. We expand the 

scope of empirical knowledge by assessing the impact of 

organizational structure on testing activities.  

Method: We performed an empirical study on the Windows build 

verification test suites (BVT) and relate effectiveness and reliability 

measures of each test run to the complexity and size of the 

organizational sub-structure that enclose all owners of test cases 

executed.  

Results: Our results show, that organizational structure impacts 

both test effectiveness and test execution reliability. We are also 

able to predict effectiveness and reliability with fairly high 

precision and recall values. 

Conclusion: We suggest to review test suites with respect to their 

organizational composition. As indicated by the results of this 

study, this would increase the effectiveness and reliability, 

development speed and developer satisfaction. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Software Metrics—Process 

metrics 

General Terms 

Management, Measurement, Reliability, Human Factors. 

Keywords 

Empirical software engineering, organizational structure, software 

testing, reliability, effectiveness 

 

1. INTRODUCTION 
Testing is part of a software engineer’s daily development process. 

Changes to a new or existing system should be tested to ensure that 

the changed code base matches specifications and works as desired. 

As such, testing is a crucial development step. However, daily tests 

may slow down product development: testing large and complex 

software systems can easily take hours and testing each and every 

code change can easily become a time and resource demanding 

operation. Therefore, frequently executed test cases should be of 

high quality. Ineffective or unreliable tests may use expensive 

resources ineffectively and slow down product development 

without adding essential benefit—or may even harm the product by 

letting code issues slip into the final product. As a consequence, test 

suites have a direct impact on development speed and product 

quality. From a test engineer’s perspective, writing and maintaining 

high quality test cases and test suites can be time consuming and 

difficult, especially if the underlying product changes frequently or 

drastically. That may be particularly the case for test suites 

combining test cases of multiple authors. Such test suites might 

require test authors to sync their changes to ensure that changed test 

cases do not impact other test cases executed in the same test suite. 

With respect to shared code ownership, earlier studies have shown 

that the organizational structure of software developers can 

influence code quality [1,2,3]: e.g. code entities with distributed 

code ownership tend to be more defect-prone.  

In this paper, we investigate the impact of organizational structure 

on the effectiveness and reliability of test executions. Do test suites 

owned by a smaller part of the development organization perform 

better when compared to test suites whose owners are distributed 

over a wider range of the organizational structure? To answer this 

question, we performed an empirical study on Microsoft Windows 

build verification (BVT) test suites. We related effectiveness and 

reliability measures of each test suite to the complexity and size of 

the organizational sub-structure that enclose all owners of test cases 

executed by the corresponding test suite. More specifically, using 

organizational metrics, we are able to build prediction models to  

• Identify above-median effective test suites with precision 

and recall values around 0.7.  

• Identify test suites with below-median reliability 

(number of false failures) with precision values around 

0.8 and recall values around 0.9. 

• Our results show, that organizational structure impacts 

both test effectiveness and test execution reliability. 

The organization of this paper is as follows. Section 2 provides an 

overview of the Microsoft Windows build verification test system. 

Section 0 contains a description on how we measured 

organizational structure while Section 4 contains details on our 

approach to measure test effectiveness and reliability. Section 5 

outlines our experimental setup. The results of this study are given 

in Section 6. Section 7 describes related work while Section 8 
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discusses threats to validity. We close with Section 9 giving a 

summary and discussing implications of our findings. 

2. WINDOWS QUALITY TEST SUITES 
The development process and the branching system of Windows 

are organized around a branching tree as shown in Figure 1. Each 

vertex of the tree represents a code branch, directed edges between 

these vertices correspond to integration paths. Developers submit 

their code changes to development branches (leaf nodes) and let 

these code changes merge and integrate against each other using so 

called integration branches (inner vertices) until the code changes 

are merged into the root node of the tree, which corresponds to the 

stable trunk branch holding the current stable version of Windows. 

Each edge of the branching tree is guarded by a quality test suite—

a set of system and integration tests (Figure 2). Quality test suites 

ensure that code changes being merged into a branch are of high 

quality. These quality test suites automatically execute whenever 

developers schedule an integration request between branches. 

Consequently, code changes “travelling” from development 

branches to the trunk branch have to pass multiple of these quality 

test suites—at least once on every branch level. Thus, quality test 

suites are executed multiple times in the daily development process 

and have a direct impact on product development. For a more 

detailed description of the Windows branching and quality test 

suite system, we refer to Bird and Zimmermann [4]. 

In this study, we concentrate on Windows build verification (BVT) 

quality test suites. BVT suites ensure the integrity of the current 

Windows code base and the basic its functionality. BVT test suites 

remain execute the same test content on every branch level. 

2.1 Quality Test Suite Composition 
A single quality test suite contains multiple test cases (so called test 

runs). Each test case executes a series of test steps. Each test step 

is owned by an engineer that contributed the test suite to the set of 

quality tests. As a consequence, test suites might execute test steps 

owned by different engineers that might belong to different 

organizational subgroups and development teams.  

The test team is responsible for the composition of the individual 

test suites, test framework, and the triage of test failures. The testers 

themselves contribute test cases but not all BVT test cases are 

contributed by testers.  

Test cases are independent, except for general setup procedures that 

fetch and installs the current Windows binaries in a test bed. A test 

case has no effect on later executed tests and can be treated as self-

contained and independent. 

3. ORGANIZATIONAL STRUCTURE 
Similar to the branching tree (Figure 1), the organizational structure 

of development teams can be represented as an organizational tree. 

Each vertex of the organizational tree corresponds to a person. The 

children of an organizational tree vertex correspond to those 

persons directly reporting into the person represented by the current 

tree vertex. The root node of this organizational tree is the CEO of 

the company. Similar to branches, we can also organize managers 

into management levels. The CEO of the company would be 

manager level zero, managers directly reporting into her would be 

level one managers, etc.  A more detailed discussion is presented 

by Nagappan, Murphy and Basili [5]. 

As discussed in Section 2.1, test content can be contributed from 

engineers all over the organizational structure and we can assign 

organizational tree vertices to test content owned by the 

corresponding engineer or manager. Using the association between 

organizational tree structure and test content, we can define tree 

based metrics of organizational structure for test cases and test 

suites based on test content ownership. The organizational tree can 

be interpreted as a description of official communication paths and 

responsibilities and thus reflects the distance between two 

organizational sub-trees. Two engineers reporting into the same 

manager are likely to have daily personal contact compared to 

engineers having no common direct manager. Overall, we suspect 

that the number of engineers contributing test content and their 

organizational dependencies impact the quality of test suites. A 

high number of contributing test owners might also increases the 

diversity of test cases. If contributors of a test suite span multiple 

organizational sub-trees, the higher the likelihood of long 

communication channels, which may impact test effectiveness and 

test reliability.  

3.1 Organizational Metrics 
A summary of the organizational metrics used in this study is given 

in Table 1. We can group these metrics into four main groups. 

Number of contributors 
This group of metrics simply counts the number of engineers that 

contributed to a test suite (NumOwner). The higher the number of 

distinct test owners of a test suite the higher might be the diversity 

and size of the test. However, having more people contributing to a 

test suite requires communication efforts and may cause the overall 

test suite to be less focused and more fragile. 

Test owners that no longer belong to the organizational structure 

(e.g. left the company) are treated separately. The metrics 

NumOwnerLeftOrg and PCOwnerLeftOrg represent the absolute 

Figure 1: Windows branching tree hierarchy. 

Figure 2: Code changes have to pass quality test suites to get 

integrated into lower level branches. This figure represents a 

vertical slice through branch tree shown in Figure 1. 



and relative number of test owners that contributed to a test suite 

but are no longer part of the organizational structure. Tests owned 

by engineers no longer associated with the organization are likely 

to be outdated and might cause test results to be less reliable. On 

the other hand, these test might also provide significant value by 

documenting knowledge on code behavior and code properties no 

longer present in the development team and which would be lost 

when removing the test. 

Number of managers 
Metrics simply counting the number of (distinct) test owners 

disregard the dependency between these owners—are the owners 

in the same organizational structure or do these owners belong to 

completely different organizational sub-trees? Engineers 

associated with two different teams will have different management 

chains (vertices on path to root node of tree). Engineers with the 

exact same manager chain belong to the same team. The distance 

between two development teams corresponds to the length of the 

common management chain. The shorter the common management 

chain, the longer the distance (analogue to distances between files 

in a directory tree).  

The metric NumL2 counts the number of distinct level two 

managers that appear in management chains of all test owners 

contributing to a test suite. A metric value of one means that all test 

owners of the corresponding test suite report into managers below 

the same level two manager. A metric value larger than one would 

indicate that test owners belong to very different organizational 

sub-groups. A metrics value of zero would correspond to a scenario 

in which one of the higher manager (L1 or L0) own the entire test 

content—a rather unlikely scenario. We compute the metrics 

NumL3, NumL4, and NumL5 analogue. 

Table 1: Organizational test suite metrics. 

Metric name Short description 

Number of contributors 

NumOwner The number of distinct engineers that own at least one test in the test suite. 

NumOwnerLeftOrg 
The number of distinct engineers that own at least one test in the test suite and that are no longer in 
the organizational structure of Microsoft (left the company). 

PCOwnerLeftOg 
The relative number of distinct developers that own at least one test case in the test suite but are no 
longer part of the organizational structure: 𝑁𝑢𝑚𝑂𝑛𝑤𝑒𝑟𝐿𝑒𝑓𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑦 𝑁𝑢𝑚𝑂𝑤𝑛𝑒𝑟⁄ . 

Number of managers 

NumL2 
The number of level two (L2) managers whose corresponding sub-trees contain all engineers that 
own at least one test case of the test suite. 

NumL3 
The number of level three (L3) managers whose corresponding sub-trees contain all engineers that 
own at least one test case of the test suite. 

NumL4 
The number of level four (L4) managers whose corresponding sub-trees contain all engineers that 
own at least one test case of the test suite. 

NumL5 
The number of level five (L5) managers whose corresponding sub-trees contain all engineers that 
own at least one test case of the test suite. 

HighestCommonManager 
The highest manager level (L3 > L2) whose sub-organization contains all engineers that own at least 
one test case of the test suite. 

Organizational communication paths 

LongestDevDistance 
The longest distance between two developers in the organizational sub-tree spanned by test 
contributors. The distance between two developers is measured by the length of the shortest path 
between the two corresponding organizational sub-tree vertices. 

MedianDevDistance 
The median of distances (length of shortest paths) between all pairs of developers contributing test 
content to a test suite. 

MeanDevDistance 
The mean of distances (length of shortest paths) between all pairs of developers contributing test 
content to a test suite. 

MeanPathLength The mean length of all paths between test owners. 

SizeOfLargestClique 
Number of vertices of organizational sub-graph such that any two test owners are connected via a 
single edge.  

Number of aliases 

NumAliasGroups 
The number of distinct mailing lists associated with test cases of the test suite. Does not include the 
number of system aliases (NumSystemAlias). 

MedianAliasGroupSize The median number of mailing list members referenced by mailing lists registered as test owners. 

NumSystemAlias 
The number of distinct aliases that point to a system alias—not to a mail distribution list. These 
aliases are real system accounts. 

 



Organizational Communication Paths 
Engineers contributing to the same entity (in our case a test suite) 

are likely to impact each other and thus might have to communicate 

about issues, and strategies. The fact that engineers are distributed 

across different development teams might impact speed and ability 

to communication with each other or the cooperativeness in 

general. To capture such problems, we compute a set of metrics 

measuring the length of organizational communication paths 

between test owners. To measure the length of “official” 

communication channels between test owners, we compute the 

distance between two test owners using the length of the shortest 

path between the two corresponding organizational tree vertices. It 

is very likely that communication channels do not match these 

organizational communication paths, but longer management paths 

may very well indicate longer and less reliable communication 

channels between engineers. We use the distance (length of the 

shortest path) between two engineers in the organizational tree as 

an indication for communication quality. For each test suite, we 

measure all organizational distances between developer pairs and 

aggregate these distance measurements using three aggregations: 

max (LongestDevDistance), median (MedianDevDistance), and 

mean (MeanDevDistance). We also measure the average path 

length of all paths between all test owners (MeanPathLength).  

To determine the size of compact and efficient communication 

subsets of test owners, we compute cliques of test owners—subset 

of test owners in which every two test owners are directly 

connected to each other—and use the maximal size of these cliques 

for each test suite (SizeOfLargestClique). A test suite for which this 

metric equals the number of test owners would mean that all owners 

directly report into each other—a rather unlikely scenario. 

Number of aliases 
Instead of single humans, tests can also be associated with aliases—

user accounts that do not represent a human but rather point to a 

mailing list or a system account. In such cases, we resolved the 

corresponding email aliases to individual engineers and add these 

engineers as owners instead of the original alias.  

However, the fact that there exist mailing lists for individual test 

cases means that the owners of such test cases are well organized 

and take shared responsibility for the test content and thus are also 

likely to communicate over fast channels not following official 

management structures. For each test suite, we count the number of 

distinct mailing lists marked as test owners for at least one test case 

of the corresponding test suite (NumAliasGroups). To reflect the 

size of these mailing lists, we report the median number of distinct 

human members of these mailing lists (MedianAliasGroupSize).  

For certain test cases, the test owner is pointing to a system alias. 

Different to mailing lists, these aliases cannot easily be resolved 

and we could not identify individual engineers that own the test 

content or sign responsible for it. The separate measurement 

NumSystemAlias reflects the number of distinct system aliases that 

own at least one test case of the corresponding test suite. 

As mentioned in Section 2, this study is carried out on build 

verification (BVT) test suites only. The integration level and 

number of test steps of these tests remains the same for all branch 

levels. Thus, organizational test metrics do not depend on the 

branch level a test is executed on.  

4. MEASURING TEST QUALITY 
The quality of a test suite or test case can be defined in different 

ways, depending on the perspective and current problem domain. 

In this study, we are interested in two different but related test 

quality properties: test suite effectiveness and test suite reliability. 

4.1 True and False Test Failures 
Test cases can either fail or pass. In an ideal world, a failing test 

case would indicate a code issue that needs to be fixed. In reality, a 

test might fail due to many different reasons and not all test failures 

relate to code issues. At the level of system and integration tests, 

failing test cases can also be due to test and infrastructure issues; 

e.g. a test fetching a file from a remote server can fail if the remote 

server is currently not available. Although the test fails, there is no 

reason to believe that the tested code base contains a code issue that 

needs to be fixed. We call test failures due to other reasons than 

code issues (mostly test and infrastructure issues) false test failures. 

Analogue, we call test failures due to code issues true test failures.  

To measure the quality of a test case, it is essential to differentiate 

between false and true failures. Test cases reporting many true 

failures are effective as they detect and prevent bugs from being 

shipped to the customer. Test cases frequently reporting false 

failures are considered not reliable. Furthermore, each test failure 

requires a manual failure triage. As a consequence, test cases 

reporting false test failures add high cost to the development 

process by triggering human effort to triage the false failure. In 

order to separate true from false test failures, we trace development 

activities that occurred after a test failure (see Figure 3): 

1. First, we check whether the test failure is associated with a 

bug report. Test failures not associated with bug reports are 

likely to be false test failures. Test failures get triaged by a 

test failure triage team before being assigned to engineers. 

The fact that two teams look at the failure make bug reports 

the main communication channel. Thus, test failures 

reporting code issues but not being associated with bug 

reports are rather unlikely. 

2. Next, we check whether the bug report got marked as 

resolved and fixed. Some false test failures are documented 

using bug reports. However, these bug reports get rarely 

marked as fixed, and if so, do not trigger a source code 

change (see next step). 

3. Only if a test failure is associated with a bug report that was 

resolved by submitting a code change to the code base, we 

Figure 3: Flow chart describing the process to separate test failures reporting code issues from test executions failing due to other 

reasons than code issues (e.g. test and infrastructure issues). 



mark a test failure a true test failure. To check for code 

changes associate with bug reports, we use the CODEMINE 

[6] infrastructure that checks commit messages for bug 

report references and bug reports for commit references. 

4.2 Test Suite Effectiveness 
There exist multiple ways to measure the effectiveness of tests but 

in the context of this paper, we are particularly interested in tests 

that find actual code issues. The main purpose of tests is to detect 

code issues during development as early as possible and to prevent 

these code issues to be included in the final product. Every test 

suite, independent from its ability to find code issues, is 

contributing to this goal. Unfortunately, executing test cases is 

expensive: every single test execution costs money and slows down 

product development. Test suites with a very low probability of 

finding code issues might be considered cost ineffective—test can 

only proof the presence of code issues but not their absence. 

We use two different test suite effectiveness measurements: 

Number of fixed bugs (NumBugs): The absolute number of 

distinct bug reports (also resolving duplicate and related 

bug reports) associated with any true test failure reported 

by the corresponding test suite. This measure is dependent 

on the execution frequency of the test suite. 

Bug detection ratio per build (BugsPerExec): The relative 

number of NumBugs per test suite execution. This measure 

relates to the historic probability of a test suite to report at 

least one true test failure. 

Although very similar, we explicitly used both, the absolute and the 

relative number of code issues detected by test suites. For the 

development process, the absolute number of code issues found is 

far more important than its relative correspondence. A test finding 

one fatal code errors might already prevent a disaster.  

Note that we explicitly ignore common test quality measurements 

such as code coverage. The reason is that coverage does not state 

anything about the amount of executed lines actually checked for 

correctness. Every system and integration tests covers large parts 

of the Windows kernel and core Windows binaries, but only few of 

them specifically check for the correctness of these functionalities. 

4.3 Test Suite Reliability 
Similar to test suite effectiveness, we measure test suite reliability 

using the relative number of test suite executions that reported 

at least one false test failure (FpPerExec). Please note that a test 

suite might report more than one test failure per execution. Using 

this measurement, test suite reliability is measured in decimal 

numbers between zero and one. The value corresponds to the 

likelihood of a test suite to report a false test failure when executed. 

A value of zero means that the test suite never reported any false 

test failure in the past; a value of one indicates that all executions 

of the test suite reported at least one false test failure. 

We did not account for differences between false test failures. One 

would imagine that a false test failure that triggers a bug report is 

worse than those that did not. However, this generalization is not 

valid. Most of the bug reports based on false test failures are 

documentation artifacts engineers can refer to in order to document 

known test issues.  

While we defined two metrics for effectiveness, we only use one 

for reliability. The reason is that for effectiveness both, the absolute 

number of bugs as well as the relative number of bugs, can be 

relevant. This is not the case for reliability. While a single bug can 

have catastrophic consequences, a single false test failure does not.  

5. EXPERIMENTAL SETUP 
The goal of this paper is to investigate whether the organizational 

structure of test case owners impact the effectiveness or reliability 

of test suites. To that extend, we investigated the dependency 

between our organizational metrics (Section 0) and our test suite 

quality measurements (Section 4). More detailed, we measured the 

correlations between the individual measurements and investigated 

whether we can use organizational metrics to predict the 

effectiveness and reliability of the corresponding test suites. We 

conducted our investigation on Windows BVT test suites. We 

excluded all test suites that were executed in less than 10% of all 

official builds. 

5.1 Correlations 
To show basic relations between organizational structure and test 

suite effectiveness and reliability, we computed spearman rank 

correlations between the organizational metrics discussed in 

Section 3.1 and the test suite effectiveness (Section 4.2) and test 

suite reliability measures (Section 4.3). Correlation values lie 

between -1 and 1 and describes how well the dependency between 

two metrics can be described using a monotonic function. A 

correlation value of 1 or -1 occurs when one metrics is a perfect 

monotone function of the respectively other measurement. All 

reported metrics are statistically significant. We checked for 

significance using cor.test in R package, which uses Spearman's 

rho statistic to estimate a rank-based measure of association 

5.2 Classification Models 
Rank correlations are good indicators of whether a metric might be 

a good predictor for a dependent variable, it does not allow to draw 

precise conclusions on how well a predictor that combines multiple 

measurements will be. To investigate how well metrics capturing 

organizational structure can be used to predict effectiveness and 

reliability of test suites we used actual classification models. 

Table 2: List of models used for classification experiments. 

Model Description 

k-nearest 
neighbor (knn) 

This model finds k training instances 
closest in Euclidean distance to the given 
test instance and predicts the class that is 
the majority amongst these training 
instances. 

Logistic 
regression 
(multinorm) 

This is a generalized linear model using a 
logic function and hence suited for 
binomial regression, i.e. where the 
outcome class is dichotomous. 

Recursive 
partitioning 
(rpart) 

A variant of decision trees, this model can 
be represented as a binomial tree and 
popularly used for classification tasks. 

Support vector 
machine 
(svmRadial) 

This model classifies data by determining 
a separator that distinguishes the data 
with the largest margin. We used the 
radial kernel for our experiments. 

Tree bagging 
(treebag) 

Another variant of decision trees, this 
model uses bootstrapping to stabilize the 
decision trees. 

Random forest 
(randomForest) 

An ensemble of decision tree classifiers. 
Random forests grow multiple decision 
trees each “voting” for the class on an 
instance to be classified. 

 



In order to perform the experiments on a single Windows release, 

we had to sample the dataset into two subsets—training and testing 

sets. The training set is used to train the classification model that 

we evaluate on the corresponding testing set. To split the overall 

dataset into these two subsets, we used a stratified repeated holdout 

setup—the data is stratified 9before sampling) to preserve the 

proportion of positive and negative instances in the data in both 

training and testing sets. We sampled the data 100 times and used 

two third of the sampled data for training and the remaining one 

third for testing purposes. We report the mean precision and recall 

values aggregating the individual prediction results.  

To test if prediction models are dependent upon machine leaning 

algorithms, we used six different prediction algorithms further 

described in Table 2. Each of these models is performed on exactly 

the same cross-folds to allow fair comparison. For a more detailed 

description of the used models, we advise the reader to refer to 

specialized machine learning texts such as by Witten and Frank [7].  

We conducted our experiments using R-statistical software [8] and 

Max Kuhn’s R package caret [9]. 

Predicting Test Suite Effectiveness 
Regarding test suite effectiveness, we trained and tested 

classification models to classify test suites being above-median 

effective—test suites whose test suite effectiveness measure 

exceeds the median value of all test suite effectiveness measures. 

We used two different dependent variables as effectiveness 

indicator: NumBugs and BugsPerExec (see Section 4.2). For 

example, if test suite T reported more than the median number of 

fixed bugs for all test suites, we would classify T as above-median 

efficient and expect our model to predict T to be in that category. 

Predicting Test Suite Reliability 
Regarding test suite reliability, we trained and tested models to 

classify test suites to report an above-median number of false 

failures per build: FpPerExec (see Section 4.3).  

5.3 Metric Importance 
To estimate the metric importance of each organizational metric for 

the corresponding classification model, we used the filterVarImpl 

function of the caret package [9] to conduct a series of ROC curve 

analysis for each metric: “a series of cutoffs is applied to the 

predictor data to predict the class. The sensitivity and specificity 

are computed for each cutoff and the ROC curve is computed. The 

trapezoidal rule is used to compute the area under the ROC curve. 

This area is used as the measure of variable importance.” [4]. 

Please note that the metric importance for classification models 

may not match the spearman rank correlation results. While the 

rank correlation considers the exact order of entities, classification 

models separate entities into two categories. The suitability of a 

metric to solve either problem may be different. 

6. RESULTS 
In this section, we discuss the results of all experimental setups 

described in Section 5.  

6.1  Organizational Structure and Test 

Effectiveness 

Metrics correlations 
The correlations between organizational measurements and metrics 

expressing the effectiveness of test suites are shown in Table 3. 

The relative number of bugs reported by a test suite per execution 

(column three in Table 3) is negatively correlated with 

organizational path and higher level manager metrics (e.g. NumL2). 

This suggests that test suites with owners stemming from the same 

organizational subgroups are more effective with respect to finding 

code issues. The positive correlation between BugsPerExec and 

SizeOfLargestClique further supports this trend.                          

 

Interesting is also the relationship between the absolute and relative 

number of test owners that left the company (NumOwnerLeftOrg 

and PCOwnerLeftOrg) and test effectiveness (BugsPerExec). The 

correlation values might be weak, but it still indicates that tests 

owned by people that left the organization seem to be less valuable 

that test cases owned by current employees.  

 

The number of email aliases assigned as test owners per test suite 

is negatively correlated with BugsPerExec but strongly, positively 

correlated with NumFixedBugs. There exist two possible 

interpretations for this. Either does an email group as test owner 

 Test Suites owned by a larger organizational subgroups with 

short communication paths tend to be more effective. 

 Test Suites owned by engineers that left the company seem 

to be less effective. 

Table 4: Classification accuracy for models predicting test 

suites associated with above-median NumFixedBugs (left 

part) and above-median BugsPerExec (right part). 

Model NumFixedBugs BugsPerExec 

 Precision Recall Precision Recall 

multinom 0.88 0.87 0.69 0.64 

nb 0.92 0.71 0.70 0.52 

rf 0.85 0.87 0.70 0.66 

rpart 0.83 0.99 0.61 0.72 

svmRadial 0.84 0.97 0.66 0.70 

treebag 0.85 0.84 0.70 0.67 
 

Table 3: Correlations between organizational and test 

suite effectiveness measures. 

Metric NumFixedBugs BugsPerExec 

LongestDevDistance 0.67 -0.23 

MedianDevDistance 0.64 -0.38 

MeanDevDistance 0.68 -0.28 

MeanPathLength 0.73 -0.25 

SizeOfLargestClique 0.23 0.24 

NumOwner 0.87 -0.17 

NumL2 0.61 -0.26 

NumL3 0.70 -0.14 

NumL4 0.69 -0.17 

NumL5 0.68 -0.08 

NumOwnerLeftOrg 0.59 -0.30 

PCOwnerLeftOrg 0.56 -0.14 

HighestCommonManager -0.64 0.16 

NumAliasGroups 0.84 -0.34 

MedianAliasGroupSize 0.37 0.32 

NumSystemAlias 0.75 -0.38 

 



suggest no clear ownership, or it might be that an email alias as test 

owner suggests that these test steps are more general test steps (such 

as setup and tear down steps) that by nature are more likely to find 

general code issues and get executed more frequently—therefore 

the strong correlation with the absolute number of bugs. Both these 

results, i.e. test suites owned by engineers who have left the 

company and test suite tasks with a high number of email aliases 

show the importance of test ownerships, the results of which are 

analogous to our prior code ownership results [5]. 

 

Classification Accuracy 
Classification results for the absolute number of fixed bugs are 

shown in the left part of Table 4. Precision and recall values for the 

absolute number of fixed bugs are high: precision between 0.8 and 

0.9, recall values between 0.7 and 1.0.  

Results for models classifying test suites haven an above-median 

relative number of code issues detected is shown in right part of 

Table 4 and show precision values around 0.69 (median precision) 

and recall values around 0.66 (median recall). Although the 

prediction accuracy is moderate, organizational structure seems to 

impact the ability of tests to find and report code issues. The results 

also show that the prediction accuracies across different machine 

learning models is similar and show no significant difference.  

 

Metrics Importance 
The metric importance for our classification models are shown in 

Table 6 and Table 5. As expected, the number of owners dominate 

the classification models predicting absolute number of detected 

code issues (Table 6). Models predicting relative number of 

detected code issues (Table 5) are dominated by developer distance 

and the number of high level managers. From the correlation values 

discussed above we know that developer distance metrics are 

negatively correlated with the relative number of code issues.  

6.2 Organizational Structure and Test 

Reliability  
In this section, we discuss the results of our experiments 

investigating the dependency between organizational metrics and 

test suite reliability. 

 Test suite tasks with a higher number of email aliases as 

owners show negative correlations with the relative number of 

bugs per execution. The size of email aliases is positively 

correlated. 

 Using test suite metrics, we are able to build prediction 

models that predict the effectiveness of test suites with 

precision and recall values around 0.7. 

Table 7: Correlations of organizational metrics and the 

relative number of false failures (FpPerExec). 

Metric FpPerExec 

LongestDevDistance 0.39 

MedianDevDistance 0.33 

MeanDevDistance 0.34 

MeanPathLength 0.39 

SizeOfLargestClique 0.14 

NumOwnerLeftOrg 0.27 

NumL2 0.32 

NumL3 0.36 

NumL4 0.36 

NumL5 0.35 

NumOnwer 0.09 

PCOwnerLeftOrg 0.08 

HighestCommonManager -0.36 

NumAliasGroups 0.19 

MedianAliasGroupSize 0.11 

NumSystemAlias 0.19 

 

Table 6: Metric importance for models predicting 

NumFixedBugs (see Table 4) ordered by importance. 

Metric Area under ROC 

NumOwner 0.80 

NumAliasGroups 0.77 

NumL5 0.76 

LongestDevDistance 0.76 

NumL4 0.74 

NumL3 0.74 

MeanPathLength 0.73 

MeanDevDistance 0.71 

HighestCommonManager 0.71 

NumL2 0.67 

MedianDevDistance 0.63 

NumOwnerLeftOrg 0.63 

MedianAliasGroupSize 0.60 

 

Table 5: Metric importance for models predicting 

BugsPerExec (Table 4) ordered by importance. 

Metric Area under ROC 

MedianDevDistance 0.78 

MeanDevDistance 0.72 

NumL2 0.69 

MeanPathLength 0.69 

NumOwnerLeftOrg 0.68 

NumAliasGroups 0.68 

LongestDevDistance 0.68 

MedianAliasGroupSize 0.67 

NumL4 0.65 

HighestCommonManager 0.64 

NumOwner 0.63 

NumL3 0.63 

NumL5 0.59 

 



Metrics correlations 
The correlations between organizational metrics and the relative 

number of false failures are shown in Table 7. Although FpPerExec 

is a relative number, we do not observe any strong correlations. 

While the correlations between test suite effectiveness and 

communication path lengths was negative, the correlations between 

these path lengths and our reliability measurement are positive. 

Thus, while indicative that the longer the communication paths, the 

more the false failures faced we do not draw an inferences due to 

the absence of really strong correlations as in earlier results. 

Classification Accuracy 
Table 9 shows that organizational metrics can be excellent 

predictors for test suite reliability. With precision values between 

0.84 and 0.93 (median precision across all machine learning 

algorithms at 0.93), only 7% of all classified test suites predicted to 

be less reliable than median are wrongly classified as such. Recall 

values are high as well and lie between 0.76 and 0.9. This result is 

surprising as it indicates that the vast majority of test suite 

reliability issues can be explained by organizational metrics.  

Metrics Importance 
Table 8 contains metric importance measurements for our 

reliability prediction models and shows that the number of owners 

and team email aliases as well as the developer distances are most 

important. As discussed previously, the length of the shortest paths 

seems to be the most critical metrics. Short shortest paths indicate 

high effectiveness, long shortest paths indicate low reliability.  

7. RELATED WORK 
A number of prior studies investigates the impact of organizational 

structure and code ownership on software quality. There also exists 

prior work describing driving factors for test effectiveness and 

reliability and how to increase test quality. But to the best of our 

knowledge, there have been no studies connecting organizational 

structure with test quality.  

Ownership and Organizational Structure 
Weyuker et al. [10] studies the effect of development team size on 

code quality. The authors used the number of engineers 

contributing to code artifacts as quality indicator. Similar, Meneely 

and William [11] related the number of engineers contributing to 

code entities to security vulnerabilities. Later, Rahman and 

Devanby [3] used extended team size measures capturing the 

organizational structure of contributors to investigated the impact 

of code ownership and engineer experience on code quality. In fact, 

domain knowledge has shown to be an important reason for 

software issues [12]. Robillard [13] showed that the lack of domain 

knowledge negatively affects the quality of software and Mockus 

and Weiss [14] found that changes made by more experienced 

developers were less likely to induce code issues. Mockus also 

showed that “recent departures from an organization were 

associated with increased probability of customer-reported 

defects” [15] while Karus and Dumas [16] showed that 

organizational metrics can also be used to estimate yearly 

cumulative code churn.  

Bird et al. [4,17] and Nagappan et al. [5] extended earlier studies 

by extending the definition of code ownership modelling the actual 

proportion of work individual engineers contributed to a software 

artifact. In their studies on Microsoft Windows, the authors 

established a “statistical significant relationship between ownership 

and failures” [4] that can be used to build reliable defect prediction 

models. It seems important that “managers need to be able to assess 

the communication patterns and deficiencies that exist in a 

development team and support the establishment of communication 

paths that are structured in a particular way to help the team’s 

outcomes.” [18]. To raise awareness of organizational structures 

and possible software quality implications, Basili and Caldiera [19] 

presented an approach to improve software quality through learning 

and experience by establishing “experience factories”. Similar, 

Tamburri et al. provided “instruments allowing practitioners to 

identify, select, analyze, or support the exact social structure they 

need” [20]. Lately, Bettenburg and Hassan developed “statistical 

models to study the impact of social interactions in a software 

project on software quality” [21]. Instead of using metrics on 

rather static organization structure information, the authors used 

social information mined from the issue tracking and version 

control repositories of two large open-source software projects. 

Their results show that social interaction metrics complement 

traditional code metrics used for defect prediction purposes. 

All of these previous studies concentrate on the dependency 

between organizational, social metrics and code quality, but do not 

explore the effect of these metrics on software testing quality. 

Although test quality and product quality might be closely related, 

the study does not all a direct connection between organizational 

structure and test behavior. The study presented in this paper differs 

 Organizational structure metrics are excellent predictors for 

test suite reliability issues and should be considered as strong 

indicators. 

Table 8: Metric importance for models predicting the 

relative number of false test suite failures (FpPerExec). 

Metric Area under ROC 

NumOwner 0.96 

NumAliasGroups 0.91 

MeanPathLength 0.89 

NumL4 0.89 

NumL3 0.88 

LongestDevDistance 0.88 

MeanDevDistance 0.87 

HighestCommonManager 0.86 

NumL2 0.83 

NumL5 0.82 

MedianDevDistance 0.81 

NumOwnerLeftOrg 0.75 

MedianAliasGroupSize 0.66 

 

Table 9: Classification results for models predicting the 

relative number of false test suite failures (FpPerExec). 

Model Precision Recall 

multinom 0.93 0.89 

nb 0.93 0.76 

rf 0.95 0.87 

rpart 0.84 0.91 

svmRadial 0.86 0.91 

treebag 0.93 0.88 

 



in that respect as we studies explicitly the effect of organizational 

structure on software test effectiveness and reliability.  

Test Effectiveness and Test Reliability  
As Basili mentioned: “Measuring the absolute effectiveness of 

testing is generally not possible, but comparison between 

effectiveness of tests is” [22]. Keeping this in mind, most 

(empirical) studies on test effectiveness show comparisons between 

individual test strategies.  

Basili and Selby [23] presented one of the earliest studies 

comparing the effectiveness and cost of software testing strategies 

showing that changing or choosing different test strategies might 

impact the effectiveness of testing processes. Consequently, many 

test selection and prioritization efforts use fault detection measures 

as test selection criteria [24,25]. A number of empirical studies and 

extensive literature reviews compare and identify test tools most 

likely to yield optimal test effectiveness [26,27,28,29]. 

In the information storage and retrieval domain, test reliability 

measures seem to be based on the number and quality of queries a 

test suite contains [30,31,32], rather than on the actual number of 

code issues detected by these queries.  

To the best of our knowledge there has been no study on test 

reliability by measuring the number of test failures caused by other 

test and infrastructure issues. Most studies consider unit tests and 

measure the effectiveness and reliability based on their ability to 

fail due to code issues. However, test failures due to other reasons 

than code issues are likely to impact product development and thus 

should be considered harmful and taken into account when 

measuring test quality.  

8. THREATS TO VALIDITY 
Like most empirical studies, the presented study has threats to 

validity. We identified two main groups of threats. 

8.1 Generalizability 
In this study we investigated quality test suites specific to the 

Windows development process. Even though the individual test 

processes might be Windows specific, the (continuous) execution 

of test suites during software development and measurements for 

effectiveness and reliability are not.  

As discussed, Windows build verification test suites contain test 

cases contributed by engineers working for different development 

teams. Test suites whose test content is entirely owned by the test 

team itself are by nature more uniform in terms of organizational 

structure and test content. Replicating or extending the study 

presented in this paper to other test suites or even other products 

and projects might lead to different results and conclusions. 

8.2 Construct Validity 
Our study relies on the correctness of the organizational tree and 

the correctness of the associations between test cases and test 

owners. The organizational tree used to compute our organizational 

metrics is using datasets provided by the CODEMINE [6] project. 

Any issues of CODEMINE regarding the organizational structure 

might also affect the presented results. To identify test case owners, 

we used official database provided by the BVT testing team, but we 

were unable to verify the correctness of test owners. Any incorrect 

entry in this dataset might impact the results presented in this paper. 

Ideally the effectiveness of test should be measured as the ratio 

between the number of defects found by the test and the number of 

defects inside the tested code area. However, this would require to 

know the total number of defects in Windows code. Since this 

number is unknown, we can only operate on the known number of 

defects rather than the unknown total number of defects. 

9. SUMMARY AND IMPLICATIONS 
In this study, we analyze the impact of organization structure on 

test suite effectiveness and reliability. Using organizational 

metrics, we are able to build prediction models to  

• Identify test suites with above-median effectiveness with 

precision and recall values around 0.7.  

• Identify test suites with below-median reliability (number 

of false failures) with precision values around 0.8 and recall 

values around 0.9. 

Thus, organization structure seems to explain large parts of test 

suite effectiveness and reliability issues. Metric importance and 

correlation values suggest that test suites whose owners are 

distributed over multiple organization subgroups with long 

communication paths are negatively correlated with quality. As a 

consequence, we suggest to review test suites with respect to their 

organizational composition and to support test suites that are 

clearly owned by individual organizational subgroups. As indicated 

by the results of this study, this would increase the effectiveness 

and reliability of test suites.  

Increasing effectiveness and reliability of test suites is also likely 

to improve development productivity. Test failures can slow down 

productivity, require human triaging, and block code integration 

until the test failure is either resolved (test now passing) or until the 

failure is verified to be a false failure. These development activities 

are expensive in terms of cost and time as they involve human 

interaction. Increasing test reliability and effectiveness is likely to 

increase development speed and to improve developer satisfaction.  

The results of this study are aligned with results of previous 

Microsoft studies investigating the effect of code ownership on 

code quality [1] showing that distributed code ownership can have 

severe impact on code quality: the higher the number of engineers 

contributing to a source code entity (e.g. binary or file) the higher 

the lower the code quality of that code entity. These results on 

production code and our results on test suites are surprisingly 

aligned and show the same trend: code and test ownership are 

important properties and should be considered as a driving factor 

for code and test issues. 
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