
Error-Driven Incremental Learning in Deep Convolutional
Neural Network for Large-Scale Image Classification

Tianjun Xiao†, Jiaxing Zhang‡, Kuiyuan Yang‡, Yuxin Peng†
∗

, and Zheng Zhang‡
†Institute of Computer Science and Technology, Peking University, Beijing 100871, China

‡Microsoft Research, Beijing, P.R.China
{xiaotianjun,pengyuxin}@pku.edu.cn; {jiaxz,kuyang,Zheng.Zhang}@microsoft.com

ABSTRACT
Supervised learning using deep convolutional neural network
has shown its promise in large-scale image classification task.
As a building block, it is now well positioned to be part of
a larger system that tackles real-life multimedia tasks. An
unresolved issue is that such model is trained on a static
snapshot of data. Instead, this paper positions the training
as a continuous learning process as new classes of data arrive.
A system with such capability is useful in practical scenarios,
as it gradually expands its capacity to predict increasing
number of new classes. It is also our attempt to address
the more fundamental issue: a good learning system must
deal with new knowledge that it is exposed to, much as how
human do.

We developed a training algorithm that grows a network
not only incrementally but also hierarchically. Classes are
grouped according to similarities, and self-organized into
levels. The newly added capacities are divided into com-
ponent models that predict coarse-grained superclasses and
those return final prediction within a superclass. Impor-
tantly, all models are cloned from existing ones and can be
trained in parallel. These models inherit features from ex-
isting ones and thus further speed up the learning. Our
experiment points out advantages of this approach, and also
yields a few important open questions.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—Neural nets

General Terms
Algorithms, Experimentation, Performance

Keywords
Incremental Learning; Deep Convolutional Neural Network;
Large-scale Image Classification

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MM’14, November 3–7, 2014, Orlando, Florida, USA.
Copyright 2014 ACM 978-1-4503-3063-3/14/11 ...$15.00.
http://dx.doi.org/10.1145/2647868.2654926.

1. INTRODUCTION
This paper focuses on incremental learning of deep convo-

lutional neural network (DCNN) [14] in image classification
task. By incremental, we mean that batches of labeled data
of new classes are made available gradually. Our objective
is to train a deep neural network that performs well at each
of such steps. Figure 1 illustrates incremental learning in a
multiclass classification model.

Three aspects motivate this study. The first is from the
perspective of end applications. The net trained by image
classification task can perform as a critical building block in
many multimedia tasks. A DCNN model can map images
to text, in tasks such as image tagging and annotation, the
tags can be further used in image retrieval tasks [18]. Other
tasks applies DCNN indirectly. For example, researchers
have used a fine-tuned DCNN trained by image classification
using ImageNet data to extract features in the detection task
of TRECVID [20]. In all such real-world scenarios, classes
and their associated labeled data are always collected in an
incremental manner. As such, incremental learning plays a
critical role.

The second is a performance one. Applying deep learning
to image classification has made rapid progress. In a short
span of one year, DCNN has improved the top-5 error rate
on the challenge of ImageNet 1K-category classification from
26.2% to 15.3% [14]. Yet, the same network performs poorly
on the more general 22K-category classification. One obvi-
ous culprit is the relatively limited network capacity. Thus,
one option is to substantially increase the network capacity.
The difficulties are two-folds. First, large models are inher-
ently difficult to train, probably exponentially so. Second,
it is not clear at all how and where new capacities should
be allocated. It is more prudent to incrementally evolve the
network capacity onwards, which is one principle behind the
model proposed in this study.

The third motivation is more fundamental: we believe
that this is a more general pattern of learning. As we are
exposed to new and more data, we don’t start learning from
a blank slate. Rather, we leverage what’s been learned and
absorb new knowledge in a continuous process. Unlike other
transfer-learning tasks where the features extracted in one
domain is applied to a different but similar one (e.g. apply-
ing ImageNet feature sets to PASCAL VOL data [6]), the
problem here is to transfer the existing features and learn
new one in the same task with an ever expanding scope.
This process can be emulated with the setting we outlined
above, and the goal is to understand what alternatives would
work well.

177

Incremental Learning
Model 0 Model 1 Model 2

New classes
New classes

Figure 1: Incremental Learning in Multiclass Classification: the model needs to evolve with arrival of data
of new classes.

There have been relatively little study in putting learn-
ing in such a dynamic and evolving context. One reason
is that large amount of labeled data is only available more
recently. Second, doing incremental learning using deep neu-
ral network is a new problem and faces inherent technical
challenges. Unlike SVM-based approaches, neural networks
embed feature extraction and classification in one coherent
architecture and within the same model. A consequence is
that the modification of parts of the parameter space imme-
diately affects the rest of the model globally. For instance,
the so-called “catastrophic forgetting” problem [10] refers to
the destruction of existing features learned from earlier data,
when the model is exclusively trained with data of new class-
es. A related difficulty is the allocation of new parameters,
as mentioned earlier.

We draw intuition from our everyday experience of learn-
ing. For natural objects, there is an inherent ontology hier-
archy due to the process of evolution. Artifacts, too, borrow
elements from existing ones as one key factor of innovation.
As such, it is highly unlikely that there is one flat space
where we assign probability to predictions (i.e. with one
softmax output layer for the entire 22K ImageNet classes).
Rather, we first make a reasonable guess, and zoom into a
sub-space where classes are similar. This process is inher-
ently iterative and may involve multiple levels. If that’s the
case, the model should similarly have a hierarchical struc-
ture and the inference should allow iterative refinement.

In this paper, we propose a model that grows organical-
ly and hierarchically, as new classes become available. We
make the following contributions. First, the model is hierar-
chical, and the total classes are split gradually towards the
leaf of the tree, where similar classes are grouped. Impor-
tantly, this process is guided by a pragmatic, error-driven
preview process. Second, we carefully control the growth
of the network capacity, allocating them according to the
responsibility of the components (i.e. coarse-grained rout-
ing versus fine-grained prediction). Third, we initialize the

new parameters using cloning, thereby maximally retain the
learned features. Finally, we perform a detailed study and
reveal how learning propagates, with and without cloning.

Our preliminary results show that this approach is promis-
ing. Cloning, rather than starting from scratch, can learn
faster or better, and often both. Comparing with the exist-
ing approaches that always train from scratch, we can reach
similar performance by starting from an existing model, but
with up to 25% few samples. The results of hierarchical
model are mixed, in the sense that the performance gain is
limited, due to the errors of superclass prediction. We have
gained a few important lessons and insights to guide our
future work.

The rest of the paper is organized as follows. We cov-
er related work in Section 2 and then describe our overall
architecture in Section 3. We then explain the training al-
gorithm in Section 4, which also depicts how the network
grows. Detailed performance study is covered in Section 5.
We discuss what we learned, future work and conclude in
Section 6.

2. RELATED WORK
Our work attempts to bring the promise of deep learning

to the practical and more general paradigm of incremental
learning. We organize the discussion of related work accord-
ing to researches in these areas.

Multi-class image classification and deep learning .
The last decade has witnessed a great progress in multi-class
image categorization, both in terms of the number of cate-
gories and accuracy. For instance, ImageNet has about 22K
categories [4], compared to hundreds in the Caltech series [9,
11], and the collection is growing. When the dataset grows
bigger, hierarchy pattern in the class set becomes more obvi-
ous. Jia et al. [3] researched on the classification result in Im-
ageNet 10K dataset and report the phenomenon where mis-
classification information has some correlation with the se-
mantic hierarchy of ImageNet. Griffin et al. [12] utilized the

178

taxonomy hierarchy in the class set to do hierarchical classi-
fication to pursue greater speedup. Besides those two works,
others mainly focused on the classification accuracy on dif-
ferent dataset. The accuracy has been improving steadily
with new developed image features over the years [17, 23,
19], and achieved a great leap with the renewed Deep Con-
volutional Neural Network [14]. The superiority of DCNN
comes from its ability in simultaneously learning the feature
extractor and classifier via the network with many layers.
Besides image classification task, the DCNN model has been
applied to some multimedia tasks directly or indirectly [4,
20].

Incremental learning. A crude definition of incremen-
tal learning is that learning is a continuous process with new
data. Prior work has addressed two major scenarios, out of
which the second one is relevant to this study. The first
is concept drift in the training dataflow, and therefore the
classifier learns in a non-stationary environment [5, 24]. The
second is when there are existing classifiers that are related
to the new classes to be learned [1, 7, 8, 9, 15, 16, 21, 22].

Thrun [21] proposed the question as whether leaning the
n-th classifier is easier (than learning the first), and since
then researchers began to tackle this problem using trans-
fer learning intuition, with techniques using fewer samples
to get new models or better generalization. Two of the
hot research topics derived from this problem is one-shot
learning and zero-shot learning. Fei-Fei et al. [8] proposed
a Bayesian transfer learning method to avoid learning new
categories from scratch and instead using very few training
samples. Tommasi et al. [22] proposed a multi model knowl-
edge transfer method where source classifiers were weighted
by learned coefficient. Lampert et al. [16] achieved zero-
shot learning by introducing attribute-based classification.
Kuzborskij et al. [15] pointed out that prior work mostly
focused on binary classification problem (object detection),
and proposed a discriminative method in the One-Versus-All
multi-class classification task by transferring knowledge to
a new class while preserving what has already been learned.
Those works rely on shallow models instead of DCNN, and
the category size is small in comparison.

The particular challenge with DCNN in the context of
incremental learning (and in same sense transfer learning
as well) is that it mingles feature extractor and classifi-
er in one architecture. Goodfellow et al. [10] investigated
the catastrophic forgetting problem in gradient-based neural
networks. The study is however on the small MNIST dataset
with small network, and the proposal of using dropout is al-
ready in the default DCNN configuration. Nevertheless it
qualitatively re-affirms the difficulty of achieving good per-
formance on old and new tasks simultaneously. Many works
have focused on performing domain adaptation, one such ex-
ample is the one-shot learning by adapting features learned
form ImageNet 1K dataset to other datasets [13]. The re-
cent work of zero-shot learning assumes the availability of a
semantic embedding space to which outputs of DCNN are
projected. Our work differs in the goal, as we want to trans-
fer the learning withinthe same task with larger dataset.

While many incremental learning works paid more atten-
tion on efficiency than accuracy, Bengio [2] offered a deeper
insight that speed and quality can be obtained simultane-
ously if increments are made properly, noted as curriculum
learning. Its key idea is to start learning on easier aspects of
tasks and then gradually increase the difficulty. This setting

Input Sample

Superclass 1

Superclass 2 Superclass 3

Figure 2: A hierarchy of models: branch models
predict superclasses, leaf models return final pre-
dictions.

may have positive effect on both the convergence speed and
the quality of local minimum obtained. This work can help
analyzing our results.

3. INCREMENTAL LEARNING MODEL
In this section, we will introduce our proposal of incremen-

tal learning model and its inference process. Without loss
of generality, we assume there is a model M0 that is already
trained on N0 classes. The goal of incremental learning is
to evolve from Mi−1 to Mi, to train Ni classes, in which
Ni − Ni−1 are new classes. For example, we might have a
DCNN classifier for 500 animal classes out of the 22K cate-
gories in ImageNet, we want to grow the network to classify
1000 and then the complete collection of animal classes.

Obviously, the model must increase its capacity to accom-
modate more classes. The simplest way to grow is widening
the top softmax layer to output the extra probabilities on
new classes. In other words, Mi share the same structure
as Mi−1 except it has Ni softmax units at the output. One
obvious drawback is that the capacity increment is small: if
the width of the layer before softmax is H then the addition-
al parameters amounts to H × (Ni −Ni−1). To put it more
concretely, if we use the default configuration of DCNN [14]
for the 500-class model, when we increase it to 1000 classes,
the number of parameter increment is merely 1%.

We can make the model bigger by injecting units in the
fully-connected layers or having more feature maps in the
convolutional layers. However, it is not clear how this should
be done. We could end up putting many untrained new pa-
rameters into the model everywhere, and their initialization
becomes a black magic: too big or too small a random val-
ue will either ruin the existing model or making training
tediously long.

179

A better approach must maximize the transfer of learned
features, and still conservatively grow the capacity. The
architecture we explore in this paper is a hierarchy of mod-
els, as shown in Figure 2. In our default setting, all the
models (in each blue box) share the same topology and the
amount of parameters, except the top output layers. All of
them receive the same input sample, and have a softmax
output. They logically make up a tree during the inference
process. Models at different positions play different roles.
Each leaf model performs the final prediction among a non-
overlapping subset of the total classes. The branch models,
on the other hand, have each of their output unit points
to a child model, directing the prediction (eventually) to
the correct leaf model. More specifically, the total classes
are partitioned into superclasses, and each superclass is as-
signed to a leaf model (the red units in Figure 2). An input
sample triggers the root model which outputs the probabil-
ities of which branch the sample belongs to, and then the
child model (can be a leaf or branch model) with the highest
probability is chosen. This recursion continues until a leaf
model is selected, and we take the output in this superclass
as the final prediction.

The intuition in this tree-style prediction is that each
branch model, being constrained by capacity, is only op-
timized for predicting a coarse collection of classes. A leaf
model, on the other hand, concentrates on a more accurate
fine-grained classification on a smaller set of classes. This
architecture mirrors the hierarchical and iterative inference
process that human brain seems to be adept at, as we do a
crude prediction first, and then refine it further by discrim-
inating against close competitors. It also allows the total
model capacities to be divided according to responsibilities
(coarse vs fine-grained classification). In such a hierarchy of
models, the capacity growth is done by cloning new models
from the exiting ones and expanding the tree. The cloning
reduces the difficulty of initializing the added capacity. We
will discuss the details of this incremental learning in the
next section.

4. ALGORITHM
For ease of disposition, we will describe the algorithm

when there is only one single model, and then generalize
the procedure.

4.1 Starting from a Single Superclass
In the starting point of the training, all N0 classes are in

one single superclass and predicted by one model L0. Thus,
L0 is a leaf model by itself. When new classes come and
the superclass size increases to N1, we have two choices to
make the model bigger. One choice is simply extending L0

to L′0 by inserting more output units, which conservatively
increases a small amount of capacity. The second choice
that substantially scales up the capacity is partitioning the
superclass into K superclasses, and clone L0 into several
new leaf models L1, L2, . . . , LK to predict within each of
these new superclasses. A branch model B with K final
output units is also cloned from L0 to direct the prediction
to the correct leaf model on a given input sample. These
two choices are illustrated in Figure 3. We call the former
flat increment, and the latter clone increment. There are
three problems we need to address: 1) how to partition a
superclass; 2) how to re-train these models with changed

New class

(a) (b)

0'L

Figure 3: Two choices of capacity increment. (a)
Flat increment. The output units is increased to
hold more classes. (b) Clone increment. A single
leaf model is duplicated to clones for more classes.
A branch model is also cloned to direct the correct
prediction of superclass.

data and objectives; 3) most importantly, how to decide the
best strategy out of the two alternatives.

In clone increment, the network grows by one level, and
the total N1 classes are first clustered to superclasses by
similarity. This allows the branch model B and the leaf
models to focus on inter- and intra-superclass discrimina-
tive features, respectively. This is done using error-driven
preview, which essentially error-driven preview observes the
error distribution using current model L0 on samples drawn
from all the data, including both new and old. A validation
set of N0 are tested through L0, and calculating a confusion
matrix C ∈ RN0×N0 from the output. The entry Cij denotes
the probability that the i-th class is predicted to j-th class,
which also measures the similarity between class i and j.
We then use spectral clustering partition to split N0 classes
into K clusters based on the confusion matrix. The classes
that are easy to confuse with each other are grouped into
the same cluster as a superclass, with the desired side ef-
fects to minimize the confusion between superclasses. Next,
N1 − N0 new classes are assigned to superclasses based on
their confusion rates among the superclasses.

After the superclass partitioning, there are a total of K
leaf models to train. Each of them has the same topology as
L0 except the output layer. Compared with L0 which is on-
ly trained to predict N0 old classes, each new leaf model Li

inherits a portion of old classes plus with some new classes.
This change of data and objective requires each leaf model
to be retrained. Instead of training from scratch, we train
these new leaf models incrementally by copying L0’s param-
eters as initialization and using random initialization on the
remaining new parameters (i.e. the weights connecting the

180

New class

+

Supper Class 1 Supper Class 2

+

0'L

Figure 4: Cloning a branch model. We first do the
flat increment and train the new leaf model L′0. The
units in L′0 for each superclass are summed up for a
branch model output unit.

units of the last hidden layer to the newly added output
layer units). This training is much more efficient than from
scratch.

We also evolve a new leaf model L′0 to have N1 output
units, trained with flat incremental with data of N1 classes.
Finally, we clone the branch model B by copying parameters
from L′0. As illustrated in Figure 4, and simply sum up the
softmax units belonging to each superclass as the predicted
probability of that superclass.

At this point, we have built two separate models, the first
is L′0, and the second is the branch model B and its leaf
models L1 to LK . Strictly speaking, choosing one over the
other depends on the estimation of extra model capacity de-
manded by the new classes. We adopt a simpler strategy to
simply let the two compete. This is illustrated in Algorith-
m 1.

Algorithm 1: ExtendLeafModel

input (L0,S): leaf model L0, superclass S
output (L′0,B,L1,L2, . . . ,LK): leaf model L′0 by flat

increment, leaf models {L1, L2, . . . , LK} and branch
model B by clone increment
/* flat increment*/

incrementally train L0 to L′0
/* clone increment */

error-driven preview of S
partition S into {S1, S2, . . . , SK}
clone L0 into new leaf models {L1, L2, . . . , LK}
for i = 1 to K do

incrementally train Li

end for
clone branch model B ← L′0
/* use clones or not */

if prediction accuracy {B,L1, L2, . . . , LK} > L′0 then
L′0 ← ∅

else
B ← ∅

end if
return (L′0, B, L1, L2, . . . , LK)

Note that all these models can be trained in parallel.
More importantly, the process of cloning and incremental
leaf model training automatically transfers features learned
from the old model L0 to the new leaf and branch models.

Comparing with training such new models from scratch, the
hope is that we can reach better accuracy with the same
amount of time budget, or retain the accuracy with shorter
training time, or both. Therefore, this is a building block
whose performance is critical, and is the subject of much
deeper analysis in later part of this paper.

4.2 Incremental Learning
Incremental learning from a single superclass can be gen-

eralized to a deeper hierarchy, at each step receiving new
batches of classes (Algorithm 2). The first step is to dis-
tribute all the new classes into the existing superclasses by
error-driven preview in a coarse granularity of superclass
(line 1 to 6). Next, for each leaf model l, we grow it using
flat increment or clone increment by Algorithm 1, discussed
previously. Note that if the clone increment is selected, l is
itself expanded to a subtree.

This algorithm can be applied repeatedly with new batch-
es of classes, and naturally support more levels of hierarchy,
independent of how many leaf models and how many levels
of hierarchy exists in the current model. As the hierarchy
deepens, the original trained branch models, especially those
near the root, might lose accuracy due to update in their
subtrees. We can choose to retrain each branch model by
simple flat increment training.

Algorithm 2: IncrementalLearning

input (S,L,B,Snew): superclass set S, leaf model set L
(each l ∈ L is corresponding to a s ∈ S), branch model
set B, new class set Snew

output (S,L,B): updated superclass set S, leaf model set
L, branch model set B
/* ditribute new classes to superclasses* /

calculate the confusion matrix Φ with entry Φ(c, s) for
probability of predicting c ∈ Snew to s ∈ S
for all c ∈ Snew do

select s ∈ S with maximum Φ(c, s)
s = s ∪ {c}

end for
/* incremental training */

for all s ∈ S and the corresponding l ∈ L do
(l′, b, l1, l2, . . . , lK) = ExtendLeafModel(s, l)
if b 6= ∅ then

insert b to B, replace l by {l1, l2, . . . , lK} in L
else

replace l by l′ in L
end if

end for
/* refine brach models (optional) */

for all b ∈ B do
incrementally train b according to updated subtrees

end for
return (S,L,B)

5. EXPERIMENTS
In this section, we will evaluate our framework on two

datasets, using convergence speed and classification accura-
cy as criterion to show how to learn faster and better incre-
mentally.

181

Dataset.
We prepare two datasets for our study. The first smaller

dataset include all the 398 animal classes in ImageNet 1K, in
which 501K and 18K images are used as the training set and
validation set, respectively. We call it ImageNet 1K Animal.
It is used primarily to understand the performance of initial-
ization with existing model parameters. We perform a fuller
experiment growing a model incrementally with the second
larger dataset selected from the 3998 animal synsets in Im-
ageNet 22K. Samples of these synsets have a few problems:

• Not all of them have image samples. For those that do,
there are severe unbalance in the number of samples;
some of them contain fewer than 10 images.

• The image samples of an inner node in the ImageNet
hierarchy can also belong to a leaf node. For such an
image, there are multiple labels.

We therefore take all the leaf nodes of animals in the Im-
ageNet 22K hierarchy. We also remove classes with fewer
than 100 images, results in 2282 classes. The training, val-
idation and testing set contains 85%, 5%, 10% of the data
respectively, with 1.6M, 91K and 183K images each. We call
it ImageNet 22K Animal.

To create an incremental training process, the small dataset
is incremented from 195 randomly drawn classes to 398 class-
es, whereas the big dataset is incremented from 1000 to the
full 2282 classes.

Model.
The baseline model is the one 8-layer convolutional net-

work as described in [14], with configuration shown in Ta-
ble 1. As discussed in Section 4.1, we have two ways to
extend the capacity, flat increment by increasing the soft-
max output layer size, and clone increment by duplicating
more models. In either case, the configurations stay the
same except the top output layer, and network parameter-
s are initialized by copying from an existing model, which
we call incremental learning. We also compare the results
against a baseline where the training starts from scratch,
which is called from-scratch learning.

Training Details.
One of the “black magics” in training a deep network is

the scheduling of learning rate adjustment. As we are inter-
ested in possible training time savings, we apply an adaptive
learning rate tuning strategy to avoid tuning by hand. After
training every 30K samples, we test with 1K samples ran-
domly drawn from the whole validation set. We compute
and monitor the average validation error for each epoch,
and if it doesn’t drop by more than 0.1% for three consec-
utive epochs, we stop the training or cut the learning rate
by 10-folds. For one complete training, the learning rate is
adjusted twice, starting from 0.01.

5.1 Result Overview

Results on ImageNet_1K_Animal.
With the model well trained on 195 animals, we can train

it for 398 animals incrementally or from scratch. Table 2
summarizes the comparison between these two choices, by
the error rates trained for different epochs. We hand-tuned
the learning rate of the incremental runs for we want them

Table 2: Incremental/from-scratch learning result-
s in ImageNet 1K Animal from 195 animals to 398
animals

Training Epochs Error Rate

from-scratch 41 38.6%
incremental 10 41.6%
incremental 20 39.2%
incremental 30 37.9%
incremental 40 36.8%

to train for certain epochs. We observe that we can achieve
better performance if we incrementally train from the exist-
ing 195-animal-model (36.8% versus 38.6%), taking slightly
less time than the scratch run. On the other hand, with 25%
few data (stopping with 30 epochs), incremental learning al-
ready beating the from-scratch one (37.9% versus 38.6%).

The scenario we consider here is one where a model of
smaller net has already been trained. From-scratch training
simply throws that model away, whereas ours leverages it.
The simple flat-incremental method actually creates a cur-
riculum learning [2] scenario. Training a net classifying 195
animals is an easier task compared with a net for 398 animal-
s. We observed positive effects both on convergence speed
and the quality of local minimum obtained. More analy-
sis is needed because curriculum learning study is currently
empirical.

Results on ImageNet_22K_Animal.
When class number grows from 1000 to 2282, we split the

superclass and do a clone increment from the 1000-animal-
model. The branch model and the two leaf models are all
incrementally trained by copying exiting parameters as ini-
tialization. Figure 5 shows the confusion matrices of the
existing 1000 and the new 1282 classes before clone incre-
ment. All these classes are partitioned into two superclasses
with 1350 and 932 classes, respectively (shown in red and
blue boxes in Figure 5). One can observe the similar error
distribution on the old and new classes.

Table 3: Incremental training result in Ima-
geNet 22K Animal dataset

Increment Training Error Rate Examples

flat from-scratch 49.46% 74.74M
flat incremental 49.15% 61.45M

clone incremental 48.52% 117.79M

Table 3 shows advantage of the incremental learning over
other training strategies. Column Increment shows how the
model capacity are extended, flat increment or clone in-
crement. Column Training tells how the new models are
trained, from-scratch or incremental. Column Examples ac-
counts the training examples sweeped to reach that accura-
cy. Note that if the model has several parts, the examples
of each part are summed up to fill the entry. Compared
with the baseline (the first row) with flat increment and
from-scratch learning, the flat increment combining incre-
mental learning (the second row) performs slightly better,
with 0.3% accuracy gain and 18% fewer training examples.
Finally, our increment (the last row), with more extra capac-
ity from clone, gains some more (48.52% versus 49.46% of

182

Table 1: Architecture of the baseline model
Layer 1 2 3 4 5 6 7 8

Type conv+max+norm conv+max+norm conv conv conv+max full full full
Channels 96 256 384 384 256 4096 4096 Output Dim
Filter Size 11*11 5*5 3*3 3*3 3*3 - - -

Convolution Stride 4*4 1*1 1*1 1*1 1*1 - - -
Pooling Size 3*3 3*3 - - 3*3 - - -

Pooling Stride 2*2 2*2 - - 2*2 - - -
Padding Size 2*2 1*1 1*1 1*1 1*1 - - -

1000 old classes

10
00

 o
ld

 c
la

ss
es

1000 old classes

12
82

 n
ew

 c
la

ss
es

Figure 5: Confusion matrix among 1000 original
classes (left), and the confusion matrix between new
1282 classes and original 1000 classes (right). The
partitioning has been done (in red and blue boxes,
respectively).

baseline) but with substantially more data training the leaf
models. The total amount of time needed won’t increase if
trained in parallel.

To understand the benefit of clone increment, we do a
breakdown analysis in Table 4 and Table 5. Flat-incremental
model achieved 49.15% overall error rate, in which the super-
class 1 and 2 have 45.79% and 56.02% error rates, respective-
ly. If the branch model is perfect, the two leaf models obtain
44.43% and 54.79% error rates, gaining more than 1.2% ac-
curacy each. Accounting the prediction error of the branch
model, the 2-level model achieves 45.03% and 55.63%.

Table 4: Breakdown comparison between cloned
models and the flat-incremented model

Model Superclass 1 Superclass 2

cloned leaf1 44.43% N/A
cloned leaf2 N/A 54.79%

cloned branch * 2.20% * 4.11%
cloned leafs+branch 45.03% 55.63%

flat-incremented model 45.79% 56.02%

The end performance on a given superclass can not be de-
rived from the average accuracy of a leaf model (i.e. 55.57%
superclass 1) and the branch accuracy (i.e. 97.80%). For
superclass 1, this will yield the error rate to be 1− 0.5557 ·
0.9780, which is 45.65%. This is higher than we actually get
(45.03%). Why is that?

The reason is that the images misclassified by the branch
are also more difficult to be classified correctly by the leaf

Table 5: Conditional Leaf Model Error
SuperClass Branch Correct Branch Miss

SuperClass1 43.79% 72.89%
SuperClass2 53.72% 79.76%

model. Table 5 shows the error rate if we divide the da-
ta according to the branch decision. It is clear that there
exists such a strong correlation. This is both subtle and
intuitive, and explains the apparent discrepancy described
earlier. The correct way to compute the performance on a
given superclass is:

Ewhole = 1− (1− EL|BCorrect
) ∗ (1− EB) (1)

The conditional probability that an image is correctly
classified given that it is correctly predicted by the branch
(1−EL|BCorrect

) is not equal to and higher than its average
(1−EL). Improving the branch model will help, but with a
diminishing return.

5.2 Leaf Model Learning Analysis
In our architecture, each leaf model is cloned to deal with

one superclass, which includes part of the old classes and
some extra new classes. In this section we perform a detailed
analysis, showing why initialization with existing parameters
is advantageous, and furthermore how new features fight a
continuous “tug-of-war” with the old ones. The study is on
the 1350 superclass partition, which includes 602 old classes
and 748 new ones.

5.2.1 Advantage of Incremental Learning
In Figure 6, we compare the error curves of incremental

learning versus one that is trained from scratch. It is obvious
that the error rate of incremental learning drops much faster.
Such speedup benefits are the results of bigger gradients
on weights, which subsequently relate to activations in the
forward pass, and derivatives in the backward pass.

Figure 7 shows the `2 norms of the weight gradients be-
tween different layers as a function of training epochs. To
save space, only the gradient between layer 7 and 8, and that
between layer 1 and 2 are shown, as representatives of classi-
fication layers and low feature extraction layers, respective-
ly. The gradient curves between other layers have similar
trends. In the first 150 batches, the incremental learning
produces much bigger gradient than the from-scratch learn-
ing in both high and low layers. This explains why error
rate of the incremental learning drops quickly in the same
period, as it is able to descend the error surface faster. As
training progresses to later epochs, the differences between
incremental and from-scratch gradually disappears.

183

0 100 200 300 400 500
0.7

0.8

0.9

1

1.1

Batch

Er
ro

r R
at

e

Incremental
Scratch

Figure 6: Learning curves of incremental run and
scratch run in the first 500 batches

0 100 200 300 400 500
0

5

10

15

20

25

30

Batch

l2 n
or

m
 o

f g
ra

di
en

t

Gradient on Layer 2

0 100 200 300 400 500
0

10

20

30

40

50

Batch

l2 n
or

m
 o

f g
ra

di
en

t

Gradient on Layer 8

Incremental
Scratch

Figure 7: l2 norm of the gradient in layer 2 and layer
8 in the incremental run and the scratch run

What leads to the bigger gradients? In back-propagation,
the gradient of the weights between layer i−1 and i, gi−1,i ≡

∂E
∂Wi−1,i

, is the outer product of xi−1, the activation of layer

i−1 computed in the forward pass, and ei, the error deriva-
tives of layer i computed in the back propagation pass. In
other words, gi−1,i = ei · xT

i−1. For example, g7,8 = e8 · xT
7 .

First, we dive into the activations. In Figure 8, we plot
the `1 norm of the activations in layer 7 and layer 1. We
can see that in the feature extraction layers (e.g. layer 1),
the activations all rise, signaling the learning and activa-
tion of new features. The one with incremental learning
starts with bigger values (roughly five times bigger) and in-
crease slowly, the reason is that incremental learning is able
to reuse existing features and is therefore less motivated to
learn new ones. In the classification layer, activations of in-
cremental learning are also much higher, since from-scratch
are gradually moving forward with random (and therefore
lower) activations.

Next, we look at error derivatives to check how the error
signals are propagated down by the back-propagation algo-
rithm. The last layer’s error derivative e8 is simply the gap
between label and output. While from-scratch is essential-
ly making random guesses and suffering from high errors,
incremental learning at least are getting most of the predic-
tions of the old classes correct. As such, higher classification
layers in from-scratch learning has bigger errors to start the
propagation, as shown in Figure 9. Things are different for
lower layers. The back-propagation is governed by

ei =
∂xi

∂zi
�WT

i,i+1 · ei+1 (2)

0 100 200 300 400 500
0

2

4

6

8

10

12

14
x 106

Batch

l1 n
or

m
 o

f a
ct

iv
at

io
n

Activation on Layer 1

0 100 200 300 400 500
200

400

600

800

1000

1200

Batch

l1 n
or

m
 o

f a
ct

iv
at

io
n

Activation on Layer 7

Incremental
Scratch

Figure 8: l1 norm of the activation in layer 1 and
layer 7 in the incremental run and the scratch run

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

Batch

l1 n
or

m
 o

f e
rr

or
 d

er
iv

at
iv

e

Error Derivative on Layer 2

0 100 200 300 400 500
0

0.005

0.01

0.015

0.02

0.025

Batch

l1 n
or

m
 o

f e
rr

or
 d

er
iv

at
iv

e

Error Derivative on Layer 8

Incremental
Scratch

Figure 9: l1 norm of the error derivative in layer 2
and layer 8 in the incremental run and the scratch
run

and a series of randomly initialized weights of the layers
diminishes the error derivatives towards lower layer, as is the
case of from-scratch learning. Weights in the incremental
learning start with structures that allow the prediction of
existing classes, and thus allow easier propagation of error
signals. As such, in lower layers (such as layer 2) the error
derivatives are larger.

The above observations can be summarized as the fol-
lowings. Incremental learning has higher activation due to
learned features being reused, which also allows errors to
propagate more smoothly downwards. Neither is true for
from-scratch learning, whose only drive is the bigger error
at the output layer. As such, incremental learning has bigger
gradients and descent faster.

5.2.2 Interference between new and old classes
By the virtue of the error-driven preview and the sub-

sequent partitioning, classes within a superclass is similar.
Since the cloned leaf model was originally trained on old
classes (some of them have been moved to another super-
class), at the beginning of the training all new classes are
misclassified as old ones (see Figure 10). Figure 12 is an
illustration of some new classes being classified into similar
old classes.

The leaf model slowly learn the new classes. Meanwhile,
the prediction accuracy of old classes recovers from some
damages. As it turns out, such interference is the driving
force for low layers to learn new features that helps separate
new classes from old ones. We offer a detailed analysis below.

To make things simple, we will only concentrate on the
interference between a pair of similar classes, one old and
one new. As illustrated in Figure 11, y1, t1 and w1 are the

184

0 100 200 300 400 500

0.7

0.8

0.9

1

Batch

Er
ro

r R
at

e

New
Old

Figure 10: Learning curves of old and new classes.

1y 2y

1w 2w

1t 2t...
...

output

target

Feature
Extraction

Classification
(softmax)

}{ 21 h,h

}{ 21 x,xinput

feature

Figure 11: Inference between new and old classes.
Input x1 with feature h1 belongs to old classes (tar-
get t1 = 1); x2 with h2 belongs to new classes (target
t2 = 1).

output, target, output weight vector for the old class unit
respectively, as are y2, t2 and w2 for the new class unit. At
the beginning of incremental training, w1 is copied from the
previous training result, and w2 is just randomly initialized.
Given an input sample vector x1 in old class, the last hidden
layer outputs its feature vector h1. Since the model is well
trained on old classes, y1 = t1 = 1. Because softmax output

y1 = e〈w1,h1〉∑
k e〈wk,h1〉

, this correct prediction is due to a big inner

product 〈w1,h1〉. Without any error on this sample, back-
propagation doesn’t make any update on weight w1 and w2.

Instead, x2, being similar to x1, is wrongly predicted as
the old class because of the big inner product 〈w1,h2〉. That
means that, unsurprisingly, h1 and h2 are highly correlated,
with a big inner product 〈h1,h2〉. Back-propagation starting
from the mismatch between output (y1 = 1, y2 = 0) and the
target (t1 = 0, t2 = 1) makes update on both w1 and w2,

w′1 = w1 − ε · h2(y1 − t1) = w1 − ε · h2

w′2 = w2 − ε · h2(y2 − t2) = w2 + ε · h2 (3)

where ε is the learning rate. It effectively “shaves” some
weights off w1 and moves them to w2, and damages w1 in
the sense that if the model sees x1 again, y1 is a little less
to be turned on. That’s formulated by

〈w′1,h1〉 = 〈w1,h1〉 − ε · 〈h2,h1〉 (4)

So the stronger the correlation between h1 and h2, the more
damage it is. As the training proceeds by alternating be-
tween these two samples, the net result is a compromising
accuracy for either one of the class. To see why this is so,

Yorkshire
terrier

Y k hi

Old

Silky terrier

New

Black
rhinoceros

White
rhinoceros

Sassaby Hartebeest

Emperor moth Polyphemus
moth

Figure 12: Examples of some new classes being mis-
classified into similar old classes at the beginning of
training.

consider a state when both classes are correctly predicted.
This state cannot be a stable state as the correlation be-
tween h1 and h2 will cause interferences that will weaken
their weights in turn.

0 100 200 300 400 500
10

20

30

40

50

Batch

Eu
cl

id
ea

n
D

is
ta

nc
e

Figure 13: Changing of feature distance between
new class ‘silky terrier’ and old class ‘yorkshire ter-
rior’.

That means, however, that the back-propagation, being
optimum-pursuing, will eventually separate h1 and h2 by
forcing the error propagates downwards. As shown in Fig-
ure 13, old class ‘yorkshire terrior’ and new class ‘silky terri-
er’ have very close features at the beginning of training, with
the latter misclassfied as the former. Quickly, their feature

185

distance widens, driven by the interference in classification
layer to improve the prediction accuracy. The growth of the
capacity for this fine-grained feature learning is hopefully s-
tolen from classes that are moved away into other superclass
(and not seen by the model any more).

6. CONCLUTION
We believe that tackling large-scale image classification

task can and should take a divide and conquer approach,
and do so incrementally. This study establishes a framework
to do so with a training procedure that grows the network
capacity hierarchically. The overall performance numbers
are positive, but not overwhelmingly so. We take this as
a steppingstone and the experiences point out a few lessons
and future directions, which we summarize as the followings:

• Cloning naturally inherits leaned features. However,
there is a tug-of-war between old and new features, in
addition to removing old features that were acquired
on removed classes. The current way of training with
vanilla back-propagation does not seem to be efficient.

• At the time of performing superclass partition, we have
a fair amount of knowledge of errors within each par-
tition. Cloning with the exact same configuration sim-
plifies parameter initialization, at the expense of miss-
ing needed capacity increase.

• The branch model should focus on differentiating su-
perclasses, our current training model deprives it from
such opportunities.

We are actively pursuing the above directions.

7. ACKNOWLEDGMENTS
This work was supported by National Hi-Tech Research

and Development Program (863 Program) of China under
Grants 2014AA015102 and 2012AA012503, National Nat-
ural Science Foundation of China under Grant 61371128,
and Ph.D. Programs Foundation of Ministry of Education
of China under Grant 20120001110097.

8. REFERENCES
[1] Y. Aytar and A. Zisserman. Tabula rasa: Model transfer

for object category detection. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2252–2259.
IEEE, 2011.

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pages 41–48.
ACM, 2009.

[3] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. What does
classifying more than 10,000 image categories tell us? In
Computer Vision–ECCV 2010, pages 71–84. Springer,
2010.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
IEEE, 2009.

[5] R. Elwell and R. Polikar. Incremental learning of concept
drift in nonstationary environments. Neural Networks,
IEEE Transactions on, 22(10):1517–1531, 2011.

[6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes (voc)
challenge. International Journal of Computer Vision,
88(2):303–338, June 2010.

[7] L. Fe-Fei, R. Fergus, and P. Perona. A bayesian approach
to unsupervised one-shot learning of object categories. In
Computer Vision, 2003. Proceedings. Ninth IEEE
International Conference on, pages 1134–1141. IEEE, 2003.

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 28(4):594–611, 2006.

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples: An incremental
bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding, 106(1):59–70,
2007.

[10] I. J. Goodfellow, M. Mirza, X. Da, A. Courville, and
Y. Bengio. An empirical investigation of catastrophic
forgeting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

[11] G. Griffin, A. Holub, and P. Perona. Caltech-256 object
category dataset. 2007.

[12] G. Griffin and P. Perona. Learning and using taxonomies
for fast visual categorization. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pages 1–8. IEEE, 2008.

[13] J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and
T. Darrell. One-shot adaptation of supervised deep
convolutional models. arXiv preprint arXiv:1312.6204,
2013.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, volume 1, page 4, 2012.

[15] I. Kuzborskij, F. Orabona, and B. Caputo. From n to n+
1: Multiclass transfer incremental learning. In Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, pages 3358–3365. IEEE, 2013.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to
detect unseen object classes by between-class attribute
transfer. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 951–958.
IEEE, 2009.

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on,
volume 2, pages 2169–2178. IEEE, 2006.

[18] Z. Lu and Y. Peng. Image annotation by semantic sparse
recoding of visual content. In Proceedings of the 20th ACM
international conference on Multimedia, pages 499–508.
ACM, 2012.

[19] F. Perronnin, J. Sánchez, and T. Mensink. Improving the
fisher kernel for large-scale image classification. In ECCV,
pages 143–156. Springer, 2010.

[20] C. Snoek, K. van de Sande, D. Fontijne, A. Habibian,
M. Jain, S. Kordumova, Z. Li, M. Mazloom, S. Pintea,
R. Tao, et al. Mediamill at trecvid 2013: Searching
concepts, objects, instances and events in video. In NIST
TRECVID Workshop, 2013.

[21] S. Thrun. Is learning the n-th thing any easier than
learning the first? Advances in neural information
processing systems, pages 640–646, 1996.

[22] T. Tommasi, F. Orabona, and B. Caputo. Safety in
numbers: Learning categories from few examples with
multi model knowledge transfer. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 3081–3088. IEEE, 2010.

[23] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong.
Locality-constrained linear coding for image classification.
In Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 3360–3367. IEEE, 2010.

[24] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine learning,
23(1):69–101, 1996.

186

