
Using Pre-Release Test Failures to Build

Early Post-Release Defect Prediction Models

Kim Herzig

Microsoft Research

Cambridge, United Kingdom

kimh@microsoft.com

Abstract—Software quality is one of the most pressing

concerns for nearly all software developing companies. At the

same time, software companies also seek to shorten their release

cycles to meet market demands while maintaining their product

quality. Identifying problematic code areas becomes more and

more important. Defect prediction models became popular in

recent years and many different code and process metrics have

been studied. There has been minimal effort relating test

executions during development with defect likelihood. This is

surprising as test executions capture the stability and quality of a

program during the development process. This paper presents an

exploratory study investigating whether test execution metrics,

e.g. test failure bursts, can be used as software quality indicators

and used to build pre- and post-release defects prediction models.

We show that test metrics collected during Windows 8

development can be used to build pre- and post-release defect

prediction models early in the development process of a software

product. Test metrics outperform pre-release defect counts when

predicting post-release defects.

Keywords—measurement, software testing, development

process, defect prediction

I. INTRODUCTION

Although product quality may still be the most important
concern for most software companies, there is increasing
pressure on development teams to deliver more features in
shorter periods of time. The competition to gain or defend
market share impacts development processes: developers are
expected to work more efficiently while maintaining or
increasing product quality. Thus, it becomes increasingly
important to identify product issues early in the development
process to ensure product quality without delaying product
release. This situation is not new and there exists a large number
of studies that investigate a wide variety of code and process
metrics to estimate code quality before release [1,2,3,4,5,6,7]. A
prominent intention of prediction models is to support and guide
software testing: which code areas should be tested more
thoroughly? However, releasing products in shorter periods of
time also drives many product teams towards continuous
integration and agile methods. Instead of dedicated testing
milestones, code quality is ensured continuously. As a
consequence, quality models should be usable early in the
development process and should be capable of adapting
themselves to code quality changes. However, static code
properties do not significantly change their values when
applying bug fixes. Both approaches may be too static to be

continuously used during development. Constantly monitoring
program behavior and health is needed: how does the program
perform and how frequently does it fail to meet the specified
functionality? Test cases check for such scenarios and report
wrong, missing, or ambiguous program behavior. Collecting test
execution results provides a history of program behavior during
individual development periods.

The experiments described in this paper are designed to
answer the following research questions:

RQ1) Do test execution metrics correlate with pre- or post-

release defect counts for binaries and source code files?

RQ2) How effective are post-release defect prediction

models based on test execution behavior metrics?

RQ3) Can test execution behavior metrics collected during

a pre-release development milestone be used to predict

pre-release defects for the later development milestones?

RQ4) What test execution metric seem to have the highest

defect prediction potential?

RQ5) Do test execution metrics perform as proxy for post-

release defects or do these metrics add additional value?

Existing effort to relate test behavior to code quality mainly

focus on software reliability growth models (SRGMs), e.g.
Musa et al. [7]. These models track and stochastically model the
evolution of software quality. However, there exist indications
that SGRMs may not fit in cases in which testing-effort is not
constant [8] or if the software is constantly evolving [7]. In this
paper, we do not investigate a stochastic model of possible
quality evolution but rather explore the relationship
(correlations) between long-term development test case
execution behavior and code quality for evolving software
systems. For this purpose, we mine and interpret system and
integration test results collected during Windows 8
development. We further present a series of test execution
metrics that summarize results and diversity of system and
integration tests used to verify individual code changes.
Mapping these code changes to source files and binaries, we are
able to measure aggregated test execution behavior for
individual source files and binaries. The results of this study
show that test execution metrics can be used to derive pre- and
post-release defect prediction models showing promising
precision and recall values. Our results suggest that test metrics
seem to outperform pre-release defect count measures when

predicting post-release defects and that test bursts as well as the
diversity of test failure scenarios seem to be important code
quality indicators.

II. BACKGROUND

A. Branches

Development processes and branching structures for large
software systems, such as Microsoft’s Windows operating
system, are complex and tend to be unique. For the sake of
brevity, we provide a high-level description that contains
enough information to make this paper self-contained. For
details, we refer to Bird and Zimmermann [9]. Source code
branches in Windows are organized in a tree structure with the
stable main trunk branch as the root node (see Fig. 1). Branches
are grouped by their branch level representing the distance of the
branch to the main trunk branch (branch level zero). Branches at
branch level one directly integrate into trunk while branches at
branch level two integrate into branches at branch level one.
Engineers commit code changes to development branches
represented by leave nodes of branching tree allowing them to
work in isolation. To integrate these code changes into trunk,
changes must be pushed down the tree progressively merging
code changes of different sub branches implemented in parallel.
Once a code change is integrated into trunk, it is accepted and
included in the next release of Windows.

B. Windows Quality Gates

Each edge in the Windows branching tree represents an
integration path from one branch to a branch of the next lower
level branch level. Each of these integration paths are guarded
by quality gates, which are large system and integration test
suites verifying that code changes meet the quality standards
before they get further integrated into the Windows code base
(see Fig. 1). If any of the tests executed by a quality gate fails,
the scheduled integration will be cancelled and the failure
reported for manual triage. Each quality gate executes multiple
test cases and each test case can either pass or fail—an exception
are test cases that timeout or are cancelled. In theory, every
failing gate task hints to a code issue in the code base currently
under test. However, the complexity of Windows and the
complexity of the individual test cases themselves may cause
test cases to fail due to test and infrastructure issues (we discuss
this issue in more detail in Section III).

Quality gates execute test cases in multiple execution
contexts: on different branches, different architectures (e.g.
x86), different languages (e.g. en-us), and different build types
(with and without debug symbols). The combination of these
four factors (branch, architecture, build type, language) define
the execution context of a test case. Test cases executed in
different execution contexts must be handled separately.

Each code change submitted in one of the branch tree’s leaf
nodes has to pass through multiple integration branches before
being integrated into the trunk branch. On its way down the
branch tree, each code changes has to passed multiple quality
gates—at least one at each branch level—and undergoes
continuous system and integration testing.

III. DATA COLLECTION

The goal of this study is to investigate whether pre-release
test metrics can be used to assess code quality during
development as well as for released binaries (e.g. dll or exe files)
and source files. The set of test execution metrics we collected
can be grouped into five main groups: test case count metrics,
quality gate count metrics, test case property metrics, test failure
burst metrics, and code review metrics.

Before discussing these test metric groups in more detail, it
is important to understand how the desired final data set will be
organized. Fig. 2 illustrates the main structure of the data set that
we will use to train and test various prediction models. Each row
in this data matrix corresponds to one code entity (source file or
code binary) identified by a primary key (e.g. file or binary
name). The remaining columns of the data matrix correspond to
individual metrics described in this section.

TABLE I. contains a short description of all test metrics
collected and used during this study. A more detailed description
of these metrics is given in the following subsections. Note that

Development
branch

Multi-area
branch

Multi-component
branch

main trunk
branch

Quality gate
(component testing)

Quality gate
(component testing)

Quality gate
(component testing)

Branch level 0

Branch level 1

Branch level 2

Branch level 3

Version Control Branch Tree

Fig. 1. Windows branching tree. Code changes have to pass quality gates to get integrated into lower level branches.

C
o

d
e

 e
n

ti
ti

e
s

(f
ile

s/
b

in
a

ri
e

s)

Test & review metrics

Fig. 2. Data collection used to predict post-release fixes for Windows 8 source

files and binaries.

metrics described in this section are collected on different levels
of granularity and aggregated to match the corresponding code
entity granularity: source code files and code binaries. To
investigate the predictive power of test execution behavior over
time, we collect the metrics described in this section over all
milestone periods of Windows 8.

A. Test Execution Metrics

Usually, testing an already tested code base is only necessary
when new code changes have been applied to the code base. The
goal is to investigate whether the applied code changes may
have compromised code quality. Thus, test results can be
associated with sets of code changes applied to the code base
tested by the corresponding quality gates. To model these
associations, we performed the following steps:

Step 1: For each code change submitted to any code branch,

we trace the code change’s integration path through the

branching tree—from the development branch to the main

trunk branch. For each code change, we get a sequence of

branches and timestamps that identify when and where the

code change was applied. Using this sequence, we can

identify quality gates that tested code bases modified by

the code change across all branches (see Fig. 1).

Step 2: We then decompose quality gates into their

individual test cases and associate execution context

properties of the individual test case (e.g. architecture the

test was executed on) and the result of each executed test

case to the corresponding code change.

Step 3: Having test results associated with code changes, we

decompose the code changes themselves to identify the

code files they altered. Each file/binary modified by a

code change will be associated with all corresponding test

metrics. We aggregate test metrics of multiple code

changes to single code entities using the following

aggregation functions: sum, mean, median, max.

Fig. 3 visualizes this mapping process for source files. We
used build information to identify source files that contribute to
binaries. In the remainder of this section, we discuss individual
test metrics we collected and the rationale behind them.

False Test Failures
Nearly all proposed test metrics count the number of failing

test cases on different levels of granularity. However, as Fenton
et al. point out: “[…] the results of the testing are likely only to
be as trustworthy as the quality of the testing done” [10]. In order
to assess the quality and reliability of test cases, we categorize
test results into three different categories: (1) passing tests, (2)
tests that fail but report a false alarm (false positive: FP), or (3)
tests that fail and report code issues (true positive: TP). To
separate false alarms from test failures due to code issues, we
make use of bug reports linked against test failures and trace
development activities triggered. If a test failure led to a bug
report that was later fixed by applying a code change we mark
the failure as a true positive (TP). Otherwise, the result of the
failing test case is classified as false positive (FP). The main
reason for FPs are test and infrastructure issues, e.g. a test
requires a remote server to fetch test input, but the remote server
could not be reached. FPs can have severe consequences as the
failure requires manual inspection. Test cases reporting too

TABLE I. TEST METRICS USED IN THIS STUDY. FOR EACH METRIC WE

COLLECT ABSOLUTE AS WELL AS RELATIVE NUMBERS.

Name Description

Test metrics counting individual test cases

FPFailures Number of individual test failures due to test and
infrastructure issue; over all branches.

TPFailures Number of individual test failures that reported at
least one code issues; over all branches.

Test metrics counting quality gates
FPGates Number of quality gates that reported at least one

false positive test case failure.
TPGates Number of individual test failures that reported at

least one code issues.

Test metrics counting failed test execution contexts
TestSuites Relative number of distinct test suites that

reported at least one code issues; over all branches.
TestCases Relative number of distinct test cases that reported

at least one code issue.
Branches Relative number of distinct branches on which at

least one code issue was detected.
Architectures Relative number of distinct architectures (e.g. x86,

amd64) on which at least one test case reported at
least one code issue.

BuildTypes Relative number of distinct build types (release or
debug) on which at least one test case detected at
least one code issue.

Languages Relative number of distinct languages (e.g. en-us)
of test cases that reported at least one code issue.

Test failure burst metrics
NumTPBursts The number of code issue test failure bursts on the

integration path into the main branch. Computed
for all combinations of gap sizes and burst sizes
between 1 and 3.

MaxTPBurst The size of the largest test failure burst occurred on
the integration path into the main branch.
Computed for all combinations of gap sizes and
burst sizes between 1 and 3.

NumFPBursts Same as NumTPBursts but for false test alarms.
MaxFPBurst Same as MaxTPBurst but for false test alarms.

Code review metrics
Reviews Number of distinct code changes that were code

reviewed prior to check-in and quality gate testing.

Test metrics counting code changes
BugChanges Number of distinct code changes that modified the

corresponding code entity and for which at least
one test case reported at least one code issue. (no
aggregation)

Source file

Code change Code change

System & integration test executions

dev branch branch B2 trunk branch

Fig. 3. Mapping test case execution results to code changes and their

corresponding source code files. Source files can then be associated with code

binaries.

many FPs are considered as unreliable and are often treated as
useless, although some failures might have unveiled real code
issues. Thus, we explicitly modelled FP test failures in the below
described set of metrics.

Counting individual test failures
The first group of test metrics (first section in TABLE I.)

simply counts the number of failed test case executions. Note
that one test case might be executed multiple times even within
one quality gate. As discussed above, we count TP and FP test
failure separately.

Counting failed quality gates
Counting individual test case failures does not reflect the

number of distinct quality gates that caused this number of test
cases to fail. Cases in which only few quality gates failed might
indicate specific code issues detected only by the corresponding
tests. Causing a broad list of quality gates to fail might indicate
more severe and broad scale issues. Thus, we count the number
of individual quality gates that failed at least once for code
changes applied to the code entity. Note that this metric
correlates with churn measures; e.g. number of applied code
changes. The more frequently a file or binary is altered, the more
test will be executed and the more test results can be associated
with the code entities.

Failed execution context
As discussed in Section II.B, test cases are executed in

different execution contexts (e.g. architecture or language) and
we suspect the context in which a test case fails to be important.
Thus, the third group of test metrics counts distinct execution
contexts tests cases failed in. For example, we count the relative
number of architectures a test case fails on—relative to the total
number of architectures all test cases associated with the code
artifact were executed on. The rationale behind counting the
relative number of execution contexts (e.g. architectures) is to
estimate the severity of test failures. Code issues detected only a
small fraction of architectures are likely to be architecture
specific and thus harder to replicate and detect when compared
to code issues affecting all architectures. A value of one for these
metrics refers to cases in which test suites for all possible
execution contexts (e.g. architecture) failed at least once. See
TABLE I. for all possible execution context measurements and
a more detailed descriptions of these metrics.

Test Failure Bursts
So far, we counted the number of failures on different levels

of granularity and across different execution context properties.
However, none of these count metrics reflects possible
dependencies between the observed test failures. Nagappan et
al. [11] defined the concept of change bursts that captures the
number of consecutive changes applied to code artifacts. The
authors showed that change bursts are excellent indicators of
code quality issues. Change bursts identify complex and hard
code changes that had to be frequently revised. We adapt this
basic concept of change bursts to testing and define the concept
of test failure bursts analogue.

As discussed in the beginning of this section, we associate
code changes to sequences of test executions performed on the
integration path of the code change from its development branch
into trunk. For each of these sequences, we can now count the

number of subsequent test failures on this integration path. Since
quality gate failures bring the integration process for the affected
branch to a halt, these failures must be resolved immediately by
applying a bug fix. Thus, a series of quality gate failures
indicates incomplete bug fixes or a series of severe merge
conflicts. For each code change we determine its test failure
bursts as sequences of consecutive true positive quality gate
failures. These test failure bursts are determined by two
parameters:

Gap size. Shorter gaps between sequences of test failures

are likely. Nagappan et al. [11] introduced the concept of

gap size G, which determines the minimum distance

between two true positive test failures. If two true positive

test failures have a distance shorter than G, they will be

part of the same burst. If we set the gap size to 1, then all

directly consecutive test failures will be merged to bursts.

Increasing gap size to two allows one passing test

execution to “interrupt” failing test executions without

causing a new burst (see last line in Fig. 4).

Burst size. The burst size B determines the minimal number

of consecutive (with respect to the specified gap size) true

positive test failures required in order to be counted as

burst. If the number of true positive test failures in a burst

is small than B, it will not be considered.

As an example consider Fig. 4. Assume we are investigating
one code change and know the sequence of quality gate results
for that particular code change (x-axis). Gate executions marked
by a failure symbol  reported at least one test failure. The
number of test bursts for that code change depends on the two
parameters gap size and burst size. In Fig. 4, red bars correspond
to test failure bursts and depend on burst and gap size. Again,
we count the number of test bursts for true positive test failures
and false test alarms separately (see fourth section in TABLE I.
). Further, we compute test bursts for all combinations of gap
and burst sizes between one and three.

B. Code Review Metrics

In addition to test metrics described in Section III.A, we also
include two measurements indicating whether code changes
applied to code entities got manually reviewed or not. As a pre-
check-in verification process, code reviews have shown to
improve code quality and thus might influence the estimation of
the severity of test failures encountered [6]. Code issues elapsing
the code review but caught by test cases either determine the
effectiveness of code reviews for these corresponding code
changes, or simply hint to the fact that these defects were hard

Quality Gate Executions

Gap

Size

1

1

2

Burst

Size

1

2

1

Fig. 4. How gap size and burst size determine test failure burst detection from

a sequence of quality gate executions. Take from [11] and slightly modified.

to spot in code reviews and thus indicate tricky and complex
code changes that might hold more still undetected code issues.
For each source file or code binary, we report the absolute and
relative number of code changes that were reviewed by at least
one additional developer.

C. Pre- and Post-Release Defects

As quality measurement, we are using the number of pre-
and post-release defects fixed in the corresponding source files
and code binaries respectively. A post-release issue is an issue
detected after releasing the corresponding software product to
the public, but it does not state whether the code issue has been
found by a customer or internally. Analogously pre-release
defects are code issues reported and fixed during the regular
development period. Post-release defects are of particular
interest. These issues escaped quality assurance efforts and got
exposed to customers. Nevertheless, pre-release defects can be
of interest to fine tune development processes and to draw
attention on code areas that seem to become or already are
struggling with respect to code quality.

To identify post-release defect fixes, we counted the number
of code changes applied in Windows 8 service pack branches.
These branches serve as sink of defect fixes that will eventually
be shipped to customers as part of a service pack or hot-fix. No
feature development is permitted on these branches.

Identify pre-release defects is slightly more difficult. We
used the CODEMINE [1] approach and tool developed at
Microsoft and performed the following steps to identify pre-
release defects and their affected source files and code binaries:

Step 1: We extract all bug reports filed against the product

release under investigation. Only bug reports whose

creation timestamps map to the development period of the

corresponding product release and that were marked as

closed and resolved or fixed were selected. We further

associate bug reports with individual development

milestones and will use this information for the

experimental setup described in Section IV.C.

Step2: For all pre-filtered bug reports from step 1, we search

for code change identifiers in bug reports and bug report

references in code change commit messages. The result

are pairs of bug reports and code changes for which at

least one of the two pair elements references the

respective other pair member.

Step 3: We remove all pairs for which we find no indication

that the applied code change applies a fix for the code

issue described in the corresponding bug report. For this

purpose, we use key words (e.g. fix or patch) and common

commit message templates. For more details, we refer to

the detailed description of CODEMINE [1].

Thus, each pre-release defect is associated with a bug report
filed against Windows 8 that got resolved as fixed and can be
associated with at least one code change applied to the Windows
8 code base and that claims to fix the defect.

To associate defects (pre- and post-release) with source code
entities, we identify all code entities altered by the defect fixing
code change and count the number of distinct bug reports per

code entity—we treat bug reports marked as duplicates as one
bug report, thus counting only one bug report per group of bug
report duplicates. When rolling metrics up to binary level, we
excluded library files—files that get compiled into more than
100 binaries—and duplicated binaries—binaries with different
names but with more than 90% equal content.

IV. EXPERIMENTAL SETUP

In all experimental setups, we explicitly distinguish between
two levels of code entity granularity: binaries and source code
files. The reason is that many defect prediction models
previously reported on Microsoft Windows were conducted on
binary level. However, prediction models on that rather low
level of granularity seem to be not actionable for development
and product teams. Binaries combine hundreds of source code
files and thousands of lines of code. Predicting defects for these
large entities raises the question for more specific location as
testing or reviewing code that is compiled into that binary is a
massive challenge. Predicting defects for source files level is
more challenging though. The defect density on this fine level
of granularity is much lower and it is harder to identify those
properties that actually correlate with defects.

A. Correlations between Test Metrics and Defects (RQ1)

To show basic relations between test behavior and defect
counts, we computed spearman rank correlations between test
execution metrics (Section III.A) and pre- and post-release
defect counts (Section III.C). Correlation values lie between -1
and 1 and describes how well the dependency between two
metrics can be described using a monotonic function. A
correlation value of 1 or -1 occurs when one metrics is a perfect
monotone function of the respectively other measurement. To
conduct this experiment, we use metrics collected during the
entire development period and correlated these metrics against
the entire set of observed pre- and post-release bugs
respectively.

B. Predicting Post-Release Defects (RQ2)

Rank correlations are good indicators of whether a metric
might be a good predictor for a dependent variable. However,
rank correlations do not allow to draw precise conclusions on
how well a predictor based on multiple of these metrics will
eventually perform. To investigate how well prediction models
based test execution behavior metrics can predict post-release
defects, we trained and tested actual prediction models. For both
levels of granularity, binaries and source code files, we built
classification models trained to separate entities that contained
post-release defects from entities for which no post-release
defects were recorded. We consider an entity defective if at least
one post-release code fix altered the file.

To train individual prediction models, we use a data
collection described in Section III that contains all described test
behavior metrics collected over the entire development period
of Windows 8 (independent variables) and the number of fixed
post-release defects as dependent variable. We then split the
overall collected data into two subsets: one used for training the
other for testing purposes. We split the overall dataset into 2/3
training and 1/3 testing instances using stratified sampling—the
ratio of code entities associated with post-release defects from
the original dataset is preserved in both training and testing

subsets. Further, we repeatedly sampled the original data sets
100 times (100-fold cross-validation) using our splitting scheme
in order to generate 100 independent training and testing
subsets. We conducted the experiments using the R statistical
software [12] (version 3.10) and more precisely Max Kuhn’s R
package caret [13] to train, tune, and test a set of six different
machine learning models described in more detail in TABLE II.
Each model is optimized by the caret package optimizing
various tune parameters (please see caret manual for more
details). The level of performed optimization can be set using
the tuneLength parameter, which is set to five for all experiments
reported in this paper.

We further removed constant metric and highly inter-
correlated metrics columns, centered and rescaled the data
values, before applying principal component analysis (PCA).
Using PCA, we selected principal components that accounted
for 95% of variance.

To compare the actual observed and predicted classes for
individual code artifacts categorized each predicted value into
four individual categories as shown in Fig. 5. As evaluation
measure we report precision and recall where precision and
recall are defined as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃)
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁).

Each of these measures is a value between zero and one. A
precision of one indicated that the classification model does not
report a single false positive—that is classifying a non-defective
code entity as defective. A recall of one would imply that the
classification model does not report any false negatives.

C. Predicting Pre-Release Defects for Development

Milestones (RQ3)

To answer research question RQ3, we use the basic
experimental setup as described in Section IV.B, but choose
different time frames for dependent and independent variables.
The goal is to investigate whether we can use test execution to
predict code issues for the respectively next development
milestone. Windows 8 was developed in three development
milestones: M1, M2, and M3. In this experimental setup we will
use test execution behavior collects during one of the three
development milestones to predict code issues for the
respectively consecutive milestone. More precisely, we used the
following combinations of dependent and independent
variables:

 M1 predicts M2: Test metrics collected during M1 to
predict code issues reported in M2.

 M2 predicts M3: Test metrics collected during M1 to
predict code issues reported in M2.

 M1+M2 predicts M3: Test metrics collected during the
two consecutive milestones M1 and M2 to predict code
issues reported in M3.

Each of these three scenarios is an independent experiment.
Thus, we built prediction models for binary and file level and
perform a 100-cross fold prediction using repeated stratified
sampling (as described in Section IV.B). In total we trained and
tested 600 independent prediction models.

D. Metric Importance (RQ4)

We investigated which of our test execution behavior
metrics seems to be most suited to predict pre- and post-release
code defects respectively. We used the filterVarImpl function of
the caret package [13]. This function uses so-called ROC curves
to determine the importance of a metric. Receiver operating
characteristic (ROC) curves are graphical plots of illustrating the
performance of a binary classification model. The curve is

TABLE II. LIST OF MACHINE LEARNING MODELS TO TRAIN AND TEST POST-RELEASE DEFECT PREDICTION MODELS. TAKEN FROM [14].

Model* Description

Multinomial Logistic Regression (MLR) This is a generalized linear model using a logic function and hence suited for binomial regression, i.e. where
the outcome class is dichotomous.

Recursive Partitioning (RP) A variant of decision trees, this model can be represented as a binomial tree and popularly used for
classification tasks.

Support Vector Machine (SVM) This model classifies data by determining a separator that distinguishes the data with the largest margin.
We used the radial kernel for our experiments.

Tree Bagging (TB) Another variant of decision trees, this model uses bootstrapping to stabilize the decision trees.

Random Forest (RF) An ensemble of decision tree classifiers. Random forests grow multiple decision trees each “voting” for the
class on an instance to be classified.

Naïve Bayes (NB) Applying Bayes’ theorem, this is a simple probabilistic classifier assuming strong independence.

* For better understanding, we advise the reader to refer to specialized machine learning texts such as by Wittig and Frank [15].

True positive
(TP)

Predicted and
observed

False positive
(FP)

Predicted but not
observed

False negative
(FN)

Not predicted
but observed

True negative
(TN)

Not predicted and
not observed

Observed class (expectation)

P
re

d
ic

te
d

 c
la

ss
 (p

re
d

ic
ti

o
n

)

D
e

fe
ct

 p
ro

n
e

Defect prone

N
o

t
d

e
fe

ct
 p

ro
n

e

Not defect prone

Fig. 5. Compraing observed and predictioned classes for code artifacts in

a confusion matrix. Used to compute precision and recall values to measure

accuracy of prediction algorithm.

created by plotting recall against the FP rate, where FP rate is
defined as 𝐹𝑃 ÷ (𝐹𝑃 + 𝑇𝑁). The area under the ROC curve
equals the probability that the classifier ranks a randomly chosen
positive instance higher than a randomly chosen negative one.
The larger the area under an ROC curve, the more accurate the
corresponding binary classifier is considered. The function
filterVarImpl conducts a series of ROC curve analysis for each
metric: “a series of cutoffs is applied to the predictor data to
predict the class. The sensitivity and specificity are computed
for each cutoff and the ROC curve is computed. The trapezoidal
rule is used to compute the area under the ROC curve. This area
is used as the measure of variable importance.” [13]. Please note
that the metric importance for classification models may not
match the spearman rank correlation results. While the rank
correlation considers the exact order of entities, classification
models separate entities into two categories. The suitability of a
metric to solve either problem may be different.

E. Are Test Execution Metrics Proxies for Pre-Release

Defects (RQ5)

Finally, we want to find out whether test execution metrics
add any value when compared to pre-release defects. The key
issue is that test execution failures tend to cause pre-release bug
reports, except for false alarms. Pre-release defects can be
interpreted as a set of test failures subject to human judgment
whether the failure is a false alarm or not and thus might suffer
less from data noise. On the other hand, test execution failures
are available earlier as reliable number of pre-release defect
counts and thus might be more valuable than simple defect
counts. To answer RQ5, we compare prediction models based
on test execution metrics with a base-line prediction model using
pre-release defects only. The baseline model uses simply the
number of pre-release defects collected during all development
milestones as predicted value of post-release defects. We
compare the area under the ROC curve (see Section IV.D) from
this baseline regression model with the area under ROC for
predicted values using test execution metrics. For this
experiment we used the R-package pROC [16] and provide the
absolute values of the area under the ROC using the recursive
partitioning (rpart) model as well as the result of a statistical
significance test (DeLong's test for two ROC curves) provided
by the pROC package. The reason to use the recursive

partitioning model (rpart) in this experiment stems from the
observation that this model performed particularly well in all
previous experiments.

V. EXPERIMENTAL RESULTS

In this section, we discuss the results of all experimental
setups described in Section IV.

A. Correlations between Test Metrics and Defects (RQ1)

As described in Section IV.A we use Spearman rank
correlations to show basic dependencies between post-release
bug counts and our test metrics. TABLE III. contains these rank
correlation values on the binary level of granularity. Naturally,
many of these test metrics are highly correlated with churn, e.g.
not altering a file implies that no code change altering this file
could have encountered any test failure. For the sake of brevity,
TABLE III. contains the top 10 highest correlation values for
metric groups as described in TABLE I. and the aggregation
function that achieved that highest correlation value.

False test alarms seem to correlate most strongly with post-
release defect counts. This trend confirms that false test alarms
hurt the quality assurance process as they decrease the
confidence in test results and the overall testing process in
general—a concern that we confirmed with the Windows
product teams. In fact false test alarms seem to be one of the
most prominent testing issues in many development processes.
We expect that results from test cases that have a low reliability
reputation will be inspected less thoroughly, which leads to the
paradox effect that bugs might escape the testing process
although they got caught and reported by test failures.
Furthermore, the results show that false test alarms seem to
dominate also the number of test failures reporting real code
issues. Interestingly, the number of architectures on which test
failures occur is among the 10 most influential metrics. We
suspect that the number of architectures reflects code issue
severity. If a code issue is caught on multiple architectures, these
changes may be more severe than code issues detected for ARM
processors only. As expected, correlation values between test
metrics in our test metrics suite and post-release defect counts
are much lower (see TABLE IV.). This is usually given by the
fact that there exist only few source files that have at least one
post-release. Nevertheless, we see on file level the same trends

TABLE III. TOP 10 SPEARMAN RANK CORRELATIONS BETWEEN TEST

METRICS AND POST-RELEASE DEFECT COUNTS FOR CODE BINARIES.

Metric Aggregation Correlation value

FPBurstsB1G2 Max 0.44

FPGates Sum 0.44

TestSuites Sum 0.44

Architectures Sum 0.37

TPBurstsB1G2 Max 0.37

TestCases Sum 0.37

TPGates Sum 0.36

TestCases Max 0.33

Architectures Max 0.29

Branches Max 0.26

TABLE IV. TOP 10 SPEARMAN RANK CORRELATIONS BETWEEN TEST

METRICS AND POST-RELEASE DEFECT COUNTS FOR SOURCE FILES.

Metric Aggregation Correlation value

FPGates Sum 0.16

FPBurstsB1G2 Max 0.16

TestSuites Sum 0.16

Branches Max 0.16

TPBGurstsB1G2 Max 0.16

TestCases Sum 0.16

Architectures Sum 0.16

Languages Sum 0.15

Architectures Max 0.15

FPGates Max 0.13

as discussed on binary level. False alarms seem to be an issue,
as well as the diversity of execution contexts failures occur on,
e.g. the more distinct test suites detected the issue, the higher the
number of post-release defects.

All reported metric values are statistically significant. We
used the cor.test function in R to conduct a Spearman's rho
statistic to estimate a rank-based measure of association. For all
reported metrics, the test reported p-values below 1.00E-05.

Test metrics are correlated with each other. Especially test
failure burst metrics show high correlation values often above
0.7. This is also true for absolute numbers of test case, quality
gate failures and TP and FP metrics values. This was expected
as more quality gates imply more test cases, as test burst
measurements are by definition strongly correlated, and since
TP failures can cause FP failures. In contrast, the relative
numbers of test failures and execution contexts are only
moderately correlated among each other: correlation values
between 0.2 and 0.4. As described in the experimental setup, we
performed principal component analysis for our prediction
models. Thus, inter-metric correlation does not influence our
prediction model results.

B. Predicting Post-Release Defects (RQ2)

In this section, we discuss the experimental results showing
how well the test metrics suite performs with respect to
predicting post-release defects. In the first experiment, we used
test metrics collected during all three development milestones
M1, M2, and M3 to predict post-release defects counts. Highest
precision and recall values for the best machine learning model
is shown in TABLE V. , along with previous prediction models

reported on earlier versions of Windows. The best model in our
experimental setup showed a precision value around 0.81 and a
recall value of 0.7. All precision and recall values for this
experiment are shown in TABLE VI. Median precision over all
models lies at 0.75, the median recall lies at 0.44. Compared to
prediction models based on other code and process metrics, out
test metrics show the third highest precision value (out of nine
models) and the fourth highest recall value—only organizational
structure and change bursts show stronger combinations of
precision and recall values. Importantly, test metrics perform
significantly better than models trained and tested on pre-release
defects or churn. As expected, prediction models on file level
perform worse than models on binary level. The median
precision for these models lies at 0.63 and their median recall at
0.19. Recall values on file level are too low to allow trustable
applications. Nevertheless, source files are the preferable level
of granularity as prediction models for binaries are hardly
actionable.

C. Predicting Pre-Release Defects for Development

Milestones (RQ3)

In RQ3 we want to investigate whether we can predict pre-
release issues for individual milestones using test metrics
collected during the respectively previous milestone(s), e.g.
predicting defects for M2 using test metrics collected during M1
(M1→M2). Fig. 6 shows precision and recall values for models
predicting pre-release defect counts for M2 and M3 on binary
and file level. On binary level, precision values are high and lie
around 0.8. Recall lies between 0.5 and 0.8, depending on the
milestone predicted. Results for the same experiment on source
file level of granularity shown strong precision values above 0.7
for models trained on milestone M1 predicting M2. However,
precision increases to 0.9 for models predicting pre-release
defects found in M3. For these models, we also observed very

TABLE V. OVERALL DEFECT PREDICTION MODEL ACCURACY USING

DIFFERENT SOFTWARE MEASURES ON WINDOWS VISTA. CONTENT TAKEN FROM

[17] AND [11].

Model Precision Recall

Change bursts [11] 0.91 0.92

Organizational structure [5] 0.86 0.84

Code churn [18] 0.79 0.80

Code complexity [19] 0.79 0.66

Social network measures [20] 0.77 0.71

Code dependencies [21] 0.75 0.69

Test coverage [22] 0.84 0.54

Pre-release defects 0.74 0.63

Pre-release test failures (this study) 0.81 0.70

TABLE VI. PRECISION AND RECALL VALUES FOR PREDICTION MODELS

TRAINED ON ALL DEVELOPMENT PERIODS PREDICTING POST-RELEASE DEFECTS, BOTH

ON BINARY AND SOURCE FILE LEVEL.

Model Binary level File level

 Precision Recall Precision Recall

MLR 0.79 0.30 0.62 0.16

NB 0.38 0.51 0.29 0.19

RF 0.81 0.70 0.65 0.24

RP 0.72 0.33 0.57 0.19

SVM 0.74 0.38 0.64 0.12

TP 0.75 0.51 0.63 0.21

Fig. 6. Precision and recall values for pre-release models on binary and file

level.

M1->M2 M1M2->M3 M2->M3

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

b
in
a
ry

file

Precision Recall Precision Recall Precision Recall

stable recall values with minimal variations between cross-folds
and learners. In general, recall values on file level are low
(around 0.65). The overall fraction of source files having post-
and pre-release defects is small. This affect the accuracy of
many machine learning algorithms. Furthermore, it seems clear
that test effort and test execution are not the only factors
influencing code issues. Other influencing factors are security
issues (mostly found by other test cases or manual inspections),
specification issues, or compatibility issues—none these factors
is adequately covered by our test suite metrics and thus cannot
be explained by models using only these metrics. Comparing file
and binary models, it emerges that precision value trends for
both levels of granularity have opposite trends. While M1→M2
models show the strongest precision values on binary level
models for the same experiment on file level show lowest
precision values. Another interesting observation is that models
predicting milestone M3 trained on M2 seem to perform as good
or even better when compared to models predicting M3 but

trained on M1 and M2. Our interpretation is that milestones M2
and M3 are similar wheras M1 contains many activities with
respect to code consolidation, refactorings, and new core
features. This trend is consitent over binary and file level.

D. Metric importance (RQ4)

Although models on file and binary level show different
prediction performance, they show similar metric importance.
The number of quality gates that raise false alarms and the
number of false alarm bursts with burst and gap size of one are
the two most important metrics, as shown in TABLE VII.
Interestingly, the number of architectures, build types, and
languages are among the top 10 most important metrics for both
levels of granularity. Overall, test bursts and test execution
context signals, such as branches and architectures, seem to
show great value for predicting post-release defects.

E. Are Test Execution Metrics Proxies for Pre-Release

Defects (RQ5)

ROC curves for both regression models, using pre-release
defect counts and test metrics, are shown in Fig. 7. The base line
model using pre-release defects shows an area under the ROC
of 0.48 while test metric models show a statistical significant
higher value of 0.79—DeLong’s test for two ROC curves yields
an p-value of under 2.2E-16. The difference between both ROC
curves is higher than expected. In the past pre-release defects
showed strong post-release prediction performances, but at least
for Windows 8, test execution metrics outperform this baseline
regression model.

VI. RELATED WORK

There have been a wide variety earlier studies investigating
various code and process metrics for defect prediction purposes,
including studies showing that testing and test effort are related
to product quality. However, we are not aware of previous
studies studying false test alarm and test failure bursts and their
suitability to predict pre- and post-release bugs for evolving
software products.

A. Defect Prediction

The number of related studies on defect prediction models is
large. For the sake of brevity, we only refer to the most relevant
related studies in this section. The first studies on predicting
defects using code metrics emerged in the 1990s. In 1999,
Fenton and Neil [23] provided a comprehensive overview of
defect prediction models at that time. In their paper, the authors
mention a couple of studies that used software test metrics to
predict code defects—but until then, most studies concentrated
on testability and the impact of testability measurements on code
quality rather than using real test results (e.g. [10,24,25]). In
recent years, more reviews on defect prediction models are
emerging (e.g. [26,27]). These reviews show the wide variety of
aspects and measurements used for defect prediction purposes.
Ostrand et al. [28] used code metrics and prior faults to predict
the number of faults. Zimmermann et al. [29] related code
complexity to defects. Other studies used change-related metrics
[30], developer related metrics [31], organizational metrics [5],
process metrics [32], or change dependency metrics [33,34,2] to
build defect prediction models, on various software systems and
levels of granularity.

TABLE VII. TOP 10 MOST IMPORTANCE METRICS FOR MODELS PREDICTING

POST-RELEASE DEFECTS ORDERED BY IMPORTANCE.

Binary level File level

Metric
Area under

ROC
Metric

Area under
ROC

FPBurstsB1G1 0.86 FPGates 0.73

FPGates 0.85 FPBurstsB1G1 0.73

TestSuites 0.85 TestCases 0.73

Architectures 0.79 FPBurstsB2G3 0.72

TPBurstsB1G3 0.78 Branches 0.72

TPGates 0.78 TPBurstsB1G2 0.72

BuildTypes 0.77 Architectures 0.72

Branches 0.77 BuildTypes 0.70

Languages 0.76 Languages 0.69

FPBurstsB2G3 0.75 FPBurstsB2G1 0.67

Fig. 7. ROC curves for regression models using pre-release defects and test

execution metrics to predict post-release defects.

B. Impact of Tests on Code Quality

Nagappan et al. [35] and lately Rafique and Misic [36]
showed that the effort invested into testing has a significant
effect on code quality. Other studies used code coverage
[37,38,39] and test count metrics such as the number of
assertions [35] suggesting that test effort and test-driven
development are likely to increase product quality [39,40].

C. Test Effort Measusres

Wu et al. [41] used testing effort measures (e.g., complexity
of test cases) and testing effectiveness measures (e.g., number of
test failures) to assess software reliability. Similar, Mende and
Koschke [4] showed that effort aware prediction models
perform significantly better than models based on count metrics.
However, these effort metrics are measuring the human effort
that was invested to write or test the system. In this paper, we
investigate test execution results rather than effort estimations.

D. Test Coverage

Chen and Wong presented a technique “using both time and
code coverage measures for the prediction of software failures”
[38] and showed that test coverage and the time between “test
cases, which neither increases code coverage nor causes a
failure” [38] can be used to reduce overestimations of reliability.
Later, Cai and Lyu [37] confirmed that test coverage impact
code quality. However, none of these studies analyzed test
execution results and their predictive power.

E. Test Execution Data & Reliability Growth Models

Musa et al. [7] were among the first to relate test execution
data with software reliability using software reliability growth
models (SRGMs). The idea behind these models when designed
was to use a stochastic model to assess the evolution of software
in its successive testing phases. Since then, SGRMs based on
test execution data evolved showing high accuracies
[8,42,43,44]. However, SGRMs assume that the program being
executed is stable (not changing except for bug fixes) [7]. In this
study, we do rely on the stability of the program nor do we assess
or predict the evolution of the software project. The purpose of
this paper is to determine the suitability of test metrics to predict
pre- and post-release defects for an evolving software project.

Elberzhager et al. [45] used test failure inspection metrics to
prediction defect prone areas. However, the authors used only
pre-release defects as independent variable. In this study, we use
more diverse independent variables including false test alarms
and test failure bursts.

VII. THREATS TO VALIDITY

A. Study Subject

Test metrics were not available for Windows releases before
Windows 8 and Windows 8.1 was only recently released leaving
us without a reliable estimation of post-release defects. Based on
one release, we do not claim our results as general truth. Further
studies are needed to confirm the suitability of our models.

B. Test Metrics

For the interpretation of test execution results, whether a
failure is a true or false positive, is partially based on heuristics.
Although, we ensured the correctness and rationales behind

these heuristics with the Windows product teams, we and the
Windows team estimate a test result interpretation error rate of
10%. This error rate may impact prediction results.

C. Number of Defects

To compute pre- and post-release defect counts we used
datasets provided by CODEMINE [1]. Although CODEMINE
is extensively used and its results frequently verified, bug counts
for some files may remain approximations.

D. Predicting Pre-Release Defects

Models predicting pre-release defects tend to predict
churned files (usual suspects), e.g. files that are heavily churned
due to new functionality. We did not compare against a usual
suspect model. The presented results remain valid. However,
there might exist simpler models achieving similar results.

VIII. CONCLUSION

Although the primary goal of tests is to detect code issues,
there has been surprisingly little work to use test results to
predict pre- and post-release defects for evolving software
systems. Software reliability growth models (SRGMs) make
extensive use of test execution data but assume stable
development stages [7]. In this study, we defined a set of test
execution metrics, separating false test alarms and failures
reporting code issues, and test failure burst metrics to predict
pre- and post-release bugs on binary and source file level for
Windows 8. The results presented in this paper are promising.
Prediction models trained on test metrics showed relatively high
precision and recall values when compared to previous
prediction models reported for Windows. The fact that these
models are also precise on the finer and actionable source file
level is encouraging. We also showed that test metrics can be
used to predict bugs between individual development milestones
rather than between individual releases and that test metrics are
more expressive than simple prior bug counts. An initial analysis
on the importance of individual metrics showed that test failure
burst, false test alarms, and metrics counting different execution
context properties are among the most influential metrics.
However, this study should be considered as an explorative
study assessing the general suitability of test failure metrics for
defect prediction models. More work is needed to confirm these
findings and to consolidate the current set of correlated test
metrics and to find a more condense and optimal set. It also
remains to be demonstrated that test metrics are good defect
predictors in general. Due to confidentiality reasons, we are not
able to share the raw datasets used in this study. Replication
studies need to re-implement metrics. However, we expect these
test metrics to depend on the individual test processes and
infrastructures of the corresponding projects. Adapting or at
least confirming the metrics underlying assumptions will be
indispensable.

ACKNOWLEDGMENT

We thank the Windows development and BVT quality team
for their support and feedback. This work is based on data
extracted from varies development repositories provided by the
Microsoft TSE group. Our special thanks go to Michaela
Greiler, Jacek Czerwonka, Brendan Murphy, Christopher
Theisen, Jason Means, and Poornima Priyadarshini.

REFERENCES

[1] Czerwonka, J., Nagappan, N., Schulte, W., and Murphy, B.
CODEMINE: Building a Software Development Data Analytics
Platform at Microsoft. Software, IEEE, 30, 4 (2013), 64--71.

[2] Herzig, K. and Zeller, A. Mining cause-effect-chains from version
histories. In Software Reliability Engineering (ISSRE), 2011 IEEE 22nd
International Symposium on (2011), 60--69.

[3] Herzig, K.S. Capturing the long-term impact of changes. In Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 2 (2010), 393--396.

[4] Mende, T. and Koschke, R. Effort-Aware Defect Prediction Models. In
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on (March 2010), 107-116.

[5] Nagappan, N., Murphy, B., and Basili, V. The Influence of
Organizational Structure on Software Quality: An Empirical Case Study.
In Proceedings of the 30th International Conference on Software
Engineering (2008), ACM, 521--530.

[6] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A.E. The Impact of
Code Review Coverage and Code Review Participation on Software
Quality: A Case Study of the Qt, VTK, and ITK Projects. In In
Proceedings of the 11th Working Conference on Mining Software
Repositories (MSR 2014) (Hyderabad (India), 2014).

[7] Musa, J.D., Iannino, A., and Okumoto, K. Software Reliability:
Measurement, Prediction, Application. McGraw-Hill, Inc., 1987.

[8] Huang, C.-Y., Kuo, S.-Y., and Lyu, M.R. An Assessment of Testing-
Effort Dependent Software Reliability Growth Models. Reliability, IEEE
Transactions on, 56 (June 2007), 198-211.

[9] Bird, C. and Zimmermann, T. Assessing the Value of Branches with
What-if Analysis. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
(Cary, North Carolina, 2012), ACM, 45:1--45:11.

[10] Fenton, N., Krause, P., and Neil, M. Software measurement: uncertainty
and causal modeling. Software, IEEE, 19 (Jul 2002), 116-122.

[11] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., and Murphy, B.
Change Bursts as Defect Predictors. In Proceedings of the 21st IEEE
International Symposium on Software Reliability Engineering
(November 2010).

[12] Team, R.D.C. R: A Language and Environment for Statistical
Computing. , 2010. R Foundation for Statistical Computing.

[13] Kuhn, M. caret: Classification and Regression Training. , 2011.

[14] Herzig, K. Mining and Untangling Change Genealogies. , 2012.
Universität des Saarlandes.

[15] Witten, I.H. and Frank, E. Data mining: practical machine learning tools
and techniques with Java implementations. SIGMOD Rec., 31 (mar
2002), 76--77.

[16] Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-
C., and Muller, M. pROC: an open-source package for R and S+ to
analyze and compare ROC curves. BMC Bioinformatics, 12 (2011), 77.

[17] Nagappan, N. and Ball, T. Evidence-Based Failure Prediction. O'Reilly
Media, 2010.

[18] Nagappan, N. and Ball, T. Use of Relative Code Churn Measures to
Predict System Defect Density. In Proceedings of the 27th International
Conference on Software Engineering (2005), ACM, 284--292.

[19] McCabe, T.J. A Complexity Measure. IEEE Trans. Software Eng., 2
(1976), 308-320.

[20] Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P. Putting
It All Together: Using Socio-technical Networks to Predict Failures. In
Proceedings of the 2009 20th International Symposium on Software
Reliability Engineering (2009), IEEE Computer Society, 109--119.

[21] Zimmermann, T. and Nagappan, N. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international
conference on Software engineering (2008), ACM, 531--540.

[22] Mockus, A., Nagappan, N., and Dinh-Trong, T.T. Test coverage and
post-verification defects: A multiple case study. In Proceedings of the
2009 3rd International Symposium on Empirical Software Engineering
and Measurement (2009), IEEE Computer Society, 291--301.

[23] Fenton, N.E. and Neil, M. A critique of software defect prediction
models. Software Engineering, IEEE Transactions on, 25 (Sep 1999),
675-689.

[24] Voas, J.M. and Miller, K.W. Software testability: the new verification.
Software, IEEE, 12 (May 1995), 17-28.

[25] Badri, M. and Toure, F. Evaluating the effect of control flow on the unit
testing effort of classes: An empirical analysis. Advances in Software
Engineering, 2012 (2012), 5.

[26] Catal, C. and Diri, B. Review: A Systematic Review of Software Fault
Prediction Studies. Expert Syst. Appl., 36 (may 2009), 7346--7354.

[27] Radjenoviç, D., Heričko, M., Torkar, R., and Živkovič, A. Software fault
prediction metrics: A systematic literature review. Information and
Software Technology, 55 (2013), 1397--1418.

[28] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Where the bugs are. In
Proceedings of the 2004 ACM SIGSOFT international symposium on
Software testing and analysis (2004), ACM, 86--96.

[29] Zimmermann, T., Premraj, R., and Zeller, A. Predicting Defects for
Eclipse. In Proceedings of the Third International Workshop on
Predictor Models in Software Engineering (2007), IEEE Computer
Society, 9--.

[30] Moser, R., Pedrycz, W., and Succi, G. A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th international conference on
Software engineering (2008), ACM, 181--190.

[31] Pinzger, M., Nagappan, N., and Murphy, B. Can developer-module
networks predict failures? In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering
(2008), ACM, 2--12.

[32] Hassan, A.E. Predicting faults using the complexity of code changes. In
Proceedings of the 31st International Conference on Software
Engineering (2009), IEEE Computer Society, 78--88.

[33] Zimmermann, T. and Nagappan, N. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international
conference on Software engineering (2008), ACM, 531--540.

[34] Herzig, K., Just, S., Rau, A., and Zeller, A. Predicting Defects Using
Change Genealogies. In Proceedings of the 2013 IEEE 24nd
International Symposium on Software Reliability Engineering (2013),
IEEE Computer Society.

[35] Nagappan, N., Williams, L., Vouk, M., and Osborne, J. Early Estimation
of Software Quality Using In-process Testing Metrics: A Controlled
Case Study. SIGSOFT Softw. Eng. Notes, 30 (may 2005), 1--7.

[36] Rafique, Y. and Misic, V.B. The Effects of Test-Driven Development on
External Quality and Productivity: A Meta-Analysis. Software
Engineering, IEEE Transactions on, 39 (June 2013), 835-856.

[37] Cai, X. and Lyu, M.R. Software Reliability Modeling with Test
Coverage: Experimentation and Measurement with A Fault-Tolerant
Software Project. In Software Reliability, 2007. ISSRE '07. The 18th
IEEE International Symposium on (Nov 2007), 17-26.

[38] Chen, M.-H., Lyu, M.R., and Wong, W.E. Effect of code coverage on
software reliability measurement. Reliability, IEEE Transactions on, 50
(Jun 2001), 165-170.

[39] Nagappan, N., Maximilien, E.M., Bhat, T., and Williams, L. Realizing
quality improvement through test driven development: results and
experiences of four industrial teams. Empirical Software Engineering,
13, 289-302.

[40] Strecker, J. and Memon, A.M. Accounting for Defect Characteristics in
Evaluations of Testing Techniques. ACM Trans. Softw. Eng. Methodol.,
21 (jul 2012), 17:1--17:43.

[41] Wu, J., Ali, S., Yue, T., and Tian, J. Experience report: Assessing the
reliability of an industrial avionics software: Results, insights and
recommendations. In Software Reliability Engineering (ISSRE), 2013
IEEE 24th International Symposium on (Nov 2013), 218-227.

[42] Okumoto, K. Software defect prediction based on stability test data. In
Quality, Reliability, Risk, Maintenance, and Safety Engineering
(ICQR2MSE), 2011 International Conference on (June 2011), 385-387.

[43] Khatri, S.K., Kumar, D., Dwivedi, A., and Mrinal, N. Software
Reliability Growth Model with testing effort using learning function. In
Software Engineering (CONSEG), 2012 CSI Sixth International
Conference on (Sept 2012), 1-5.

[44] Rafi, S.M. and Akthar, S. Incorporating fault dependent correction delay
in SRGM with testing effort and release policy analysis. In Software

Engineering (CONSEG), 2012 CSI Sixth International Conference on
(Sept 2012), 1-6.

[45] Elberzhager, F., Kremer, S., Munch, J., and Assmann, D. Guiding
Testing Activities by Predicting Defect-Prone Parts Using Product and
Inspection Metrics. In Software Engineering and Advanced Applications
(SEAA), 2012 38th EUROMICRO Conference on (Sept 2012), 406-413.

[46] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A.E. The Impact of
Code Review Coverage and Code Review. In 11th Working Conference
on Mining Software Repositories (MSR) (Hyderabad, 2014), ACM.

