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Abstract—Software quality is one of the most pressing 

concerns for nearly all software developing companies. At the 

same time, software companies also seek to shorten their release 

cycles to meet market demands while maintaining their product 

quality. Identifying problematic code areas becomes more and 

more important. Defect prediction models became popular in 

recent years and many different code and process metrics have 

been studied. There has been minimal effort relating test 

executions during development with defect likelihood. This is 

surprising as test executions capture the stability and quality of a 

program during the development process. This paper presents an 

exploratory study investigating whether test execution metrics, 

e.g. test failure bursts, can be used as software quality indicators 

and used to build pre- and post-release defects prediction models. 

We show that test metrics collected during Windows 8 

development can be used to build pre- and post-release defect 

prediction models early in the development process of a software 

product. Test metrics outperform pre-release defect counts when 

predicting post-release defects. 

Keywords—measurement, software testing, development 

process, defect prediction 

I. INTRODUCTION 

Although product quality may still be the most important 
concern for most software companies, there is increasing 
pressure on development teams to deliver more features in 
shorter periods of time. The competition to gain or defend 
market share impacts development processes: developers are 
expected to work more efficiently while maintaining or 
increasing product quality. Thus, it becomes increasingly 
important to identify product issues early in the development 
process to ensure product quality without delaying product 
release. This situation is not new and there exists a large number 
of studies that investigate a wide variety of code and process 
metrics to estimate code quality before release [1,2,3,4,5,6,7]. A 
prominent intention of prediction models is to support and guide 
software testing: which code areas should be tested more 
thoroughly? However, releasing products in shorter periods of 
time also drives many product teams towards continuous 
integration and agile methods. Instead of dedicated testing 
milestones, code quality is ensured continuously. As a 
consequence, quality models should be usable early in the 
development process and should be capable of adapting 
themselves to code quality changes. However, static code 
properties do not significantly change their values when 
applying bug fixes. Both approaches may be too static to be 

continuously used during development. Constantly monitoring 
program behavior and health is needed: how does the program 
perform and how frequently does it fail to meet the specified 
functionality? Test cases check for such scenarios and report 
wrong, missing, or ambiguous program behavior. Collecting test 
execution results provides a history of program behavior during 
individual development periods.  

The experiments described in this paper are designed to 
answer the following research questions: 

RQ1) Do test execution metrics correlate with pre- or post-

release defect counts for binaries and source code files?  

RQ2) How effective are post-release defect prediction 

models based on test execution behavior metrics? 

RQ3) Can test execution behavior metrics collected during 

a pre-release development milestone be used to predict 

pre-release defects for the later development milestones? 

RQ4) What test execution metric seem to have the highest 

defect prediction potential? 

RQ5) Do test execution metrics perform as proxy for post-

release defects or do these metrics add additional value? 

 
Existing effort to relate test behavior to code quality mainly 

focus on software reliability growth models (SRGMs), e.g. 
Musa et al. [7]. These models track and stochastically model the 
evolution of software quality. However, there exist indications 
that SGRMs may not fit in cases in which testing-effort is not 
constant [8] or if the software is constantly evolving [7]. In this 
paper, we do not investigate a stochastic model of possible 
quality evolution but rather explore the relationship 
(correlations) between long-term development test case 
execution behavior and code quality for evolving software 
systems. For this purpose, we mine and interpret system and 
integration test results collected during Windows 8 
development. We further present a series of test execution 
metrics that summarize results and diversity of system and 
integration tests used to verify individual code changes. 
Mapping these code changes to source files and binaries, we are 
able to measure aggregated test execution behavior for 
individual source files and binaries. The results of this study 
show that test execution metrics can be used to derive pre- and 
post-release defect prediction models showing promising 
precision and recall values. Our results suggest that test metrics 
seem to outperform pre-release defect count measures when 



predicting post-release defects and that test bursts as well as the 
diversity of test failure scenarios seem to be important code 
quality indicators. 

II. BACKGROUND 

A. Branches 

Development processes and branching structures for large 
software systems, such as Microsoft’s Windows operating 
system, are complex and tend to be unique. For the sake of 
brevity, we provide a high-level description that contains 
enough information to make this paper self-contained. For 
details, we refer to Bird and Zimmermann [9]. Source code 
branches in Windows are organized in a tree structure with the 
stable main trunk branch as the root node (see Fig. 1). Branches 
are grouped by their branch level representing the distance of the 
branch to the main trunk branch (branch level zero). Branches at 
branch level one directly integrate into trunk while branches at 
branch level two integrate into branches at branch level one. 
Engineers commit code changes to development branches 
represented by leave nodes of branching tree allowing them to 
work in isolation. To integrate these code changes into trunk, 
changes must be pushed down the tree progressively merging 
code changes of different sub branches implemented in parallel. 
Once a code change is integrated into trunk, it is accepted and 
included in the next release of Windows.  

B. Windows Quality Gates 

Each edge in the Windows branching tree represents an 
integration path from one branch to a branch of the next lower 
level branch level. Each of these integration paths are guarded 
by quality gates, which are large system and integration test 
suites verifying that code changes meet the quality standards 
before they get further integrated into the Windows code base 
(see Fig. 1). If any of the tests executed by a quality gate fails, 
the scheduled integration will be cancelled and the failure 
reported for manual triage. Each quality gate executes multiple 
test cases and each test case can either pass or fail—an exception 
are test cases that timeout or are cancelled. In theory, every 
failing gate task hints to a code issue in the code base currently 
under test. However, the complexity of Windows and the 
complexity of the individual test cases themselves may cause 
test cases to fail due to test and infrastructure issues (we discuss 
this issue in more detail in Section III).  

Quality gates execute test cases in multiple execution 
contexts: on different branches, different architectures (e.g. 
x86), different languages (e.g. en-us), and different build types 
(with and without debug symbols). The combination of these 
four factors (branch, architecture, build type, language) define 
the execution context of a test case. Test cases executed in 
different execution contexts must be handled separately.  

Each code change submitted in one of the branch tree’s leaf 
nodes has to pass through multiple integration branches before 
being integrated into the trunk branch. On its way down the 
branch tree, each code changes has to passed multiple quality 
gates—at least one at each branch level—and undergoes 
continuous system and integration testing. 

III. DATA COLLECTION 

The goal of this study is to investigate whether pre-release 
test metrics can be used to assess code quality during 
development as well as for released binaries (e.g. dll or exe files) 
and source files. The set of test execution metrics we collected 
can be grouped into five main groups: test case count metrics, 
quality gate count metrics, test case property metrics, test failure 
burst metrics, and code review metrics. 

Before discussing these test metric groups in more detail, it 
is important to understand how the desired final data set will be 
organized. Fig. 2 illustrates the main structure of the data set that 
we will use to train and test various prediction models. Each row 
in this data matrix corresponds to one code entity (source file or 
code binary) identified by a primary key (e.g. file or binary 
name). The remaining columns of the data matrix correspond to 
individual metrics described in this section. 

TABLE I. contains a short description of all test metrics 
collected and used during this study. A more detailed description 
of these metrics is given in the following subsections. Note that 
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Fig. 1. Windows branching tree. Code changes have to pass quality gates to get integrated into lower level branches. 
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Fig. 2. Data collection used to predict post-release fixes for Windows 8 source 

files and binaries. 



metrics described in this section are collected on different levels 
of granularity and aggregated to match the corresponding code 
entity granularity: source code files and code binaries. To 
investigate the predictive power of test execution behavior over 
time, we collect the metrics described in this section over all 
milestone periods of Windows 8. 

A. Test Execution Metrics 

Usually, testing an already tested code base is only necessary 
when new code changes have been applied to the code base. The 
goal is to investigate whether the applied code changes may 
have compromised code quality. Thus, test results can be 
associated with sets of code changes applied to the code base 
tested by the corresponding quality gates. To model these 
associations, we performed the following steps: 

Step 1: For each code change submitted to any code branch, 

we trace the code change’s integration path through the 

branching tree—from the development branch to the main 

trunk branch. For each code change, we get a sequence of 

branches and timestamps that identify when and where the 

code change was applied. Using this sequence, we can 

identify quality gates that tested code bases modified by 

the code change across all branches (see Fig. 1).  

Step 2: We then decompose quality gates into their 

individual test cases and associate execution context 

properties of the individual test case (e.g. architecture the 

test was executed on) and the result of each executed test 

case to the corresponding code change. 

Step 3: Having test results associated with code changes, we 

decompose the code changes themselves to identify the 

code files they altered. Each file/binary modified by a 

code change will be associated with all corresponding test 

metrics. We aggregate test metrics of multiple code 

changes to single code entities using the following 

aggregation functions: sum, mean, median, max. 

Fig. 3 visualizes this mapping process for source files. We 
used build information to identify source files that contribute to 
binaries. In the remainder of this section, we discuss individual 
test metrics we collected and the rationale behind them.  

False Test Failures 
Nearly all proposed test metrics count the number of failing 

test cases on different levels of granularity. However, as Fenton 
et al. point out: “[…] the results of the testing are likely only to 
be as trustworthy as the quality of the testing done” [10]. In order 
to assess the quality and reliability of test cases, we categorize 
test results into three different categories: (1) passing tests, (2) 
tests that fail but report a false alarm (false positive: FP), or (3) 
tests that fail and report code issues (true positive: TP). To 
separate false alarms from test failures due to code issues, we 
make use of bug reports linked against test failures and trace 
development activities triggered. If a test failure led to a bug 
report that was later fixed by applying a code change we mark 
the failure as a true positive (TP). Otherwise, the result of the 
failing test case is classified as false positive (FP). The main 
reason for FPs are test and infrastructure issues, e.g. a test 
requires a remote server to fetch test input, but the remote server 
could not be reached. FPs can have severe consequences as the 
failure requires manual inspection. Test cases reporting too 

TABLE I.  TEST METRICS USED IN THIS STUDY. FOR EACH METRIC WE 

COLLECT ABSOLUTE AS WELL AS RELATIVE NUMBERS. 

Name Description 

Test metrics counting individual test cases 

FPFailures Number of individual test failures due to test and 
infrastructure issue; over all branches. 

TPFailures Number of individual test failures that reported at 
least one code issues; over all branches. 

Test metrics counting quality gates 
FPGates Number of quality gates that reported at least one 

false positive test case failure. 
TPGates Number of individual test failures that reported at 

least one code issues. 

Test metrics counting failed test execution contexts 
TestSuites Relative number of distinct test suites that 

reported at least one code issues; over all branches. 
TestCases Relative number of distinct test cases that reported 

at least one code issue. 
Branches Relative number of distinct branches on which at 

least one code issue was detected. 
Architectures Relative number of distinct architectures (e.g. x86, 

amd64) on which at least one test case reported at 
least one code issue.  

BuildTypes Relative number of distinct build types (release or 
debug) on which at least one test case detected at 
least one code issue.  

Languages Relative number of distinct languages (e.g. en-us) 
of test cases that reported at least one code issue.  

Test failure burst metrics 
NumTPBursts The number of code issue test failure bursts on the 

integration path into the main branch. Computed 
for all combinations of gap sizes and burst sizes 
between 1 and 3.  

MaxTPBurst The size of the largest test failure burst occurred on 
the integration path into the main branch. 
Computed for all combinations of gap sizes and 
burst sizes between 1 and 3. 

NumFPBursts Same as NumTPBursts but for false test alarms.  
MaxFPBurst Same as MaxTPBurst but for false test alarms. 

Code review metrics 
Reviews Number of distinct code changes that were code 

reviewed prior to check-in and quality gate testing. 

Test metrics counting code changes 
BugChanges Number of distinct code changes that modified the 

corresponding code entity and for which at least 
one test case reported at least one code issue. (no 
aggregation) 
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Fig. 3. Mapping test case execution results to code changes and their 

corresponding source code files. Source files can then be associated with code 

binaries. 



many FPs are considered as unreliable and are often treated as 
useless, although some failures might have unveiled real code 
issues. Thus, we explicitly modelled FP test failures in the below 
described set of metrics. 

Counting individual test failures 
The first group of test metrics (first section in TABLE I. ) 

simply counts the number of failed test case executions. Note 
that one test case might be executed multiple times even within 
one quality gate. As discussed above, we count TP and FP test 
failure separately.  

Counting failed quality gates 
Counting individual test case failures does not reflect the 

number of distinct quality gates that caused this number of test 
cases to fail. Cases in which only few quality gates failed might 
indicate specific code issues detected only by the corresponding 
tests. Causing a broad list of quality gates to fail might indicate 
more severe and broad scale issues. Thus, we count the number 
of individual quality gates that failed at least once for code 
changes applied to the code entity. Note that this metric 
correlates with churn measures; e.g. number of applied code 
changes. The more frequently a file or binary is altered, the more 
test will be executed and the more test results can be associated 
with the code entities.  

Failed execution context 
As discussed in Section II.B, test cases are executed in 

different execution contexts (e.g. architecture or language) and 
we suspect the context in which a test case fails to be important. 
Thus, the third group of test metrics counts distinct execution 
contexts tests cases failed in. For example, we count the relative 
number of architectures a test case fails on—relative to the total 
number of architectures all test cases associated with the code 
artifact were executed on. The rationale behind counting the 
relative number of execution contexts (e.g. architectures) is to 
estimate the severity of test failures. Code issues detected only a 
small fraction of architectures are likely to be architecture 
specific and thus harder to replicate and detect when compared 
to code issues affecting all architectures. A value of one for these 
metrics refers to cases in which test suites for all possible 
execution contexts (e.g. architecture) failed at least once. See 
TABLE I.  for all possible execution context measurements and 
a more detailed descriptions of these metrics.  

Test Failure Bursts 
So far, we counted the number of failures on different levels 

of granularity and across different execution context properties. 
However, none of these count metrics reflects possible 
dependencies between the observed test failures. Nagappan et 
al. [11] defined the concept of change bursts that captures the 
number of consecutive changes applied to code artifacts. The 
authors showed that change bursts are excellent indicators of 
code quality issues. Change bursts identify complex and hard 
code changes that had to be frequently revised. We adapt this 
basic concept of change bursts to testing and define the concept 
of test failure bursts analogue.   

As discussed in the beginning of this section, we associate 
code changes to sequences of test executions performed on the 
integration path of the code change from its development branch 
into trunk. For each of these sequences, we can now count the 

number of subsequent test failures on this integration path. Since 
quality gate failures bring the integration process for the affected 
branch to a halt, these failures must be resolved immediately by 
applying a bug fix. Thus, a series of quality gate failures 
indicates incomplete bug fixes or a series of severe merge 
conflicts. For each code change we determine its test failure 
bursts as sequences of consecutive true positive quality gate 
failures. These test failure bursts are determined by two 
parameters: 

Gap size. Shorter gaps between sequences of test failures 

are likely. Nagappan et al. [11] introduced the concept of 

gap size G, which determines the minimum distance 

between two true positive test failures. If two true positive 

test failures have a distance shorter than G, they will be 

part of the same burst. If we set the gap size to 1, then all 

directly consecutive test failures will be merged to bursts. 

Increasing gap size to two allows one passing test 

execution to “interrupt” failing test executions without 

causing a new burst (see last line in Fig. 4). 

Burst size. The burst size B determines the minimal number 

of consecutive (with respect to the specified gap size) true 

positive test failures required in order to be counted as 

burst. If the number of true positive test failures in a burst 

is small than B, it will not be considered. 

As an example consider Fig. 4. Assume we are investigating 
one code change and know the sequence of quality gate results 
for that particular code change (x-axis). Gate executions marked 
by a failure symbol  reported at least one test failure. The 
number of test bursts for that code change depends on the two 
parameters gap size and burst size. In Fig. 4, red bars correspond 
to test failure bursts and depend on burst and gap size. Again, 
we count the number of test bursts for true positive test failures 
and false test alarms separately (see fourth section in TABLE I. 
). Further, we compute test bursts for all combinations of gap 
and burst sizes between one and three. 

B. Code Review Metrics 

In addition to test metrics described in Section III.A, we also 
include two measurements indicating whether code changes 
applied to code entities got manually reviewed or not. As a pre-
check-in verification process, code reviews have shown to 
improve code quality and thus might influence the estimation of 
the severity of test failures encountered [6]. Code issues elapsing 
the code review but caught by test cases either determine the 
effectiveness of code reviews for these corresponding code 
changes, or simply hint to the fact that these defects were hard 
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Fig. 4. How gap size and burst size determine test failure burst detection from 

a sequence of quality gate executions. Take from [11] and slightly modified. 



to spot in code reviews and thus indicate tricky and complex 
code changes that might hold more still undetected code issues. 
For each source file or code binary, we report the absolute and 
relative number of code changes that were reviewed by at least 
one additional developer. 

C. Pre- and Post-Release Defects 

As quality measurement, we are using the number of pre- 
and post-release defects fixed in the corresponding source files 
and code binaries respectively. A post-release issue is an issue 
detected after releasing the corresponding software product to 
the public, but it does not state whether the code issue has been 
found by a customer or internally. Analogously pre-release 
defects are code issues reported and fixed during the regular 
development period. Post-release defects are of particular 
interest. These issues escaped quality assurance efforts and got 
exposed to customers. Nevertheless, pre-release defects can be 
of interest to fine tune development processes and to draw 
attention on code areas that seem to become or already are 
struggling with respect to code quality.  

To identify post-release defect fixes, we counted the number 
of code changes applied in Windows 8 service pack branches. 
These branches serve as sink of defect fixes that will eventually 
be shipped to customers as part of a service pack or hot-fix. No 
feature development is permitted on these branches.  

Identify pre-release defects is slightly more difficult. We 
used the CODEMINE [1] approach and tool developed at 
Microsoft and performed the following steps to identify pre-
release defects and their affected source files and code binaries: 

Step 1: We extract all bug reports filed against the product 

release under investigation. Only bug reports whose 

creation timestamps map to the development period of the 

corresponding product release and that were marked as 

closed and resolved or fixed were selected. We further 

associate bug reports with individual development 

milestones and will use this information for the 

experimental setup described in Section IV.C. 

Step2: For all pre-filtered bug reports from step 1, we search 

for code change identifiers in bug reports and bug report 

references in code change commit messages. The result 

are pairs of bug reports and code changes for which at 

least one of the two pair elements references the 

respective other pair member. 

Step 3: We remove all pairs for which we find no indication 

that the applied code change applies a fix for the code 

issue described in the corresponding bug report. For this 

purpose, we use key words (e.g. fix or patch) and common 

commit message templates. For more details, we refer to 

the detailed description of CODEMINE [1]. 

Thus, each pre-release defect is associated with a bug report 
filed against Windows 8 that got resolved as fixed and can be 
associated with at least one code change applied to the Windows 
8 code base and that claims to fix the defect. 

To associate defects (pre- and post-release) with source code 
entities, we identify all code entities altered by the defect fixing 
code change and count the number of distinct bug reports per 

code entity—we treat bug reports marked as duplicates as one 
bug report, thus counting only one bug report per group of bug 
report duplicates. When rolling metrics up to binary level, we 
excluded library files—files that get compiled into more than 
100 binaries—and duplicated binaries—binaries with different 
names but with more than 90% equal content. 

IV. EXPERIMENTAL SETUP 

In all experimental setups, we explicitly distinguish between 
two levels of code entity granularity: binaries and source code 
files. The reason is that many defect prediction models 
previously reported on Microsoft Windows were conducted on 
binary level. However, prediction models on that rather low 
level of granularity seem to be not actionable for development 
and product teams. Binaries combine hundreds of source code 
files and thousands of lines of code. Predicting defects for these 
large entities raises the question for more specific location as 
testing or reviewing code that is compiled into that binary is a 
massive challenge. Predicting defects for source files level is 
more challenging though. The defect density on this fine level 
of granularity is much lower and it is harder to identify those 
properties that actually correlate with defects. 

A. Correlations between Test Metrics and Defects (RQ1) 

To show basic relations between test behavior and defect 
counts, we computed spearman rank correlations between test 
execution metrics (Section III.A) and pre- and post-release 
defect counts (Section III.C). Correlation values lie between -1 
and 1 and describes how well the dependency between two 
metrics can be described using a monotonic function. A 
correlation value of 1 or -1 occurs when one metrics is a perfect 
monotone function of the respectively other measurement. To 
conduct this experiment, we use metrics collected during the 
entire development period and correlated these metrics against 
the entire set of observed pre- and post-release bugs 
respectively. 

B. Predicting Post-Release Defects (RQ2) 

Rank correlations are good indicators of whether a metric 
might be a good predictor for a dependent variable. However, 
rank correlations do not allow to draw precise conclusions on 
how well a predictor based on multiple of these metrics will 
eventually perform. To investigate how well prediction models 
based test execution behavior metrics can predict post-release 
defects, we trained and tested actual prediction models. For both 
levels of granularity, binaries and source code files, we built 
classification models trained to separate entities that contained 
post-release defects from entities for which no post-release 
defects were recorded. We consider an entity defective if at least 
one post-release code fix altered the file. 

To train individual prediction models, we use a data 
collection described in Section III that contains all described test 
behavior metrics collected over the entire development period 
of Windows 8 (independent variables) and the number of fixed 
post-release defects as dependent variable. We then split the 
overall collected data into two subsets: one used for training the 
other for testing purposes. We split the overall dataset into 2/3 
training and 1/3 testing instances using stratified sampling—the 
ratio of code entities associated with post-release defects from 
the original dataset is preserved in both training and testing 



subsets. Further, we repeatedly sampled the original data sets 
100 times (100-fold cross-validation) using our splitting scheme 
in order to generate 100 independent training and testing 
subsets. We conducted the experiments using the R statistical 
software [12] (version 3.10) and more precisely Max Kuhn’s R 
package caret [13] to train, tune, and test a set of six different 
machine learning models described in more detail in TABLE II.  
Each model is optimized by the caret package optimizing 
various tune parameters (please see caret manual for more 
details). The level of performed optimization can be set using 
the tuneLength parameter, which is set to five for all experiments 
reported in this paper.  

We further removed constant metric and highly inter-
correlated metrics columns, centered and rescaled the data 
values, before applying principal component analysis (PCA). 
Using PCA, we selected principal components that accounted 
for 95% of variance.  

To compare the actual observed and predicted classes for 
individual code artifacts categorized each predicted value into 
four individual categories as shown in Fig. 5. As evaluation 
measure we report precision and recall where precision and 
recall are defined as:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑃) 
𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 ÷ (𝑇𝑃 + 𝐹𝑁). 

Each of these measures is a value between zero and one. A 
precision of one indicated that the classification model does not 
report a single false positive—that is classifying a non-defective 
code entity as defective. A recall of one would imply that the 
classification model does not report any false negatives.   

C. Predicting Pre-Release Defects for Development 

Milestones (RQ3) 

To answer research question RQ3, we use the basic 
experimental setup as described in Section IV.B, but choose 
different time frames for dependent and independent variables. 
The goal is to investigate whether we can use test execution to 
predict code issues for the respectively next development 
milestone. Windows 8 was developed in three development 
milestones: M1, M2, and M3. In this experimental setup we will 
use test execution behavior collects during one of the three 
development milestones to predict code issues for the 
respectively consecutive milestone. More precisely, we used the 
following combinations of dependent and independent 
variables: 

 M1 predicts M2: Test metrics collected during M1 to 
predict code issues reported in M2. 

 M2 predicts M3: Test metrics collected during M1 to 
predict code issues reported in M2. 

 M1+M2 predicts M3: Test metrics collected during the 
two consecutive milestones M1 and M2 to predict code 
issues reported in M3. 

Each of these three scenarios is an independent experiment. 
Thus, we built prediction models for binary and file level and 
perform a 100-cross fold prediction using repeated stratified 
sampling (as described in Section IV.B). In total we trained and 
tested 600 independent prediction models. 

D. Metric Importance (RQ4) 

We investigated which of our test execution behavior 
metrics seems to be most suited to predict pre- and post-release 
code defects respectively. We used the filterVarImpl function of 
the caret package [13]. This function uses so-called ROC curves 
to determine the importance of a metric. Receiver operating 
characteristic (ROC) curves are graphical plots of illustrating the 
performance of a binary classification model. The curve is 

TABLE II.  LIST OF MACHINE LEARNING MODELS TO TRAIN AND TEST POST-RELEASE DEFECT PREDICTION MODELS. TAKEN FROM [14]. 

Model* Description 

Multinomial Logistic Regression (MLR) This is a generalized linear model using a logic function and hence suited for binomial regression, i.e. where 
the outcome class is dichotomous. 

Recursive Partitioning (RP) A variant of decision trees, this model can be represented as a binomial tree and popularly used for 
classification tasks. 

Support Vector Machine (SVM) This model classifies data by determining a separator that distinguishes the data with the largest margin. 
We used the radial kernel for our experiments. 

Tree Bagging (TB) Another variant of decision trees, this model uses bootstrapping to stabilize the decision trees. 

Random Forest (RF) An ensemble of decision tree classifiers. Random forests grow multiple decision trees each “voting” for the 
class on an instance to be classified. 

Naïve Bayes (NB) Applying Bayes’ theorem, this is a simple probabilistic classifier assuming strong independence. 

* For better understanding, we advise the reader to refer to specialized machine learning texts such as by Wittig and Frank [15]. 
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Fig. 5. Compraing observed and predictioned classes for code artifacts in 

a confusion matrix. Used to compute precision and recall values to measure 

accuracy of prediction algorithm. 



created by plotting recall against the FP rate, where FP rate is 
defined as 𝐹𝑃 ÷ (𝐹𝑃 + 𝑇𝑁). The area under the ROC curve 
equals the probability that the classifier ranks a randomly chosen 
positive instance higher than a randomly chosen negative one. 
The larger the area under an ROC curve, the more accurate the 
corresponding binary classifier is considered. The function 
filterVarImpl conducts a series of ROC curve analysis for each 
metric: “a series of cutoffs is applied to the predictor data to 
predict the class. The sensitivity and specificity are computed 
for each cutoff and the ROC curve is computed. The trapezoidal 
rule is used to compute the area under the ROC curve. This area 
is used as the measure of variable importance.” [13]. Please note 
that the metric importance for classification models may not 
match the spearman rank correlation results. While the rank 
correlation considers the exact order of entities, classification 
models separate entities into two categories. The suitability of a 
metric to solve either problem may be different. 

E. Are Test Execution Metrics Proxies for Pre-Release 

Defects (RQ5) 

Finally, we want to find out whether test execution metrics 
add any value when compared to pre-release defects. The key 
issue is that test execution failures tend to cause pre-release bug 
reports, except for false alarms. Pre-release defects can be 
interpreted as a set of test failures subject to human judgment 
whether the failure is a false alarm or not and thus might suffer 
less from data noise. On the other hand, test execution failures 
are available earlier as reliable number of pre-release defect 
counts and thus might be more valuable than simple defect 
counts. To answer RQ5, we compare prediction models based 
on test execution metrics with a base-line prediction model using 
pre-release defects only. The baseline model uses simply the 
number of pre-release defects collected during all development 
milestones as predicted value of post-release defects. We 
compare the area under the ROC curve (see Section IV.D) from 
this baseline regression model with the area under ROC for 
predicted values using test execution metrics. For this 
experiment we used the R-package pROC [16] and provide the 
absolute values of the area under the ROC using the recursive 
partitioning (rpart) model as well as the result of a statistical 
significance test (DeLong's test for two ROC curves) provided 
by the pROC package. The reason to use the recursive 

partitioning model (rpart) in this experiment stems from the 
observation that this model performed particularly well in all 
previous experiments. 

V. EXPERIMENTAL RESULTS 

In this section, we discuss the results of all experimental 
setups described in Section IV.  

A. Correlations between Test Metrics and Defects (RQ1) 

As described in Section IV.A we use Spearman rank 
correlations to show basic dependencies between post-release 
bug counts and our test metrics. TABLE III.  contains these rank 
correlation values on the binary level of granularity. Naturally, 
many of these test metrics are highly correlated with churn, e.g. 
not altering a file implies that no code change altering this file 
could have encountered any test failure. For the sake of brevity, 
TABLE III.  contains the top 10 highest correlation values for 
metric groups as described in TABLE I.  and the aggregation 
function that achieved that highest correlation value.  

False test alarms seem to correlate most strongly with post-
release defect counts. This trend confirms that false test alarms 
hurt the quality assurance process as they decrease the 
confidence in test results and the overall testing process in 
general—a concern that we confirmed with the Windows 
product teams. In fact false test alarms seem to be one of the 
most prominent testing issues in many development processes. 
We expect that results from test cases that have a low reliability 
reputation will be inspected less thoroughly, which leads to the 
paradox effect that bugs might escape the testing process 
although they got caught and reported by test failures. 
Furthermore, the results show that false test alarms seem to 
dominate also the number of test failures reporting real code 
issues. Interestingly, the number of architectures on which test 
failures occur is among the 10 most influential metrics. We 
suspect that the number of architectures reflects code issue 
severity. If a code issue is caught on multiple architectures, these 
changes may be more severe than code issues detected for ARM 
processors only. As expected, correlation values between test 
metrics in our test metrics suite and post-release defect counts 
are much lower (see TABLE IV. ). This is usually given by the 
fact that there exist only few source files that have at least one 
post-release. Nevertheless, we see on file level the same trends 

TABLE III.  TOP 10 SPEARMAN RANK CORRELATIONS BETWEEN TEST 

METRICS AND POST-RELEASE DEFECT COUNTS FOR CODE BINARIES. 

Metric Aggregation Correlation value 

FPBurstsB1G2 Max 0.44 

FPGates Sum 0.44 

TestSuites Sum 0.44 

Architectures Sum 0.37 

TPBurstsB1G2 Max 0.37 

TestCases Sum 0.37 

TPGates Sum 0.36 

TestCases Max 0.33 

Architectures Max 0.29 

Branches Max 0.26 

   

TABLE IV.  TOP 10 SPEARMAN RANK CORRELATIONS BETWEEN TEST 

METRICS AND POST-RELEASE DEFECT COUNTS FOR SOURCE FILES. 

Metric Aggregation Correlation value 

FPGates Sum 0.16 

FPBurstsB1G2 Max 0.16 

TestSuites Sum 0.16 

Branches Max 0.16 

TPBGurstsB1G2 Max 0.16 

TestCases Sum 0.16 

Architectures Sum 0.16 

Languages Sum 0.15 

Architectures Max 0.15 

FPGates Max 0.13 

   



as discussed on binary level. False alarms seem to be an issue, 
as well as the diversity of execution contexts failures occur on, 
e.g. the more distinct test suites detected the issue, the higher the 
number of post-release defects. 

All reported metric values are statistically significant. We 
used the cor.test function in R to conduct a Spearman's rho 
statistic to estimate a rank-based measure of association. For all 
reported metrics, the test reported p-values below 1.00E-05.  

Test metrics are correlated with each other. Especially test 
failure burst metrics show high correlation values often above 
0.7. This is also true for absolute numbers of test case, quality 
gate failures and TP and FP metrics values. This was expected 
as more quality gates imply more test cases, as test burst 
measurements are by definition strongly correlated, and since 
TP failures can cause FP failures. In contrast, the relative 
numbers of test failures and execution contexts are only 
moderately correlated among each other: correlation values 
between 0.2 and 0.4. As described in the experimental setup, we 
performed principal component analysis for our prediction 
models. Thus, inter-metric correlation does not influence our 
prediction model results. 

B. Predicting Post-Release Defects (RQ2)  

In this section, we discuss the experimental results showing 
how well the test metrics suite performs with respect to 
predicting post-release defects. In the first experiment, we used 
test metrics collected during all three development milestones 
M1, M2, and M3 to predict post-release defects counts. Highest 
precision and recall values for the best machine learning model 
is shown in TABLE V. , along with previous prediction models 

reported on earlier versions of Windows. The best model in our 
experimental setup showed a precision value around 0.81 and a 
recall value of 0.7. All precision and recall values for this 
experiment are shown in TABLE VI. Median precision over all 
models lies at 0.75, the median recall lies at 0.44. Compared to 
prediction models based on other code and process metrics, out 
test metrics show the third highest precision value (out of nine 
models) and the fourth highest recall value—only organizational 
structure and change bursts show stronger combinations of 
precision and recall values. Importantly, test metrics perform 
significantly better than models trained and tested on pre-release 
defects or churn. As expected, prediction models on file level 
perform worse than models on binary level. The median 
precision for these models lies at 0.63 and their median recall at 
0.19. Recall values on file level are too low to allow trustable 
applications. Nevertheless, source files are the preferable level 
of granularity as prediction models for binaries are hardly 
actionable. 

C. Predicting Pre-Release Defects for Development 

Milestones (RQ3) 

In RQ3 we want to investigate whether we can predict pre-
release issues for individual milestones using test metrics 
collected during the respectively previous milestone(s), e.g. 
predicting defects for M2 using test metrics collected during M1 
(M1→M2). Fig. 6 shows precision and recall values for models 
predicting pre-release defect counts for M2 and M3 on binary 
and file level. On binary level, precision values are high and lie 
around 0.8. Recall lies between 0.5 and 0.8, depending on the 
milestone predicted. Results for the same experiment on source 
file level of granularity shown strong precision values above 0.7 
for models trained on milestone M1 predicting M2. However, 
precision increases to 0.9 for models predicting pre-release 
defects found in M3. For these models, we also observed very 

TABLE V.  OVERALL DEFECT PREDICTION MODEL ACCURACY USING 

DIFFERENT SOFTWARE MEASURES ON WINDOWS VISTA. CONTENT TAKEN FROM 

[17] AND [11]. 

Model Precision Recall 

Change bursts [11] 0.91 0.92 

Organizational structure [5] 0.86 0.84 

Code churn [18] 0.79 0.80 

Code complexity [19] 0.79 0.66 

Social network measures [20] 0.77 0.71 

Code dependencies [21] 0.75 0.69 

Test coverage [22] 0.84 0.54 

Pre-release defects 0.74 0.63 

Pre-release test failures (this study) 0.81 0.70 

TABLE VI.  PRECISION AND RECALL VALUES FOR PREDICTION MODELS 

TRAINED ON ALL DEVELOPMENT PERIODS PREDICTING POST-RELEASE DEFECTS, BOTH 

ON BINARY AND SOURCE FILE LEVEL. 

Model       Binary level      File level 

 Precision Recall Precision Recall 

MLR 0.79 0.30 0.62 0.16 

NB 0.38 0.51 0.29 0.19 

RF 0.81 0.70 0.65 0.24 

RP 0.72 0.33 0.57 0.19 

SVM 0.74 0.38 0.64 0.12 

TP 0.75 0.51 0.63 0.21 

     

 

Fig. 6. Precision and recall values for pre-release models on binary and file 

level. 
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stable recall values with minimal variations between cross-folds 
and learners. In general, recall values on file level are low 
(around 0.65). The overall fraction of source files having post- 
and pre-release defects is small. This affect the accuracy of 
many machine learning algorithms. Furthermore, it seems clear 
that test effort and test execution are not the only factors 
influencing code issues. Other influencing factors are security 
issues (mostly found by other test cases or manual inspections), 
specification issues, or compatibility issues—none these factors 
is adequately covered by our test suite metrics and thus cannot 
be explained by models using only these metrics. Comparing file 
and binary models, it emerges that precision value trends for 
both levels of granularity have opposite trends. While M1→M2 
models show the strongest precision values on binary level 
models for the same experiment on file level show lowest 
precision values. Another interesting observation is that models 
predicting milestone M3 trained on M2 seem to perform as good 
or even better when compared to models predicting M3 but 

trained on M1 and M2. Our interpretation is that milestones M2 
and M3 are similar wheras M1 contains many activities with 
respect to code consolidation, refactorings, and new core 
features. This trend is consitent over binary and file level. 

D. Metric importance (RQ4) 

Although models on file and binary level show different 
prediction performance, they show similar metric importance. 
The number of quality gates that raise false alarms and the 
number of false alarm bursts with burst and gap size of one are 
the two most important metrics, as shown in TABLE VII.  
Interestingly, the number of architectures, build types, and 
languages are among the top 10 most important metrics for both 
levels of granularity. Overall, test bursts and test execution 
context signals, such as branches and architectures, seem to 
show great value for predicting post-release defects. 

E. Are Test Execution Metrics Proxies for Pre-Release 

Defects (RQ5) 

ROC curves for both regression models, using pre-release 
defect counts and test metrics, are shown in Fig. 7. The base line 
model using pre-release defects shows an area under the ROC 
of 0.48 while test metric models show a statistical significant 
higher value of 0.79—DeLong’s test for two ROC curves yields 
an p-value of under 2.2E-16. The difference between both ROC 
curves is higher than expected. In the past pre-release defects 
showed strong post-release prediction performances, but at least 
for Windows 8, test execution metrics outperform this baseline 
regression model.  

VI. RELATED WORK 

There have been a wide variety earlier studies investigating 
various code and process metrics for defect prediction purposes, 
including studies showing that testing and test effort are related 
to product quality. However, we are not aware of previous 
studies studying false test alarm and test failure bursts and their 
suitability to predict pre- and post-release bugs for evolving 
software products. 

A. Defect Prediction 

The number of related studies on defect prediction models is 
large. For the sake of brevity, we only refer to the most relevant 
related studies in this section. The first studies on predicting 
defects using code metrics emerged in the 1990s. In 1999, 
Fenton and Neil [23] provided a comprehensive overview of 
defect prediction models at that time. In their paper, the authors 
mention a couple of studies that used software test metrics to 
predict code defects—but until then, most studies concentrated 
on testability and the impact of testability measurements on code 
quality rather than using real test results (e.g. [10,24,25]). In 
recent years, more reviews on defect prediction models are 
emerging (e.g. [26,27]). These reviews show the wide variety of 
aspects and measurements used for defect prediction purposes. 
Ostrand et al. [28] used code metrics and prior faults to predict 
the number of faults. Zimmermann et al. [29] related code 
complexity to defects. Other studies used change-related metrics 
[30], developer related metrics [31], organizational metrics [5], 
process metrics [32], or change dependency metrics [33,34,2] to 
build defect prediction models, on various software systems and 
levels of granularity. 

TABLE VII.  TOP 10 MOST IMPORTANCE METRICS FOR MODELS PREDICTING 

POST-RELEASE DEFECTS ORDERED BY IMPORTANCE. 

Binary level File level 

Metric 
Area under 

ROC 
Metric 

Area under 
ROC 

FPBurstsB1G1 0.86 FPGates 0.73 

FPGates 0.85 FPBurstsB1G1 0.73 

TestSuites 0.85 TestCases 0.73 

Architectures 0.79 FPBurstsB2G3 0.72 

TPBurstsB1G3 0.78 Branches 0.72 

TPGates 0.78 TPBurstsB1G2 0.72 

BuildTypes 0.77 Architectures 0.72 

Branches 0.77 BuildTypes 0.70 

Languages 0.76 Languages 0.69 

FPBurstsB2G3 0.75 FPBurstsB2G1 0.67 

    

 

Fig. 7. ROC curves for regression models using pre-release defects and test 

execution metrics to predict post-release defects. 



B. Impact of Tests on Code Quality 

Nagappan et al. [35] and lately Rafique and Misic [36] 
showed that the effort invested into testing has a significant 
effect on code quality. Other studies used code coverage 
[37,38,39] and test count metrics such as the number of 
assertions [35] suggesting that test effort and test-driven 
development are likely to increase product quality [39,40]. 

C. Test Effort Measusres 

Wu et al. [41] used testing effort measures (e.g., complexity 
of test cases) and testing effectiveness measures (e.g., number of 
test failures) to assess software reliability. Similar, Mende and 
Koschke [4] showed that effort aware prediction models 
perform significantly better than models based on count metrics. 
However, these effort metrics are measuring the human effort 
that was invested to write or test the system. In this paper, we 
investigate test execution results rather than effort estimations. 

D. Test Coverage 

Chen and Wong presented a technique “using both time and 
code coverage measures for the prediction of software failures” 
[38] and showed that test coverage and the time between “test 
cases, which neither increases code coverage nor causes a 
failure” [38] can be used to reduce overestimations of reliability. 
Later, Cai and Lyu [37] confirmed that test coverage impact 
code quality. However, none of these studies analyzed test 
execution results and their predictive power. 

E. Test Execution Data & Reliability Growth Models 

Musa et al. [7] were among the first to relate test execution 
data with software reliability using software reliability growth 
models (SRGMs). The idea behind these models when designed 
was to use a stochastic model to assess the evolution of software 
in its successive testing phases. Since then, SGRMs based on 
test execution data evolved showing high accuracies 
[8,42,43,44]. However, SGRMs assume that the program being 
executed is stable (not changing except for bug fixes) [7]. In this 
study, we do rely on the stability of the program nor do we assess 
or predict the evolution of the software project. The purpose of 
this paper is to determine the suitability of test metrics to predict 
pre- and post-release defects for an evolving software project. 

Elberzhager et al. [45] used test failure inspection metrics to 
prediction defect prone areas. However, the authors used only 
pre-release defects as independent variable. In this study, we use 
more diverse independent variables including false test alarms 
and test failure bursts. 

VII. THREATS TO VALIDITY 

A. Study Subject  

Test metrics were not available for Windows releases before 
Windows 8 and Windows 8.1 was only recently released leaving 
us without a reliable estimation of post-release defects. Based on 
one release, we do not claim our results as general truth. Further 
studies are needed to confirm the suitability of our models. 

B. Test Metrics 

For the interpretation of test execution results, whether a 
failure is a true or false positive, is partially based on heuristics. 
Although, we ensured the correctness and rationales behind 

these heuristics with the Windows product teams, we and the 
Windows team estimate a test result interpretation error rate of 
10%. This error rate may impact prediction results. 

C. Number of Defects 

To compute pre- and post-release defect counts we used 
datasets provided by CODEMINE [1]. Although CODEMINE 
is extensively used and its results frequently verified, bug counts 
for some files may remain approximations. 

D. Predicting Pre-Release Defects 

Models predicting pre-release defects tend to predict 
churned files (usual suspects), e.g. files that are heavily churned 
due to new functionality. We did not compare against a usual 
suspect model. The presented results remain valid. However, 
there might exist simpler models achieving similar results. 

VIII. CONCLUSION 

Although the primary goal of tests is to detect code issues, 
there has been surprisingly little work to use test results to 
predict pre- and post-release defects for evolving software 
systems. Software reliability growth models (SRGMs) make 
extensive use of test execution data but assume stable 
development stages [7]. In this study, we defined a set of test 
execution metrics, separating false test alarms and failures 
reporting code issues, and test failure burst metrics to predict 
pre- and post-release bugs on binary and source file level for 
Windows 8. The results presented in this paper are promising. 
Prediction models trained on test metrics showed relatively high 
precision and recall values when compared to previous 
prediction models reported for Windows. The fact that these 
models are also precise on the finer and actionable source file 
level is encouraging. We also showed that test metrics can be 
used to predict bugs between individual development milestones 
rather than between individual releases and that test metrics are 
more expressive than simple prior bug counts. An initial analysis 
on the importance of individual metrics showed that test failure 
burst, false test alarms, and metrics counting different execution 
context properties are among the most influential metrics. 
However, this study should be considered as an explorative 
study assessing the general suitability of test failure metrics for 
defect prediction models. More work is needed to confirm these 
findings and to consolidate the current set of correlated test 
metrics and to find a more condense and optimal set. It also 
remains to be demonstrated that test metrics are good defect 
predictors in general. Due to confidentiality reasons, we are not 
able to share the raw datasets used in this study. Replication 
studies need to re-implement metrics. However, we expect these 
test metrics to depend on the individual test processes and 
infrastructures of the corresponding projects. Adapting or at 
least confirming the metrics underlying assumptions will be 
indispensable.  

ACKNOWLEDGMENT 

We thank the Windows development and BVT quality team 
for their support and feedback. This work is based on data 
extracted from varies development repositories provided by the 
Microsoft TSE group. Our special thanks go to Michaela 
Greiler, Jacek Czerwonka, Brendan Murphy, Christopher 
Theisen, Jason Means, and Poornima Priyadarshini. 



REFERENCES 

[1] Czerwonka, J., Nagappan, N., Schulte, W., and Murphy, B. 
CODEMINE: Building a Software Development Data Analytics 
Platform at Microsoft. Software, IEEE, 30, 4 (2013), 64--71. 

[2] Herzig, K. and Zeller, A. Mining cause-effect-chains from version 
histories. In Software Reliability Engineering (ISSRE), 2011 IEEE 22nd 
International Symposium on (2011), 60--69. 

[3] Herzig, K.S. Capturing the long-term impact of changes. In Proceedings 
of the 32nd ACM/IEEE International Conference on Software 
Engineering-Volume 2 (2010), 393--396. 

[4] Mende, T. and Koschke, R. Effort-Aware Defect Prediction Models. In 
Software Maintenance and Reengineering (CSMR), 2010 14th European 
Conference on (March 2010), 107-116. 

[5] Nagappan, N., Murphy, B., and Basili, V. The Influence of 
Organizational Structure on Software Quality: An Empirical Case Study. 
In Proceedings of the 30th International Conference on Software 
Engineering (2008), ACM, 521--530. 

[6] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A.E. The Impact of 
Code Review Coverage and Code Review Participation on Software 
Quality: A Case Study of the Qt, VTK, and ITK Projects. In In 
Proceedings of the 11th Working Conference on Mining Software 
Repositories (MSR 2014) (Hyderabad (India), 2014). 

[7] Musa, J.D., Iannino, A., and Okumoto, K. Software Reliability: 
Measurement, Prediction, Application. McGraw-Hill, Inc., 1987. 

[8] Huang, C.-Y., Kuo, S.-Y., and Lyu, M.R. An Assessment of Testing-
Effort Dependent Software Reliability Growth Models. Reliability, IEEE 
Transactions on, 56 (June 2007), 198-211. 

[9] Bird, C. and Zimmermann, T. Assessing the Value of Branches with 
What-if Analysis. In Proceedings of the ACM SIGSOFT 20th 
International Symposium on the Foundations of Software Engineering 
(Cary, North Carolina, 2012), ACM, 45:1--45:11. 

[10] Fenton, N., Krause, P., and Neil, M. Software measurement: uncertainty 
and causal modeling. Software, IEEE, 19 (Jul 2002), 116-122. 

[11] Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., and Murphy, B. 
Change Bursts as Defect Predictors. In Proceedings of the 21st IEEE 
International Symposium on Software Reliability Engineering 
(November 2010). 

[12] Team, R.D.C. R: A Language and Environment for Statistical 
Computing. , 2010. R Foundation for Statistical Computing. 

[13] Kuhn, M. caret: Classification and Regression Training. , 2011. 

[14] Herzig, K. Mining and Untangling Change Genealogies. , 2012. 
Universität des Saarlandes. 

[15] Witten, I.H. and Frank, E. Data mining: practical machine learning tools 
and techniques with Java implementations. SIGMOD Rec., 31 (mar 
2002), 76--77. 

[16] Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-
C., and Muller, M. pROC: an open-source package for R and S+ to 
analyze and compare ROC curves. BMC Bioinformatics, 12 (2011), 77. 

[17] Nagappan, N. and Ball, T. Evidence-Based Failure Prediction. O'Reilly 
Media, 2010. 

[18] Nagappan, N. and Ball, T. Use of Relative Code Churn Measures to 
Predict System Defect Density. In Proceedings of the 27th International 
Conference on Software Engineering (2005), ACM, 284--292. 

[19] McCabe, T.J. A Complexity Measure. IEEE Trans. Software Eng., 2 
(1976), 308-320. 

[20] Bird, C., Nagappan, N., Gall, H., Murphy, B., and Devanbu, P. Putting 
It All Together: Using Socio-technical Networks to Predict Failures. In 
Proceedings of the 2009 20th International Symposium on Software 
Reliability Engineering (2009), IEEE Computer Society, 109--119. 

[21] Zimmermann, T. and Nagappan, N. Predicting defects using network 
analysis on dependency graphs. In Proceedings of the 30th international 
conference on Software engineering (2008), ACM, 531--540. 

[22] Mockus, A., Nagappan, N., and Dinh-Trong, T.T. Test coverage and 
post-verification defects: A multiple case study. In Proceedings of the 
2009 3rd International Symposium on Empirical Software Engineering 
and Measurement (2009), IEEE Computer Society, 291--301. 

[23] Fenton, N.E. and Neil, M. A critique of software defect prediction 
models. Software Engineering, IEEE Transactions on, 25 (Sep 1999), 
675-689. 

[24] Voas, J.M. and Miller, K.W. Software testability: the new verification. 
Software, IEEE, 12 (May 1995), 17-28. 

[25] Badri, M. and Toure, F. Evaluating the effect of control flow on the unit 
testing effort of classes: An empirical analysis. Advances in Software 
Engineering, 2012 (2012), 5. 

[26] Catal, C. and Diri, B. Review: A Systematic Review of Software Fault 
Prediction Studies. Expert Syst. Appl., 36 (may 2009), 7346--7354. 

[27] Radjenoviç, D., Heričko, M., Torkar, R., and Živkovič, A. Software fault 
prediction metrics: A systematic literature review. Information and 
Software Technology, 55 (2013), 1397--1418. 

[28] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Where the bugs are. In 
Proceedings of the 2004 ACM SIGSOFT international symposium on 
Software testing and analysis (2004), ACM, 86--96. 

[29] Zimmermann, T., Premraj, R., and Zeller, A. Predicting Defects for 
Eclipse. In Proceedings of the Third International Workshop on 
Predictor Models in Software Engineering (2007), IEEE Computer 
Society, 9--. 

[30] Moser, R., Pedrycz, W., and Succi, G. A comparative analysis of the 
efficiency of change metrics and static code attributes for defect 
prediction. In Proceedings of the 30th international conference on 
Software engineering (2008), ACM, 181--190. 

[31] Pinzger, M., Nagappan, N., and Murphy, B. Can developer-module 
networks predict failures? In Proceedings of the 16th ACM SIGSOFT 
International Symposium on Foundations of software engineering 
(2008), ACM, 2--12. 

[32] Hassan, A.E. Predicting faults using the complexity of code changes. In 
Proceedings of the 31st International Conference on Software 
Engineering (2009), IEEE Computer Society, 78--88. 

[33] Zimmermann, T. and Nagappan, N. Predicting defects using network 
analysis on dependency graphs. In Proceedings of the 30th international 
conference on Software engineering (2008), ACM, 531--540. 

[34] Herzig, K., Just, S., Rau, A., and Zeller, A. Predicting Defects Using 
Change Genealogies. In Proceedings of the 2013 IEEE 24nd 
International Symposium on Software Reliability Engineering (2013), 
IEEE Computer Society. 

[35] Nagappan, N., Williams, L., Vouk, M., and Osborne, J. Early Estimation 
of Software Quality Using In-process Testing Metrics: A Controlled 
Case Study. SIGSOFT Softw. Eng. Notes, 30 (may 2005), 1--7. 

[36] Rafique, Y. and Misic, V.B. The Effects of Test-Driven Development on 
External Quality and Productivity: A Meta-Analysis. Software 
Engineering, IEEE Transactions on, 39 (June 2013), 835-856. 

[37] Cai, X. and Lyu, M.R. Software Reliability Modeling with Test 
Coverage: Experimentation and Measurement with A Fault-Tolerant 
Software Project. In Software Reliability, 2007. ISSRE '07. The 18th 
IEEE International Symposium on (Nov 2007), 17-26. 

[38] Chen, M.-H., Lyu, M.R., and Wong, W.E. Effect of code coverage on 
software reliability measurement. Reliability, IEEE Transactions on, 50 
(Jun 2001), 165-170. 

[39] Nagappan, N., Maximilien, E.M., Bhat, T., and Williams, L. Realizing 
quality improvement through test driven development: results and 
experiences of four industrial teams. Empirical Software Engineering, 
13, 289-302. 



[40] Strecker, J. and Memon, A.M. Accounting for Defect Characteristics in 
Evaluations of Testing Techniques. ACM Trans. Softw. Eng. Methodol., 
21 (jul 2012), 17:1--17:43. 

[41] Wu, J., Ali, S., Yue, T., and Tian, J. Experience report: Assessing the 
reliability of an industrial avionics software: Results, insights and 
recommendations. In Software Reliability Engineering (ISSRE), 2013 
IEEE 24th International Symposium on (Nov 2013), 218-227. 

[42] Okumoto, K. Software defect prediction based on stability test data. In 
Quality, Reliability, Risk, Maintenance, and Safety Engineering 
(ICQR2MSE), 2011 International Conference on (June 2011), 385-387. 

[43] Khatri, S.K., Kumar, D., Dwivedi, A., and Mrinal, N. Software 
Reliability Growth Model with testing effort using learning function. In 
Software Engineering (CONSEG), 2012 CSI Sixth International 
Conference on (Sept 2012), 1-5. 

[44] Rafi, S.M. and Akthar, S. Incorporating fault dependent correction delay 
in SRGM with testing effort and release policy analysis. In Software 

Engineering (CONSEG), 2012 CSI Sixth International Conference on 
(Sept 2012), 1-6. 

[45] Elberzhager, F., Kremer, S., Munch, J., and Assmann, D. Guiding 
Testing Activities by Predicting Defect-Prone Parts Using Product and 
Inspection Metrics. In Software Engineering and Advanced Applications 
(SEAA), 2012 38th EUROMICRO Conference on (Sept 2012), 406-413. 

[46] McIntosh, S., Kamei, Y., Adams, B., and Hassan, A.E. The Impact of 
Code Review Coverage and Code Review. In 11th Working Conference 
on Mining Software Repositories (MSR) (Hyderabad, 2014), ACM. 

 
 

 
 

 

 


