
The Impact of Test Ownership and Team Structure on the
Reliability and Effectiveness of Quality Test Runs

Kim Herzig
Microsoft Research

Cambridge, UK

kimh@microsoft.com

Nachiappan Nagappan
Microsoft Research

Redmond, USA

nachin@microsoft.com

ABSTRACT
Context: Software testing is a crucial step in most software

development processes. Testing software is a key component to

manage and assess the risk of shipping quality products to

customers. But testing is also an expensive process and changes to

the system need to be tested thoroughly which may take time. Thus,

the quality of a software product depends on the quality of its

underlying testing process and on the effectiveness and reliability

of individual test cases.

Goal: In this paper, we investigate the impact of the organizational

structure of test owners on the reliability and effectiveness of the

corresponding test cases. Prior empirical research on organizational

structure has focused only on developer activity. We expand the

scope of empirical knowledge by assessing the impact of

organizational structure on testing activities.

Method: We performed an empirical study on the Windows build

verification test suites (BVT) and relate effectiveness and reliability

measures of each test run to the complexity and size of the

organizational sub-structure that enclose all owners of test cases

executed.

Results: Our results show, that organizational structure impacts

both test effectiveness and test execution reliability. We are also

able to predict effectiveness and reliability with fairly high

precision and recall values.

Conclusion: We suggest to review test suites with respect to their

organizational composition. As indicated by the results of this

study, this would increase the effectiveness and reliability,

development speed and developer satisfaction.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Software Metrics—Process

metrics

General Terms

Management, Measurement, Reliability, Human Factors.

Keywords

Empirical software engineering, organizational structure, software

testing, reliability, effectiveness

1. INTRODUCTION
Testing is part of a software engineer’s daily development process.

Changes to a new or existing system should be tested to ensure that

the changed code base matches specifications and works as desired.

As such, testing is a crucial development step. However, daily tests

may slow down product development: testing large and complex

software systems can easily take hours and testing each and every

code change can easily become a time and resource demanding

operation. Therefore, frequently executed test cases should be of

high quality. Ineffective or unreliable tests may use expensive

resources ineffectively and slow down product development

without adding essential benefit—or may even harm the product by

letting code issues slip into the final product. As a consequence, test

suites have a direct impact on development speed and product

quality. From a test engineer’s perspective, writing and maintaining

high quality test cases and test suites can be time consuming and

difficult, especially if the underlying product changes frequently or

drastically. That may be particularly the case for test suites

combining test cases of multiple authors. Such test suites might

require test authors to sync their changes to ensure that changed test

cases do not impact other test cases executed in the same test suite.

With respect to shared code ownership, earlier studies have shown

that the organizational structure of software developers can

influence code quality [1,2,3]: e.g. code entities with distributed

code ownership tend to be more defect-prone.

In this paper, we investigate the impact of organizational structure

on the effectiveness and reliability of test executions. Do test suites

owned by a smaller part of the development organization perform

better when compared to test suites whose owners are distributed

over a wider range of the organizational structure? To answer this

question, we performed an empirical study on Microsoft Windows

build verification (BVT) test suites. We related effectiveness and

reliability measures of each test suite to the complexity and size of

the organizational sub-structure that enclose all owners of test cases

executed by the corresponding test suite. More specifically, using

organizational metrics, we are able to build prediction models to

• Identify above-median effective test suites with precision

and recall values around 0.7.

• Identify test suites with below-median reliability

(number of false failures) with precision values around

0.8 and recall values around 0.9.

• Our results show, that organizational structure impacts

both test effectiveness and test execution reliability.

The organization of this paper is as follows. Section 2 provides an

overview of the Microsoft Windows build verification test system.

Section 0 contains a description on how we measured

organizational structure while Section 4 contains details on our

approach to measure test effectiveness and reliability. Section 5

outlines our experimental setup. The results of this study are given

in Section 6. Section 7 describes related work while Section 8

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ESEM’14, September 18–19, 2014, Torino, Italy.
Copyright 2014 ACM 978-1-4503-2774-9/14/09...$15.00

discusses threats to validity. We close with Section 9 giving a

summary and discussing implications of our findings.

2. WINDOWS QUALITY TEST SUITES
The development process and the branching system of Windows

are organized around a branching tree as shown in Figure 1. Each

vertex of the tree represents a code branch, directed edges between

these vertices correspond to integration paths. Developers submit

their code changes to development branches (leaf nodes) and let

these code changes merge and integrate against each other using so

called integration branches (inner vertices) until the code changes

are merged into the root node of the tree, which corresponds to the

stable trunk branch holding the current stable version of Windows.

Each edge of the branching tree is guarded by a quality test suite—

a set of system and integration tests (Figure 2). Quality test suites

ensure that code changes being merged into a branch are of high

quality. These quality test suites automatically execute whenever

developers schedule an integration request between branches.

Consequently, code changes “travelling” from development

branches to the trunk branch have to pass multiple of these quality

test suites—at least once on every branch level. Thus, quality test

suites are executed multiple times in the daily development process

and have a direct impact on product development. For a more

detailed description of the Windows branching and quality test

suite system, we refer to Bird and Zimmermann [4].

In this study, we concentrate on Windows build verification (BVT)

quality test suites. BVT suites ensure the integrity of the current

Windows code base and the basic its functionality. BVT test suites

remain execute the same test content on every branch level.

2.1 Quality Test Suite Composition
A single quality test suite contains multiple test cases (so called test

runs). Each test case executes a series of test steps. Each test step

is owned by an engineer that contributed the test suite to the set of

quality tests. As a consequence, test suites might execute test steps

owned by different engineers that might belong to different

organizational subgroups and development teams.

The test team is responsible for the composition of the individual

test suites, test framework, and the triage of test failures. The testers

themselves contribute test cases but not all BVT test cases are

contributed by testers.

Test cases are independent, except for general setup procedures that

fetch and installs the current Windows binaries in a test bed. A test

case has no effect on later executed tests and can be treated as self-

contained and independent.

3. ORGANIZATIONAL STRUCTURE
Similar to the branching tree (Figure 1), the organizational structure

of development teams can be represented as an organizational tree.

Each vertex of the organizational tree corresponds to a person. The

children of an organizational tree vertex correspond to those

persons directly reporting into the person represented by the current

tree vertex. The root node of this organizational tree is the CEO of

the company. Similar to branches, we can also organize managers

into management levels. The CEO of the company would be

manager level zero, managers directly reporting into her would be

level one managers, etc. A more detailed discussion is presented

by Nagappan, Murphy and Basili [5].

As discussed in Section 2.1, test content can be contributed from

engineers all over the organizational structure and we can assign

organizational tree vertices to test content owned by the

corresponding engineer or manager. Using the association between

organizational tree structure and test content, we can define tree

based metrics of organizational structure for test cases and test

suites based on test content ownership. The organizational tree can

be interpreted as a description of official communication paths and

responsibilities and thus reflects the distance between two

organizational sub-trees. Two engineers reporting into the same

manager are likely to have daily personal contact compared to

engineers having no common direct manager. Overall, we suspect

that the number of engineers contributing test content and their

organizational dependencies impact the quality of test suites. A

high number of contributing test owners might also increases the

diversity of test cases. If contributors of a test suite span multiple

organizational sub-trees, the higher the likelihood of long

communication channels, which may impact test effectiveness and

test reliability.

3.1 Organizational Metrics
A summary of the organizational metrics used in this study is given

in Table 1. We can group these metrics into four main groups.

Number of contributors
This group of metrics simply counts the number of engineers that

contributed to a test suite (NumOwner). The higher the number of

distinct test owners of a test suite the higher might be the diversity

and size of the test. However, having more people contributing to a

test suite requires communication efforts and may cause the overall

test suite to be less focused and more fragile.

Test owners that no longer belong to the organizational structure

(e.g. left the company) are treated separately. The metrics

NumOwnerLeftOrg and PCOwnerLeftOrg represent the absolute

Figure 1: Windows branching tree hierarchy.

Figure 2: Code changes have to pass quality test suites to get

integrated into lower level branches. This figure represents a

vertical slice through branch tree shown in Figure 1.

and relative number of test owners that contributed to a test suite

but are no longer part of the organizational structure. Tests owned

by engineers no longer associated with the organization are likely

to be outdated and might cause test results to be less reliable. On

the other hand, these test might also provide significant value by

documenting knowledge on code behavior and code properties no

longer present in the development team and which would be lost

when removing the test.

Number of managers
Metrics simply counting the number of (distinct) test owners

disregard the dependency between these owners—are the owners

in the same organizational structure or do these owners belong to

completely different organizational sub-trees? Engineers

associated with two different teams will have different management

chains (vertices on path to root node of tree). Engineers with the

exact same manager chain belong to the same team. The distance

between two development teams corresponds to the length of the

common management chain. The shorter the common management

chain, the longer the distance (analogue to distances between files

in a directory tree).

The metric NumL2 counts the number of distinct level two

managers that appear in management chains of all test owners

contributing to a test suite. A metric value of one means that all test

owners of the corresponding test suite report into managers below

the same level two manager. A metric value larger than one would

indicate that test owners belong to very different organizational

sub-groups. A metrics value of zero would correspond to a scenario

in which one of the higher manager (L1 or L0) own the entire test

content—a rather unlikely scenario. We compute the metrics

NumL3, NumL4, and NumL5 analogue.

Table 1: Organizational test suite metrics.

Metric name Short description

Number of contributors

NumOwner The number of distinct engineers that own at least one test in the test suite.

NumOwnerLeftOrg
The number of distinct engineers that own at least one test in the test suite and that are no longer in
the organizational structure of Microsoft (left the company).

PCOwnerLeftOg
The relative number of distinct developers that own at least one test case in the test suite but are no
longer part of the organizational structure: 𝑁𝑢𝑚𝑂𝑛𝑤𝑒𝑟𝐿𝑒𝑓𝑡𝐶𝑜𝑚𝑝𝑜𝑛𝑦 𝑁𝑢𝑚𝑂𝑤𝑛𝑒𝑟⁄ .

Number of managers

NumL2
The number of level two (L2) managers whose corresponding sub-trees contain all engineers that
own at least one test case of the test suite.

NumL3
The number of level three (L3) managers whose corresponding sub-trees contain all engineers that
own at least one test case of the test suite.

NumL4
The number of level four (L4) managers whose corresponding sub-trees contain all engineers that
own at least one test case of the test suite.

NumL5
The number of level five (L5) managers whose corresponding sub-trees contain all engineers that
own at least one test case of the test suite.

HighestCommonManager
The highest manager level (L3 > L2) whose sub-organization contains all engineers that own at least
one test case of the test suite.

Organizational communication paths

LongestDevDistance
The longest distance between two developers in the organizational sub-tree spanned by test
contributors. The distance between two developers is measured by the length of the shortest path
between the two corresponding organizational sub-tree vertices.

MedianDevDistance
The median of distances (length of shortest paths) between all pairs of developers contributing test
content to a test suite.

MeanDevDistance
The mean of distances (length of shortest paths) between all pairs of developers contributing test
content to a test suite.

MeanPathLength The mean length of all paths between test owners.

SizeOfLargestClique
Number of vertices of organizational sub-graph such that any two test owners are connected via a
single edge.

Number of aliases

NumAliasGroups
The number of distinct mailing lists associated with test cases of the test suite. Does not include the
number of system aliases (NumSystemAlias).

MedianAliasGroupSize The median number of mailing list members referenced by mailing lists registered as test owners.

NumSystemAlias
The number of distinct aliases that point to a system alias—not to a mail distribution list. These
aliases are real system accounts.

Organizational Communication Paths
Engineers contributing to the same entity (in our case a test suite)

are likely to impact each other and thus might have to communicate

about issues, and strategies. The fact that engineers are distributed

across different development teams might impact speed and ability

to communication with each other or the cooperativeness in

general. To capture such problems, we compute a set of metrics

measuring the length of organizational communication paths

between test owners. To measure the length of “official”

communication channels between test owners, we compute the

distance between two test owners using the length of the shortest

path between the two corresponding organizational tree vertices. It

is very likely that communication channels do not match these

organizational communication paths, but longer management paths

may very well indicate longer and less reliable communication

channels between engineers. We use the distance (length of the

shortest path) between two engineers in the organizational tree as

an indication for communication quality. For each test suite, we

measure all organizational distances between developer pairs and

aggregate these distance measurements using three aggregations:

max (LongestDevDistance), median (MedianDevDistance), and

mean (MeanDevDistance). We also measure the average path

length of all paths between all test owners (MeanPathLength).

To determine the size of compact and efficient communication

subsets of test owners, we compute cliques of test owners—subset

of test owners in which every two test owners are directly

connected to each other—and use the maximal size of these cliques

for each test suite (SizeOfLargestClique). A test suite for which this

metric equals the number of test owners would mean that all owners

directly report into each other—a rather unlikely scenario.

Number of aliases
Instead of single humans, tests can also be associated with aliases—

user accounts that do not represent a human but rather point to a

mailing list or a system account. In such cases, we resolved the

corresponding email aliases to individual engineers and add these

engineers as owners instead of the original alias.

However, the fact that there exist mailing lists for individual test

cases means that the owners of such test cases are well organized

and take shared responsibility for the test content and thus are also

likely to communicate over fast channels not following official

management structures. For each test suite, we count the number of

distinct mailing lists marked as test owners for at least one test case

of the corresponding test suite (NumAliasGroups). To reflect the

size of these mailing lists, we report the median number of distinct

human members of these mailing lists (MedianAliasGroupSize).

For certain test cases, the test owner is pointing to a system alias.

Different to mailing lists, these aliases cannot easily be resolved

and we could not identify individual engineers that own the test

content or sign responsible for it. The separate measurement

NumSystemAlias reflects the number of distinct system aliases that

own at least one test case of the corresponding test suite.

As mentioned in Section 2, this study is carried out on build

verification (BVT) test suites only. The integration level and

number of test steps of these tests remains the same for all branch

levels. Thus, organizational test metrics do not depend on the

branch level a test is executed on.

4. MEASURING TEST QUALITY
The quality of a test suite or test case can be defined in different

ways, depending on the perspective and current problem domain.

In this study, we are interested in two different but related test

quality properties: test suite effectiveness and test suite reliability.

4.1 True and False Test Failures
Test cases can either fail or pass. In an ideal world, a failing test

case would indicate a code issue that needs to be fixed. In reality, a

test might fail due to many different reasons and not all test failures

relate to code issues. At the level of system and integration tests,

failing test cases can also be due to test and infrastructure issues;

e.g. a test fetching a file from a remote server can fail if the remote

server is currently not available. Although the test fails, there is no

reason to believe that the tested code base contains a code issue that

needs to be fixed. We call test failures due to other reasons than

code issues (mostly test and infrastructure issues) false test failures.

Analogue, we call test failures due to code issues true test failures.

To measure the quality of a test case, it is essential to differentiate

between false and true failures. Test cases reporting many true

failures are effective as they detect and prevent bugs from being

shipped to the customer. Test cases frequently reporting false

failures are considered not reliable. Furthermore, each test failure

requires a manual failure triage. As a consequence, test cases

reporting false test failures add high cost to the development

process by triggering human effort to triage the false failure. In

order to separate true from false test failures, we trace development

activities that occurred after a test failure (see Figure 3):

1. First, we check whether the test failure is associated with a

bug report. Test failures not associated with bug reports are

likely to be false test failures. Test failures get triaged by a

test failure triage team before being assigned to engineers.

The fact that two teams look at the failure make bug reports

the main communication channel. Thus, test failures

reporting code issues but not being associated with bug

reports are rather unlikely.

2. Next, we check whether the bug report got marked as

resolved and fixed. Some false test failures are documented

using bug reports. However, these bug reports get rarely

marked as fixed, and if so, do not trigger a source code

change (see next step).

3. Only if a test failure is associated with a bug report that was

resolved by submitting a code change to the code base, we

Figure 3: Flow chart describing the process to separate test failures reporting code issues from test executions failing due to other

reasons than code issues (e.g. test and infrastructure issues).

mark a test failure a true test failure. To check for code

changes associate with bug reports, we use the CODEMINE

[6] infrastructure that checks commit messages for bug

report references and bug reports for commit references.

4.2 Test Suite Effectiveness
There exist multiple ways to measure the effectiveness of tests but

in the context of this paper, we are particularly interested in tests

that find actual code issues. The main purpose of tests is to detect

code issues during development as early as possible and to prevent

these code issues to be included in the final product. Every test

suite, independent from its ability to find code issues, is

contributing to this goal. Unfortunately, executing test cases is

expensive: every single test execution costs money and slows down

product development. Test suites with a very low probability of

finding code issues might be considered cost ineffective—test can

only proof the presence of code issues but not their absence.

We use two different test suite effectiveness measurements:

Number of fixed bugs (NumBugs): The absolute number of

distinct bug reports (also resolving duplicate and related

bug reports) associated with any true test failure reported

by the corresponding test suite. This measure is dependent

on the execution frequency of the test suite.

Bug detection ratio per build (BugsPerExec): The relative

number of NumBugs per test suite execution. This measure

relates to the historic probability of a test suite to report at

least one true test failure.

Although very similar, we explicitly used both, the absolute and the

relative number of code issues detected by test suites. For the

development process, the absolute number of code issues found is

far more important than its relative correspondence. A test finding

one fatal code errors might already prevent a disaster.

Note that we explicitly ignore common test quality measurements

such as code coverage. The reason is that coverage does not state

anything about the amount of executed lines actually checked for

correctness. Every system and integration tests covers large parts

of the Windows kernel and core Windows binaries, but only few of

them specifically check for the correctness of these functionalities.

4.3 Test Suite Reliability
Similar to test suite effectiveness, we measure test suite reliability

using the relative number of test suite executions that reported

at least one false test failure (FpPerExec). Please note that a test

suite might report more than one test failure per execution. Using

this measurement, test suite reliability is measured in decimal

numbers between zero and one. The value corresponds to the

likelihood of a test suite to report a false test failure when executed.

A value of zero means that the test suite never reported any false

test failure in the past; a value of one indicates that all executions

of the test suite reported at least one false test failure.

We did not account for differences between false test failures. One

would imagine that a false test failure that triggers a bug report is

worse than those that did not. However, this generalization is not

valid. Most of the bug reports based on false test failures are

documentation artifacts engineers can refer to in order to document

known test issues.

While we defined two metrics for effectiveness, we only use one

for reliability. The reason is that for effectiveness both, the absolute

number of bugs as well as the relative number of bugs, can be

relevant. This is not the case for reliability. While a single bug can

have catastrophic consequences, a single false test failure does not.

5. EXPERIMENTAL SETUP
The goal of this paper is to investigate whether the organizational

structure of test case owners impact the effectiveness or reliability

of test suites. To that extend, we investigated the dependency

between our organizational metrics (Section 0) and our test suite

quality measurements (Section 4). More detailed, we measured the

correlations between the individual measurements and investigated

whether we can use organizational metrics to predict the

effectiveness and reliability of the corresponding test suites. We

conducted our investigation on Windows BVT test suites. We

excluded all test suites that were executed in less than 10% of all

official builds.

5.1 Correlations
To show basic relations between organizational structure and test

suite effectiveness and reliability, we computed spearman rank

correlations between the organizational metrics discussed in

Section 3.1 and the test suite effectiveness (Section 4.2) and test

suite reliability measures (Section 4.3). Correlation values lie

between -1 and 1 and describes how well the dependency between

two metrics can be described using a monotonic function. A

correlation value of 1 or -1 occurs when one metrics is a perfect

monotone function of the respectively other measurement. All

reported metrics are statistically significant. We checked for

significance using cor.test in R package, which uses Spearman's

rho statistic to estimate a rank-based measure of association

5.2 Classification Models
Rank correlations are good indicators of whether a metric might be

a good predictor for a dependent variable, it does not allow to draw

precise conclusions on how well a predictor that combines multiple

measurements will be. To investigate how well metrics capturing

organizational structure can be used to predict effectiveness and

reliability of test suites we used actual classification models.

Table 2: List of models used for classification experiments.

Model Description

k-nearest
neighbor (knn)

This model finds k training instances
closest in Euclidean distance to the given
test instance and predicts the class that is
the majority amongst these training
instances.

Logistic
regression
(multinorm)

This is a generalized linear model using a
logic function and hence suited for
binomial regression, i.e. where the
outcome class is dichotomous.

Recursive
partitioning
(rpart)

A variant of decision trees, this model can
be represented as a binomial tree and
popularly used for classification tasks.

Support vector
machine
(svmRadial)

This model classifies data by determining
a separator that distinguishes the data
with the largest margin. We used the
radial kernel for our experiments.

Tree bagging
(treebag)

Another variant of decision trees, this
model uses bootstrapping to stabilize the
decision trees.

Random forest
(randomForest)

An ensemble of decision tree classifiers.
Random forests grow multiple decision
trees each “voting” for the class on an
instance to be classified.

In order to perform the experiments on a single Windows release,

we had to sample the dataset into two subsets—training and testing

sets. The training set is used to train the classification model that

we evaluate on the corresponding testing set. To split the overall

dataset into these two subsets, we used a stratified repeated holdout

setup—the data is stratified 9before sampling) to preserve the

proportion of positive and negative instances in the data in both

training and testing sets. We sampled the data 100 times and used

two third of the sampled data for training and the remaining one

third for testing purposes. We report the mean precision and recall

values aggregating the individual prediction results.

To test if prediction models are dependent upon machine leaning

algorithms, we used six different prediction algorithms further

described in Table 2. Each of these models is performed on exactly

the same cross-folds to allow fair comparison. For a more detailed

description of the used models, we advise the reader to refer to

specialized machine learning texts such as by Witten and Frank [7].

We conducted our experiments using R-statistical software [8] and

Max Kuhn’s R package caret [9].

Predicting Test Suite Effectiveness
Regarding test suite effectiveness, we trained and tested

classification models to classify test suites being above-median

effective—test suites whose test suite effectiveness measure

exceeds the median value of all test suite effectiveness measures.

We used two different dependent variables as effectiveness

indicator: NumBugs and BugsPerExec (see Section 4.2). For

example, if test suite T reported more than the median number of

fixed bugs for all test suites, we would classify T as above-median

efficient and expect our model to predict T to be in that category.

Predicting Test Suite Reliability
Regarding test suite reliability, we trained and tested models to

classify test suites to report an above-median number of false

failures per build: FpPerExec (see Section 4.3).

5.3 Metric Importance
To estimate the metric importance of each organizational metric for

the corresponding classification model, we used the filterVarImpl

function of the caret package [9] to conduct a series of ROC curve

analysis for each metric: “a series of cutoffs is applied to the

predictor data to predict the class. The sensitivity and specificity

are computed for each cutoff and the ROC curve is computed. The

trapezoidal rule is used to compute the area under the ROC curve.

This area is used as the measure of variable importance.” [4].

Please note that the metric importance for classification models

may not match the spearman rank correlation results. While the

rank correlation considers the exact order of entities, classification

models separate entities into two categories. The suitability of a

metric to solve either problem may be different.

6. RESULTS
In this section, we discuss the results of all experimental setups

described in Section 5.

6.1 Organizational Structure and Test

Effectiveness

Metrics correlations
The correlations between organizational measurements and metrics

expressing the effectiveness of test suites are shown in Table 3.

The relative number of bugs reported by a test suite per execution

(column three in Table 3) is negatively correlated with

organizational path and higher level manager metrics (e.g. NumL2).

This suggests that test suites with owners stemming from the same

organizational subgroups are more effective with respect to finding

code issues. The positive correlation between BugsPerExec and

SizeOfLargestClique further supports this trend.

Interesting is also the relationship between the absolute and relative

number of test owners that left the company (NumOwnerLeftOrg

and PCOwnerLeftOrg) and test effectiveness (BugsPerExec). The

correlation values might be weak, but it still indicates that tests

owned by people that left the organization seem to be less valuable

that test cases owned by current employees.

The number of email aliases assigned as test owners per test suite

is negatively correlated with BugsPerExec but strongly, positively

correlated with NumFixedBugs. There exist two possible

interpretations for this. Either does an email group as test owner

 Test Suites owned by a larger organizational subgroups with

short communication paths tend to be more effective.

 Test Suites owned by engineers that left the company seem

to be less effective.

Table 4: Classification accuracy for models predicting test

suites associated with above-median NumFixedBugs (left

part) and above-median BugsPerExec (right part).

Model NumFixedBugs BugsPerExec

 Precision Recall Precision Recall

multinom 0.88 0.87 0.69 0.64

nb 0.92 0.71 0.70 0.52

rf 0.85 0.87 0.70 0.66

rpart 0.83 0.99 0.61 0.72

svmRadial 0.84 0.97 0.66 0.70

treebag 0.85 0.84 0.70 0.67

Table 3: Correlations between organizational and test

suite effectiveness measures.

Metric NumFixedBugs BugsPerExec

LongestDevDistance 0.67 -0.23

MedianDevDistance 0.64 -0.38

MeanDevDistance 0.68 -0.28

MeanPathLength 0.73 -0.25

SizeOfLargestClique 0.23 0.24

NumOwner 0.87 -0.17

NumL2 0.61 -0.26

NumL3 0.70 -0.14

NumL4 0.69 -0.17

NumL5 0.68 -0.08

NumOwnerLeftOrg 0.59 -0.30

PCOwnerLeftOrg 0.56 -0.14

HighestCommonManager -0.64 0.16

NumAliasGroups 0.84 -0.34

MedianAliasGroupSize 0.37 0.32

NumSystemAlias 0.75 -0.38

suggest no clear ownership, or it might be that an email alias as test

owner suggests that these test steps are more general test steps (such

as setup and tear down steps) that by nature are more likely to find

general code issues and get executed more frequently—therefore

the strong correlation with the absolute number of bugs. Both these

results, i.e. test suites owned by engineers who have left the

company and test suite tasks with a high number of email aliases

show the importance of test ownerships, the results of which are

analogous to our prior code ownership results [5].

Classification Accuracy
Classification results for the absolute number of fixed bugs are

shown in the left part of Table 4. Precision and recall values for the

absolute number of fixed bugs are high: precision between 0.8 and

0.9, recall values between 0.7 and 1.0.

Results for models classifying test suites haven an above-median

relative number of code issues detected is shown in right part of

Table 4 and show precision values around 0.69 (median precision)

and recall values around 0.66 (median recall). Although the

prediction accuracy is moderate, organizational structure seems to

impact the ability of tests to find and report code issues. The results

also show that the prediction accuracies across different machine

learning models is similar and show no significant difference.

Metrics Importance
The metric importance for our classification models are shown in

Table 6 and Table 5. As expected, the number of owners dominate

the classification models predicting absolute number of detected

code issues (Table 6). Models predicting relative number of

detected code issues (Table 5) are dominated by developer distance

and the number of high level managers. From the correlation values

discussed above we know that developer distance metrics are

negatively correlated with the relative number of code issues.

6.2 Organizational Structure and Test

Reliability
In this section, we discuss the results of our experiments

investigating the dependency between organizational metrics and

test suite reliability.

 Test suite tasks with a higher number of email aliases as

owners show negative correlations with the relative number of

bugs per execution. The size of email aliases is positively

correlated.

 Using test suite metrics, we are able to build prediction

models that predict the effectiveness of test suites with

precision and recall values around 0.7.

Table 7: Correlations of organizational metrics and the

relative number of false failures (FpPerExec).

Metric FpPerExec

LongestDevDistance 0.39

MedianDevDistance 0.33

MeanDevDistance 0.34

MeanPathLength 0.39

SizeOfLargestClique 0.14

NumOwnerLeftOrg 0.27

NumL2 0.32

NumL3 0.36

NumL4 0.36

NumL5 0.35

NumOnwer 0.09

PCOwnerLeftOrg 0.08

HighestCommonManager -0.36

NumAliasGroups 0.19

MedianAliasGroupSize 0.11

NumSystemAlias 0.19

Table 6: Metric importance for models predicting

NumFixedBugs (see Table 4) ordered by importance.

Metric Area under ROC

NumOwner 0.80

NumAliasGroups 0.77

NumL5 0.76

LongestDevDistance 0.76

NumL4 0.74

NumL3 0.74

MeanPathLength 0.73

MeanDevDistance 0.71

HighestCommonManager 0.71

NumL2 0.67

MedianDevDistance 0.63

NumOwnerLeftOrg 0.63

MedianAliasGroupSize 0.60

Table 5: Metric importance for models predicting

BugsPerExec (Table 4) ordered by importance.

Metric Area under ROC

MedianDevDistance 0.78

MeanDevDistance 0.72

NumL2 0.69

MeanPathLength 0.69

NumOwnerLeftOrg 0.68

NumAliasGroups 0.68

LongestDevDistance 0.68

MedianAliasGroupSize 0.67

NumL4 0.65

HighestCommonManager 0.64

NumOwner 0.63

NumL3 0.63

NumL5 0.59

Metrics correlations
The correlations between organizational metrics and the relative

number of false failures are shown in Table 7. Although FpPerExec

is a relative number, we do not observe any strong correlations.

While the correlations between test suite effectiveness and

communication path lengths was negative, the correlations between

these path lengths and our reliability measurement are positive.

Thus, while indicative that the longer the communication paths, the

more the false failures faced we do not draw an inferences due to

the absence of really strong correlations as in earlier results.

Classification Accuracy
Table 9 shows that organizational metrics can be excellent

predictors for test suite reliability. With precision values between

0.84 and 0.93 (median precision across all machine learning

algorithms at 0.93), only 7% of all classified test suites predicted to

be less reliable than median are wrongly classified as such. Recall

values are high as well and lie between 0.76 and 0.9. This result is

surprising as it indicates that the vast majority of test suite

reliability issues can be explained by organizational metrics.

Metrics Importance
Table 8 contains metric importance measurements for our

reliability prediction models and shows that the number of owners

and team email aliases as well as the developer distances are most

important. As discussed previously, the length of the shortest paths

seems to be the most critical metrics. Short shortest paths indicate

high effectiveness, long shortest paths indicate low reliability.

7. RELATED WORK
A number of prior studies investigates the impact of organizational

structure and code ownership on software quality. There also exists

prior work describing driving factors for test effectiveness and

reliability and how to increase test quality. But to the best of our

knowledge, there have been no studies connecting organizational

structure with test quality.

Ownership and Organizational Structure
Weyuker et al. [10] studies the effect of development team size on

code quality. The authors used the number of engineers

contributing to code artifacts as quality indicator. Similar, Meneely

and William [11] related the number of engineers contributing to

code entities to security vulnerabilities. Later, Rahman and

Devanby [3] used extended team size measures capturing the

organizational structure of contributors to investigated the impact

of code ownership and engineer experience on code quality. In fact,

domain knowledge has shown to be an important reason for

software issues [12]. Robillard [13] showed that the lack of domain

knowledge negatively affects the quality of software and Mockus

and Weiss [14] found that changes made by more experienced

developers were less likely to induce code issues. Mockus also

showed that “recent departures from an organization were

associated with increased probability of customer-reported

defects” [15] while Karus and Dumas [16] showed that

organizational metrics can also be used to estimate yearly

cumulative code churn.

Bird et al. [4,17] and Nagappan et al. [5] extended earlier studies

by extending the definition of code ownership modelling the actual

proportion of work individual engineers contributed to a software

artifact. In their studies on Microsoft Windows, the authors

established a “statistical significant relationship between ownership

and failures” [4] that can be used to build reliable defect prediction

models. It seems important that “managers need to be able to assess

the communication patterns and deficiencies that exist in a

development team and support the establishment of communication

paths that are structured in a particular way to help the team’s

outcomes.” [18]. To raise awareness of organizational structures

and possible software quality implications, Basili and Caldiera [19]

presented an approach to improve software quality through learning

and experience by establishing “experience factories”. Similar,

Tamburri et al. provided “instruments allowing practitioners to

identify, select, analyze, or support the exact social structure they

need” [20]. Lately, Bettenburg and Hassan developed “statistical

models to study the impact of social interactions in a software

project on software quality” [21]. Instead of using metrics on

rather static organization structure information, the authors used

social information mined from the issue tracking and version

control repositories of two large open-source software projects.

Their results show that social interaction metrics complement

traditional code metrics used for defect prediction purposes.

All of these previous studies concentrate on the dependency

between organizational, social metrics and code quality, but do not

explore the effect of these metrics on software testing quality.

Although test quality and product quality might be closely related,

the study does not all a direct connection between organizational

structure and test behavior. The study presented in this paper differs

 Organizational structure metrics are excellent predictors for

test suite reliability issues and should be considered as strong

indicators.

Table 8: Metric importance for models predicting the

relative number of false test suite failures (FpPerExec).

Metric Area under ROC

NumOwner 0.96

NumAliasGroups 0.91

MeanPathLength 0.89

NumL4 0.89

NumL3 0.88

LongestDevDistance 0.88

MeanDevDistance 0.87

HighestCommonManager 0.86

NumL2 0.83

NumL5 0.82

MedianDevDistance 0.81

NumOwnerLeftOrg 0.75

MedianAliasGroupSize 0.66

Table 9: Classification results for models predicting the

relative number of false test suite failures (FpPerExec).

Model Precision Recall

multinom 0.93 0.89

nb 0.93 0.76

rf 0.95 0.87

rpart 0.84 0.91

svmRadial 0.86 0.91

treebag 0.93 0.88

in that respect as we studies explicitly the effect of organizational

structure on software test effectiveness and reliability.

Test Effectiveness and Test Reliability
As Basili mentioned: “Measuring the absolute effectiveness of

testing is generally not possible, but comparison between

effectiveness of tests is” [22]. Keeping this in mind, most

(empirical) studies on test effectiveness show comparisons between

individual test strategies.

Basili and Selby [23] presented one of the earliest studies

comparing the effectiveness and cost of software testing strategies

showing that changing or choosing different test strategies might

impact the effectiveness of testing processes. Consequently, many

test selection and prioritization efforts use fault detection measures

as test selection criteria [24,25]. A number of empirical studies and

extensive literature reviews compare and identify test tools most

likely to yield optimal test effectiveness [26,27,28,29].

In the information storage and retrieval domain, test reliability

measures seem to be based on the number and quality of queries a

test suite contains [30,31,32], rather than on the actual number of

code issues detected by these queries.

To the best of our knowledge there has been no study on test

reliability by measuring the number of test failures caused by other

test and infrastructure issues. Most studies consider unit tests and

measure the effectiveness and reliability based on their ability to

fail due to code issues. However, test failures due to other reasons

than code issues are likely to impact product development and thus

should be considered harmful and taken into account when

measuring test quality.

8. THREATS TO VALIDITY
Like most empirical studies, the presented study has threats to

validity. We identified two main groups of threats.

8.1 Generalizability
In this study we investigated quality test suites specific to the

Windows development process. Even though the individual test

processes might be Windows specific, the (continuous) execution

of test suites during software development and measurements for

effectiveness and reliability are not.

As discussed, Windows build verification test suites contain test

cases contributed by engineers working for different development

teams. Test suites whose test content is entirely owned by the test

team itself are by nature more uniform in terms of organizational

structure and test content. Replicating or extending the study

presented in this paper to other test suites or even other products

and projects might lead to different results and conclusions.

8.2 Construct Validity
Our study relies on the correctness of the organizational tree and

the correctness of the associations between test cases and test

owners. The organizational tree used to compute our organizational

metrics is using datasets provided by the CODEMINE [6] project.

Any issues of CODEMINE regarding the organizational structure

might also affect the presented results. To identify test case owners,

we used official database provided by the BVT testing team, but we

were unable to verify the correctness of test owners. Any incorrect

entry in this dataset might impact the results presented in this paper.

Ideally the effectiveness of test should be measured as the ratio

between the number of defects found by the test and the number of

defects inside the tested code area. However, this would require to

know the total number of defects in Windows code. Since this

number is unknown, we can only operate on the known number of

defects rather than the unknown total number of defects.

9. SUMMARY AND IMPLICATIONS
In this study, we analyze the impact of organization structure on

test suite effectiveness and reliability. Using organizational

metrics, we are able to build prediction models to

• Identify test suites with above-median effectiveness with

precision and recall values around 0.7.

• Identify test suites with below-median reliability (number

of false failures) with precision values around 0.8 and recall

values around 0.9.

Thus, organization structure seems to explain large parts of test

suite effectiveness and reliability issues. Metric importance and

correlation values suggest that test suites whose owners are

distributed over multiple organization subgroups with long

communication paths are negatively correlated with quality. As a

consequence, we suggest to review test suites with respect to their

organizational composition and to support test suites that are

clearly owned by individual organizational subgroups. As indicated

by the results of this study, this would increase the effectiveness

and reliability of test suites.

Increasing effectiveness and reliability of test suites is also likely

to improve development productivity. Test failures can slow down

productivity, require human triaging, and block code integration

until the test failure is either resolved (test now passing) or until the

failure is verified to be a false failure. These development activities

are expensive in terms of cost and time as they involve human

interaction. Increasing test reliability and effectiveness is likely to

increase development speed and to improve developer satisfaction.

The results of this study are aligned with results of previous

Microsoft studies investigating the effect of code ownership on

code quality [1] showing that distributed code ownership can have

severe impact on code quality: the higher the number of engineers

contributing to a source code entity (e.g. binary or file) the higher

the lower the code quality of that code entity. These results on

production code and our results on test suites are surprisingly

aligned and show the same trend: code and test ownership are

important properties and should be considered as a driving factor

for code and test issues.

10. ACKNOWLEDGMENTS
We thank the Windows development and BVT quality team for

their tremendous support and feedback. This work is based on data

extracted from varies development repositories provided by the

Microsoft TSE group. Our special thanks go to Blerim Kuliqi,

Jason Means, and Poornima Priyadarshini.

11. REFERENCES
[1] Bird, C., Nagappan, N., Murphy, B., Gall, H., and Devanbu,

P. Don'T Touch My Code!: Examining the Effects of

Ownership on Software Quality. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering (2011),

ACM, 4--14.

[2] Nordberg, M.E., III. Managing code ownership. Software,

IEEE, 20 (Mar 2003), 26-33.

[3] Rahman, F. and Devanbu, P. Ownership, Experience and

Defects: A Fine-grained Study of Authorship. In

Proceedings of the 33rd International Conference on

Software Engineering (2011), ACM, 491--500.

[4] Bird, C. and Zimmermann, T. Assessing the Value of

Branches with What-if Analysis. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (Cary, North Carolina, 2012),

ACM, 45:1--45:11.

[5] Nagappan, N., Murphy, B., and Basili, V. The Influence of

Organizational Structure on Software Quality: An Empirical

Case Study. In Proceedings of the 30th International

Conference on Software Engineering (2008), ACM, 521--

530.

[6] Czerwonka, J., Nagappan, N., Schulte, W., and Murphy, B.

CODEMINE: Building a Software Development Data

Analytics Platform at Microsoft. Software, IEEE, 30, 4

(2013), 64--71.

[7] Witten, I.H. and Frank, E. Data mining: practical machine

learning tools and techniques with Java implementations.

SIGMOD Rec., 31 (mar 2002), 76--77.

[8] Team, R.D.C. R: A Language and Environment for

Statistical Computing. , 2010. R Foundation for Statistical

Computing.

[9] Kuhn, M. caret: Classification and Regression Training. ,

2011.

[10] Weyuker, E.J., Ostrand, T.J., and Bell, R.M. Do too many

cooks spoil the broth? using the number of developers to

enhance defect prediction models. Empirical Software

Engineering, 13 (2008), 539--559.

[11] Meneely, A. and Williams, L. Secure Open Source

Collaboration: An Empirical Study of Linus' Law. In

Proceedings of the 16th ACM Conference on Computer and

Communications Security (2009), ACM, 453--462.

[12] Curtis, B., Krasner, H., and Iscoe, N. A Field Study of the

Software Design Process for Large Systems. Commun. ACM,

31 (nov 1988), 1268--1287.

[13] Robillard, P.N. The Role of Knowledge in Software

Development. Commun. ACM, 42 (jan 1999), 87--92.

[14] Mockus, A. and Weiss, D.M. Predicting risk of software

changes. Bell Labs Technical Journal, 5 (2000), 169--180.

[15] Mockus, A. Organizational Volatility and Its Effects on

Software Defects. In Proceedings of the Eighteenth ACM

SIGSOFT International Symposium on Foundations of

Software Engineering (2010), ACM, 117--126.

[16] Karus, S. and Dumas, M. Code Churn Estimation Using

Organisational and Code Metrics: An Experimental

Comparison. Inf. Softw. Technol., 54 (feb 2012), 203--211.

[17] Bird, C., Nagappan, N., Devanbu, P., Gall, H., and Murphy,

B. Does Distributed Development Affect Software Quality?

An Empirical Case Study of Windows Vista. In Proceedings

of the 31st International Conference on Software

Engineering (2009), IEEE Computer Society, 518--528.

[18] Cataldo, M. and Ehrlich, K. The Impact of the Structure of

Communication Patterns in Global Software Development:

An Empirical Analysis of a Project Using Agile Methods.

Institute for Software Research, Carnegie Mellon University

(2011).

[19] Basili, V.R. and Caldiera, G. Improve Soft-ware Quality by

Reusing Knowledge and Experience. Sloan management

review, 37 (1995), 55--55.

[20] Tamburri, D.A., Lago, P., and Vliet, H.v. Organizational

Social Structures for Software Engineering. ACM Comput.

Surv., 46 (jul 2013), 3:1--3:35.

[21] Bettenburg, N. and Hassan, A.E. Studying the Impact of

Social Interactions on Software Quality. Empirical Softw.

Engg., 18 (apr 2013), 375--431.

[22] Weyuker, E.J. Can we measure software testing

effectiveness? In Software Metrics Symposium, 1993.

Proceedings., First International (May 1993), 100-107.

[23] Basili, V.R. and Selby, R.W. Comparing the Effectiveness of

Software Testing Strategies. IEEE Trans. Softw. Eng., 13, 12

(December 1987), 1278--1296.

[24] Goradia, T. Dynamic impact analysis: a cost-effective

technique to enforce error-propagation. In Proceedings of the

1993 ACM SIGSOFT international symposium on Software

testing and analysis (Cambridge, Massachusetts, USA,

1993), ACM, 171--181.

[25] Zhang, Y., Zhao, X., Zhang, X., and Zhang, T. Test

effectiveness index: Integrating product metrics with process

metrics. In Cyber Technology in Automation, Control, and

Intelligent Systems (CYBER), 2012 IEEE International

Conference on (May 2012), 54-57.

[26] Whyte, G. and Mulder, D.L. Mitigating the Impact of

Software Test Constraints on Software Testing

Effectiveness. Electronic Journal of Information Systems

Evaluation, 14 (2011), 254 - 270.

[27] Rothermel, G., Untch, R.H., Chu, C., and Harrold, M.J. Test

case prioritization: an empirical study. In Software

Maintenance, 1999. (ICSM '99) Proceedings. IEEE

International Conference on (1999), 179-188.

[28] Elbaum, S., Malishevsky, A.G., and Rothermel, G. Test case

prioritization: a family of empirical studies. Software

Engineering, IEEE Transactions on, 28 (Feb 2002), 159-182.

[29] Braione, P., Denaro, G., Mattavelli, A., Vivanti, M., and

Muhammad, A. An industrial case study of the effectiveness

of test generators. In Automation of Software Test (AST),

2012 7th International Workshop on (June 2012), 50-56.

[30] Brennan, R.L. Generalizability theory. Educational

Measurement: Issues and Practice, 11 (1992), 27--34.

[31] Shavelson, R.J. and Webb, N.M. Generalizability theory: A

primer. Sage, 1991.

[32] Urbano, J., Marrero, M., and Mart\'\in, D. On the

Measurement of Test Collection Reliability. In Proceedings

of the 36th International ACM SIGIR Conference on

Research and Development in Information Retrieval (2013),

ACM, 393--402.

