
Just-In-Time Learning

for Fast and Flexible Inference

Supplementary Material

1 Parameterizations of messages

1.1 Tree parameterization

The tree parameterization of a message set tin consists of the concatenation of:

1. All common parameterizations of each distribution type. For a Gaussian this includes mean,
variance, mean-times-precision and precision, for a beta it includes α, β, mean and variance
and for a gamma it includes rate, shape, scale, mean and variance,

2. Binary features indicating whether the messages are proper, uniform or point-masses, and

3. The value of the ψ evaluated at the mode of µin.

The tree parameterization can be computed automatically for each factor and is a function of the
types of the distributions of the incoming messages.

1.2 Regression parameterization

The regression parameterization of messages for each factor is chosen for each problem with numer-
ical stability and convenience in mind. Gaussian messages are parameterized using their means and
log-precisions, so that messages with high or even infinite variance are represented accurately. For
beta messages, log-α and log-β parameterizations work best in practice, and for gamma messages
log-shape and log-rate parameterizations work best.
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Figure 1: Logistic regression. Factor graph for the logistic regression model. The logistic factor
is highlighted in red. JIT learning is used to compute messages outgoing from the factor. xi and
wi ∈ RD, zi = wT

i xi, pi = σ(zi), and yi ∼ Bernoulli(pi), i.e. yi ∈ {0, 1}.
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Figure 2: Comparison with Heess et al. JIT achieves good accuracy using few training
examples and a low test-time consultation rate. Heess et al. is also able to achieve good accuracy,
but it requires approximately an order of magnitude more oracle consultations in order to do so.

2 Comparison with Heess et al.

The closest work to ours is [1], in which Heess et al. use neural networks to learn to pass EP
messages. They train the neural networks independently of any given model and therefore attack
a problem that is harder than it needs to be.

Heess et al. can be arbitrarily accurate or inaccurate depending on the quality and volume of the
synthetic data provided by the user for pre-training. When comparing the two methods, one must
take into account a multi-way trade-off between computation invested into pre-training (only for
Heess et al.), oracle computation invested at test time (only for JIT), and the amount of error that
can be tolerated for the application at hand.

We have produced one such comparison for the logistic factor, where we plot the performance of
just-in-time learning vs. Heess et al. style pre-training (but using forests) with varying amounts
of data (see Fig. 2). There are 200 red points corresponding to JIT performance after seeing each
problem. The blue curve corresponds to the average performance of the different Heess factors on
the 200 problems. For first, middle and last problems, we report JITs consultation rate, which in
turn gives an indication of the computation invested at test time.

JIT achieves good accuracy using few training examples and a low test-time consultation rate.
Heess et al. is also able to achieve good accuracy, but it requires approximately an order of
magnitude more oracle consultations in order to do so.

By training in the context of a specific model, JIT learning allocates resources more efficiently
and also side-steps the problem of artificially creating training data for the regressors, which can
be particularly expensive for high-arity factors. Because the JIT learner knows what it knows, it
buys generality without having to do extensive pre-training.

3 Gaussian product factor

We also applied JIT learning to the Gaussian product factor, which computes xout = x1in × x2in.
Here, all choices for the incoming and outgoing message types are Gaussian. The Gaussian product
is a highly challenging factor to work with in EP. Reasons include symmetries in the behaviour
of the factor due to signs of input messages, and the fact that the message outputs can change
very quickly as functions of message inputs. Heess et al. report that they were unable to learn a
general, stable neural network implementation of this factor [1].
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(b) Prediction accuracy
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Figure 3: Just-in-time learning of the Gaussian product factor. (a) Trace of forest un-
certainty ūout during inference for the final 10 problems in a single run (boundaries of the 10
problems visualised by vertical bars at the top of the figure). Red dots indicate predictions whose
uncertainty was above umax, leading to an oracle consultation. (b) The learned factor’s predictions
agree highly with the built-in factor. (c) Sampling noise leads to deeper trees.
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Figure 4: Multiplicative noise regression. Factor graph for the multiplicative noise regression
model. JIT learning is used to compute messages outgoing from the factor highlighted in red. xi

and wi ∈ RD, zi = wT
i xi, pi = 1 + εi, and yi = zi × pi, i.e. yi ∈ R.

Again, we observe that in many specific models that the Gaussian product appears in, it only
ever needs to perform a small subset of all message-passing computations. For example in a
multiplicative noise regression of the form y = (wTx)× (1 + ε), where ε is Gaussian with a small
variance, the second input to the product factor always takes on values around 1. We experiment
with JIT learning of a product factor in this class of models (see Fig. 4). As before we present a JIT
Gaussian product factor several regression problems, keeping w fixed and generating new {(x, y)}
sets. For each problem, we infer the regression weights and make predictions on test inputs.

We observe that JIT learning is capable of learning a performant Gaussian product factor for
this problem from importance sampling (Fig. 3), reducing inference time using sampling from
around 22 seconds to around 3 seconds whilst maintaining good accuracy. However, at a given
precision, the consultation rate drops at a slower speed than for the logistic or compound gamma,
indicating the difficulty of learning a regressor for this function that generalises accurately. This
is also evidenced by the larger average depth of trees in the forest (Fig. 3c) and the lower recorded
leaf utilization rate of 0.84 (at 30% hold-out). By choosing a different parametrization for the
messages or a different family of predictors at the leaves it may be possible to increase the forest’s
performance.
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(a) Yield posteriors
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Figure 5: A probabilistic model of corn yield. Ecologists believe that yield increases grad-
ually up to some optimal temperature but drops sharply after that point [3, 2], and they wish
to incorporate this knowledge into their models faithfully. (a) Posterior means and 1 standard
deviations of county abilities ai, maximum corn yields ymax

i and observed values of corn yield yi
for a random selection of locations. (b,c) Posterior mean and variance on the optimal temperature
topt. This information is used by ecologists to identify counties that are using sub-optimal grain
varieties. Black dots indicate locations of counties for which we collect data.

4 The crop yield model

We use a graphical model to capture the relationship between farm i’s 2D position xi, its yield yi
and its temperature ti. From empirical studies, we know that yield increases gradually up to some
optimal temperature topt but drops sharply after that point (see [3, 2]):

yavgi =

{
ymax
i · exp{−plow · (ti − topt)2} ti < topt

ymax
i · exp{−phigh · (ti − topt)2} otherwise,

(1)

where plow = 10−3 and phigh = 10−2. We incorporate this knowledge into the model using a JIT
factor. We assume that topt varies smoothly over space (e.g. due to nearby farms having access to
similar, but slightly different, seed varieties) and encode it into the model using a Gaussian Process.
At their optimal temperatures, different farms operate at different yields (e.g. due to varying
qualities of soil). This quantity also varies smoothly over space but at a different lengthscale. We
additionally introduce county-level biases ai to account for varying levels of farming experience in
different counties.

We observe county positions xi (longitude and latitude) and temperatures ti, and infer their
maximum yields ymax

i and the optimal operating temperature of their grain topti . This information
is used by ecologists e.g. to identify counties that are using sub-optimal grain varieties.
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