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ABSTRACT

Traditional spoken dialog systems are usually based on a cen-
tralized architecture, in which the number of domains is pre-
defined, and the provider is fixed for a given domain and in-
tent. The spoken language understanding (SLU) component
is responsible for detecting domain and intents, and filling
domain-specific slots. It is expensive and time-consuming in
this architecture to add new and/or competing domains, in-
tents, or providers. The rapid growth of service providers in
the mobile computing market calls for an extensible dialog
system framework. This paper presents a distributed dialog
infrastructure where each domain or provider is agnostic of
others, and processes the user utterances independently us-
ing their own knowledge or models, so that a new domain
and new provider can be easily incorporated in. In addition,
to facilitate each service provider building their own SLU
models or algorithms, we introduce a new component, ex-
tractors, to provide intermediate semantic annotations such as
entity mention tags, which can be plugged in arbitrarily as
well. Each service provider can then rapidly develop their
SLU parser with minimum efforts by providing some exam-
ple sentences with intents and slots if needed. Our prelimi-
nary experimental results demonstrate the power of this new
framework compared to a centralized architecture.

Index Terms— Distributed dialog system, domain detec-
tion, slot filling, entity extraction, spoken language under-
standing.

1. INTRODUCTION

Extending the coverage of traditional, centralized conversa-
tional interaction systems to new and/or competing domains,
user intents and service providers is expensive and time-
consuming. A single spoken language understanding (SLU)
component is responsible for classifying domains and intents,
and filling semantic slots. Although this design is simple,
it is challenging and costly to develop a SLU system for
multiple domains, given that it has to acquire and maintain
expert knowledge and resources for all of them. Moreover,
it is difficult to add new domains and service providers into

this type of architecture. In recent years, the mobile and web
computing has been growing fast. For example, there were
130k mobile apps in Windows Phone Store in February of
2013, this number increased to 255k by June of 2014 [1]. It
has been increasingly important for a dialog system to rapidly
incorporate emerging applications and service providers.

In this paper, we describe a distributed SLU framework,
where multiple domains develop and perform the task of
SLU independently, so that adding new domains and ser-
vice providers does not require modification of existing ones.
However, it is expensive and time-consuming for each indi-
vidual domain or service provider to implement their own
SLU models. On the other hand, multiple domains often
share some common slots and semantic information. For
example, locations are important in many domains such as
Weather and Restaurant. [2] improved multi-domain slot fill-
ing by utilizing shared slots. To reduce the difficulty of each
domain, leverage the shared information, as well as make the
framework more flexible, we introduce a new component,
domain-independent extractors, to extract various generic se-
mantic information from speech utterances. Each domain can
then build up its domain-specific SLU at low cost based on
the available semantic annotations. Finally, the distributed
framework also allows for benefiting from the active learning
research such as [3, 4].

Most recent research on multi-domain SLU focused on
a closed set of domains, such as [5, 6]. [7, 8] proposed a
distributed agent architecture for multi-domain spoken dialog
to reduce the complexity of centralized architecture. [9, 10]
studied the domain switch problem for this distributed archi-
tecture. Although in their architectures different domains can
be developed independently, they still need a master module
to select domain for each utterance. Our work is also related
to [11], which employed reusable SLU models to develop a
dialog system quickly and with less supervision. The main
contributions of this work are two-fold:

1. We present a distributed framework for multi-domain SLU
that can incorporate new domains at low cost.

2. We abstract domain-independent SLU components from
the implementation of each domain-specific SLU system
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Domain Example Intent Example Slot Types
Weather Check Weather date, location
Places Find Place place name, location

Table 1: Example of intents and slot types.

by introducing a new and extensible component: domain-
independent extractors. This enables a new domain or ser-
vice provider to develop its SLU modules rapidly based on
those intermediate components.

In our experiments (Section 4), we empirically analyze the
impact of the proposed framework on the performance of
SLU components.

2. SPOKEN LANGUAGE UNDERSTANDING

Spoken language understanding (SLU) aims at extracting
meaningful information from speech utterances, so that the
spoken dialog system can understand user request, and then
take appropriate response. In the multi-domain scenario, a
SLU module typically consists of domain detection, intent
detection, and semantic slot filling.

The tasks of domain detection and intent determination
are to classify a given speech utterance x into one of M se-
mantic classes, ĉ, based on the contents of the utterance:

ĉ = argmax
c∈M

p(c|x) (1)

To this end, researchers have tried various classification
methods such as Boosting [12, 13, 14], support vector ma-
chines (SVMs) [15], and more recently deep learning [16, 17]

In conventional SLU framework, M is a fixed number for
both tasks. In reality, it has to be changeable.

The semantic structure of a domain is defined in terms of
the semantic frames. Each semantic frame contains several
typed components called “slots.” The task of slot filling is
then to instantiate the semantic frames from the speech utter-
ance. In the simplest case, the semantic frame can be repre-
sented as tuples of 〈slot-type, value〉. Formally, the task is to
find the most probable slot assignments ŷ given utterance x:

ŷ = argmax
y∈Y(x)

p(y|x) (2)

where Y(x) is the entire search space of slot assignments of
x. Table 1 illustrates some example intent and slot types in
“Weather” and “Place” domains. For example, if a user asks:

“how is the weather in mountain view today”
The system should identify that the intent is “Check Weather”
in “Weather” domain. The location of interest is “Mountain
View”, and the date is “today”. For another utterance:

“where is mashiko in seattle”
the user intent should be “Find Place” in “Place” domain.
The location is “Seattle”, and the place name is “Mashiko”.

The approaches for slot filling range from generative
models such as hidden Markov models [18, 19], discrimi-
native classification methods [2, 20, 21, 22], probabilistic
context free grammars [23, 24], unsupervised induction [25],
and more recently deep learning methods [26, 27, 28].

3. DISTRIBUTED FRAMEWORK

Figure 1 depicts the overall architecture of our proposed
framework. In this framework, each domain performs SLU
independently. One can easily plug in new domains and ser-
vice providers. Extensible domain-independent extractors are
introduced to extract generic information (shared across mul-
tiple domains) from the user utterances, so that each domain
can build their own SLU models rapidly.

3.1. Distributed Domain Selection

In the distributed framework, each domain has its own SLU
component. When a user utterance is received, all competing
domains process it in parallel without intervening others. For-
mally, for a given speech utterance x, the SLU component in
each domain chooses to accept it or not:

ĉ = argmax
c∈{0,1}

q(x, c) (3)

where c = 1 means accept and 0 otherwise, and q(x, c) is
the confidence value of choosing c. If a probabilistic model
is applied, q(x, c) = p(c|x). Different from the centralized
baseline, we use Bing queries as negative training examples
for each domain in order to simulate the distributed sce-
nario. This strategy differs from Eq.(1) in that each domain
makes their decisions independently. Moreover, in the train-
ing phase, each domain is free to define its own training data,
feature space, and classification algorithms. This enables
all domains to concentrate on their particular interests, and
reduces the complexity of modelling all domains at once.

Finally, when a new domain is introduced to the frame-
work, it is not necessary to update training and decision
phases of existing domains. Therefore extensibility can be
enhanced at low cost.

In this paper we use Support Vector Machines (SVM) [29]
implemented by SVMlight toolkit [30] for binary classification
of domain selection.

3.2. Domain Independent Extractors

Although the distributed framework can incorporate new do-
mains and service providers flexibly, it is challenging and
costly to build a reasonable SLU component for each do-
main from scratch. This issue obstacles our goal of rapidly
adding new domains. We observe that there exists some com-
mon types of semantic annotations that are useful for mul-
tiple domains, such as locations, temporal expressions, and
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Fig. 1: Framework Overview. Exi represents arbitrary independent extractors.

so on. For instance, for the two example utterances men-
tioned in Section 2, extracting locations is critical in both
cases. It is expensive to duplicate a location extractor for each
of them. To this end, we decouple generic information ex-
traction and domain-specific SLU by introducing a new com-
ponent, domain-independent extractors, into the framework.
Given a speech utterance, each extractor can extract useful
information with their particular expertise. For example, we
can have one extractor focusing on extracting location enti-
ties, and another extractor that identifies and normalizes tem-
poral expressions. Again, each extractor performs extraction
in parallel. Therefore new extractors can be plugged in arbi-
trarily. Service providers can then build their own SLU parser
rapidly on top of the generic extraction results.

3.3. Slot Filling Parser

In this paper, we cast the problem of slot filling to sequential
labelling task with B-I-O schema. Each word is assigned with
one of B-X, I-X, and O tags, where X means slot type, and B,I
and O indicate the word is beginning of, within, and out-of a
slot, respectively. The slots y for utterance x then becomes a
sequence of labels (y1, y2, ..., yn), where n is the number of
words in x. For instance, for the sentence “how is the weather
in mountain view today”, we can have the following B-I-O
label sequence:

... weather in mountain view today y

... O O B-Location I-Location B-Date x

As an example implementation, we use linear-chain Con-
ditional Random Fields (CRFs) [31] to model this labelling
problem. In the case of first-order CRFs, the probability of

assignment ŷ for a given utterance x is:

p(ŷ|x) = 1

Z(xi)
exp(

∑
i

∑
k

(θk · fk(yi−1, yi, x)) (4)

where fk is k-th feature function, θk is its weight, and Z(x)
is a normalization factor. There are two types of features that
can be used: unigram feature only depends on the current la-
bel yi, whereas bigram feature dependes on both yi and yi−1.
To estimate feature weights, we use stochastic gradient de-
scent method to maximize the log-likelihood of training data.

4. EXPERIMENTS

In this section, we describe our experiments to test the fea-
sibility and extensibility of the proposed framework, and
demonstrate that by using domain-independent extractors, we
can build high-performance slot fillers using only a small set
of training instances.

4.1. Data Sets

The datasets used in our experiments are Microsoft Cortana-
related corpus and the well-known ATIS corpus [32]. The
Cortana-related data consists of 7 domains: alarm, calen-
dar, communication, note, places, reminder, and weather. To
provide negative training examples for each domain in the
distributed scenario, we also collected a set of Bing search
queries. Table 2 summarizes the statistics about the data sets.

4.2. Distributed Domain Detection

In this experiment, we compare the performance of dis-
tributed domain detection against traditional centralized do-
main classification. As an example implementation of the
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Framework Alarm Calendar Comm. Note Places Reminder Weather Overall (Accuracy)
Centralized 96.8 93.8 96.3 93.1 96.1 95.1 98.6 96.0
Distributed 93.0 89.6 93.0 88.5 91.0 90.0 96.0 91.9
Distributed

w/ Data from Competing
Domains

96.7 94.2 96.3 93.5 96.9 95.1 98.8 96.3

Table 3: Overall performance (%) of Centralized and Distributed domain detection.

Data Set Train Test
Cortana-related Data ∼21,500 / domain ∼2,500 / domain

Bing Queries 100,000 -
ATIS 4,978 893

Table 2: Data sets statistics

Framework Domain Domain+Intent
Domain+Intent
+Slot Filling

Centralized 96.0 91.1 84.9
Distributed 91.9 87.4 83.5

Table 4: End-to-end performance (%) of Centralized and
Distributed framework.

centralized framework, we consider the task of domain clas-
sification as a multi-class classification problem, and train
SVMs models with one-vs.-rest strategy on the Cortana-
related data. In the distributed scenario, for each domain,
we train a binary classifier in isolation using SVMs to pre-
dict whether a utterance belongs to it. Both methods employ
tri-gram features and linear kernel.

The overall results on Cortana test set are summarized in
Table 3. As we can see, the distributed method achieves
slightly lower performance than the centralized one, al-
though its negative training examples are random Bing search
queries, which are noisy for differentiating positive examples
for each domain. In addition, when we add the training data
from other domains as negative training examples for each
binary classifier, the performance becomes marginally better
than the centralized one (row 4 in Table 3). It supports our
assumption that distributed domain selection can perform as
well as centralized one for multiple domains.

To further simulate the scenario where an emerging do-
main needs to be added, we collected a set of Cortana queries
that express greetings to the agent, such as “hello, Cortana”.
We then consider those queries as a new domain (Greeting),
train a binary classifier for the new domain in the same way as
the existing domains, and plug it into the distributed system.
The Greeting model correctly identified 3,193 instances out
of 3,200, and the overall accuracy of existing domains is the
same as before. This result demonstrates that the distributed
method is capable of incorporating new domains without in-
tervening in existing ones.

Finally, we compare the end-to-end performance of cen-

feature type words features extractor features
unigram w−2, w−1, w0,

w1, and w2

e−2, e−1, e0, e1,
and e2

bigram true

Table 5: Slot filling feature template. w0 represents the cur-
rent word, and e0 denotes the tag of the current word provided
by independent extractor.

tralized and distributed frameworks by adding intent classifi-
cation and slot filling components. We trained intent classi-
fiers for each domain using SVMs model with tri-gram fea-
tures and linear kernel, and slot filling parsers using CRFs
with words in the window of size 2 as features. The results
are summarized in Table 4. The scores of Domain and Do-
main+Intent are measured by accuracy, and the final end-to-
end performance is measured by F1 metric, where system-
output slots are ignored if either domain or intent is incorrect.

4.3. Slot Filling Based on Generic Extractors

In this experiment, we test the advantage of using indepen-
dent extractors. We consider two test cases: location slots in
Weather domain of Cortana-related data, and all slot types in
ATIS corpus. Three independent extractors are employed:

• Ex1: a CRFs-based location extractor trained from an ear-
lier Cortana-related corpus including hotels, restaurant and
movies domains [2].
• Ex2: a generic entity extractor trained using structured per-

ceptron [33] over more than a million hand-annotated la-
bels in 25 entity types such as location, organiation, etc.
• Ex3: a named entity gazetteer for ATIS corpus.

Based on those extractors we train slot filling parsers using
first-order linear-chain CRFs, and compare the performance
of using only words features and using the two extractors re-
spectively. We use Ex1 and Ex2 for the Weather domain data
set and collapsed all location-related entity types from Ex2
such as city and state to location, and use Ex2 and Ex3 for
ATIS corpus. Table 5 summarizes the feature template that
we used for both test cases. The learning curves with train-
ing size varying from 100 to 1,000 are plotted in Figure 2 and
Figure 3. When the training size equals to 0 in Figure 2a, we
evaluate the output of Ex1 and Ex2 against the ground-truth
of Weather data directly. For both corpora, we can clearly see
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(b) All slots in Weather domain.

Fig. 2: Learning curves of slot filling on Weather domain using independent extractors.
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Fig. 3: Learning curves of slot filling on ATIS corpus using
independent extractors.

that using the extractors the performance of slot filling can be
boosted substantially when only a small amount of training
data is used.

5. CONCLUSIONS AND FUTURE WORK

We presented a distributed conversational understanding
framework with domain-independent extractors. This frame-
work enables each domain develop and apply its SLU model
independently. Therefore one can easily incorporate new
domains without modifying existing ones. Furthermore, we
introduce a new component, domain-independent extractors,
to extract useful information that can be shared by all SLU
developers. With these extractors, each new domain or ser-
vice provider can develop high-performance domain-specific
SLU models efficiently. Our preliminary experiments demon-

strated the advantages of the proposed framework compared
to conventional framework.

For future work, we plan to incorporate more domains and
service providers, and develop more independent extractors,
such as cuisine type extractor that can be useful for restaurant-
related service providers. Furthermore, we will expand this
framework for multiple turns of user-machine conversation.

6. REFERENCES

[1] “Windows phone store,” http://en.wikipedia.
org/wiki/Windows\_Phone\_Store.

[2] X. Li, Y.-Y. Wang, and G. Tur, “Multi-task learning for
spoken language understanding with shared slots,” in
INTERSPEECH, 2011, pp. 701–704.

[3] G. Tur, R. E. Schapire, and D. Hakkani-Tür, “Active
learning for spoken language understanding,” in Pro-
ceedings of the ICASSP, Hong Kong, May 2003.

[4] G. Tur, “Model adaptation for spoken language under-
standing,” in Proceedings of the ICASSP, Philadelphia,
PA, May 2005.

[5] A. Celikyilmaz, D. Hakkani-Tür, and G. Tur, “Multi-
domain spoken language understanding with approxi-
mate inference,” in Proceedings of the Interspeech,
2011.

[6] D. Hakkani-Tür, G. Tur, L. Heck, A. Fidler, and
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