
Towards AST-based Collaborative Editing
(NOTE: decide order of authors! (for now, it is alphabetic))

Sebastian Burckhardt
Microsoft Research

sburckha@microsoft.com

Jedidiah McClurg
University of Colorado Boulder ∗

jedidiah.mcclurg@colorado.edu

Michał Moskal
Microsoft Research

michal.moskal@microsoft.com

Abstract
Handheld devices and cloud-connected applications are now
commonplace. Even complex software development tasks
are moving into the mobile arena, as exemplified by “on-the-
go” code-editing with applications like Visual Studio On-
line. Further still, there is a trend towards real-time compo-
nents in collaborative software development, with platforms
like Google Docs and MS Office Online enabling limited
forms of real-time collaborative document development.

However, these platforms are unattractive for collabora-
tive software development since they don’t recognize and
maintain code structure. Additionally, these systems are built
atop ad-hoc algorithms or incredibly complex/fragile tech-
niques for ensuring eventual consistency of documents.

We address these problems by providing a clean frame-
work for realtime collaborative editing of source code within
an online structured editor. We first develop a conflict-free
three-way merge algorithm for program ASTs, which be-
haves intuitively to developers, and preserves syntactic cor-
rectness. We then show how this merge functionality can be
used in conjunction with the Cloud Types eventual consis-
tency model to enable seamless realtime collaboration.

We have implemented our system in the TouchDevelop
online programming environment. The UI now allows a user
to select another user’s code, and merge it into their current
application (patch merge). We have also implemented ba-
sic realtime collaborative editing, allowing users to edit the
same piece of code on multiple devices simultaneously.

∗ Work performed during an internship at Microsoft Research

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
We live in an era where handheld devices and cloud-connected
applications are highly prevalent. Even complex software
development tasks are moving into the mobile arena. Dis-
tributed version control systems have become popular, en-
abling users to develop code locally and then synchronize
with the work of other developers at some future point, and
even the actual editing of one’s local code can happen “on-
the-go”, due to applications like Visual Studio Online.

This is certainly not the end of the story. It is clear that
there is a trend towards social-network and real-time com-
ponents in collaborative software development. Platforms
like Google Docs and Microsoft Office Online enable lim-
ited forms of development in real-time, allowing users to edit
from anywhere, and quickly see changes and messages from
other developers. However, the eventual consistency func-
tionality underlying these platforms is sometimes complex
and inflexible, and the way it behaves on the surface can be
confusing to users, especially when trying to simultaneously
edit structured documents, such as source code.

At the heart of collaborative source-code editing is a soft-
ware merge problem. If we can quickly, accurately, and
automatically merge source code in a way that developers
find intuitive, we can use this functionality to continuously
merge changes from other developers to maintain an evolv-
ing program text. The research community has provided sev-
eral possible merge solutions. The classic text-level merge
[Khanna et al. 2007] is fast, but suffers from inability to un-
derstand the source code that is being merged, and can there-
fore easily result in confusing conflicts that must be fixed
manually. There are syntactic merge approaches [Apel et al.
2012] and semantic ones [Mens 2002], which can improve
the quality of the merge, but only at the expense of time.

Once a merge function exists, the next question is how
to ensure eventual consistency of the program text across
all of the collaborating devices. Existing approaches use
Operational Transformations (OT) [Ellis and Gibbs 1989],
or Commutative Replicated Data Types (CRDT) [Preguica
et al. 2009] [Shapiro et al. 2011]. However, these suffer from
a difficult-to-understand programming model, or strong re-
quirements on the datatype operations (or both).

1 2015/2/25

In this paper, we develop a straightforward approach to
collaborative editing which attempts to address these prob-
lems. Our techniques provide a source-code merge function
that is efficient while still preserving the well-formed struc-
ture of the code, and we show that this function has proper-
ties which make it intuitive to the developers relying upon
it. Using this merge function, we build on a recent eventual
consistency model which avoids some of the difficulties of
the aforementioned eventual consistency approaches.

Our merge function is a pseudo-syntactic (AST-based)
three-way merge. We show that by modifying a structured
online source-code editor, we can develop an efficient merge
algorithm in this context by keeping track of AST node IDs
as users are collaborating on the code. This is more useful
than a purely syntactic merge, because nodes can be moved
around in the program, copy/pasted from other programs,
and brought in from previous versions, while still retaining
their unique identities. Our merge is always automatic, i.e.
conflicts do not cause it to abort, allowing for seamless
collaboration. We show that the merge preserves some basic
semantic information about merged programs, and possesses
several properties which make it intuitive for developers and
allow it to be applied continuously without changing the
merged source code in unexpected ways.

We adapt the eventual consistency model of Cloud Types
[Burckhardt et al. 2012], using our merge function as a log
evaluation operator. Cloud Types provide a clean eventual
consistency solution that is easy for developers to reason
about, and does not place harsh restrictions on the data
operations. We show how this approach can be used for
collaborative editing. We also show how the merge function
can be used within this context to provide an undo operation
which works sensibly in a collaborative environment.

We have implemented our system in the TouchDevelop
online programming environment [Burckhardt et al. 2013].
This environment already supported basic version history
and branching, but not merging. The UI now allows a user to
select another user’s code, and merge it into their current ap-
plication (patch merge). It also allows a user to create devel-
opment branches which she/he can later merge back into a
main branch. We have also implemented basic realtime col-
laborative editing, allowing users to edit the same piece of
code on multiple devices simultaneously.

Our contributions can be summarized as follows:

• We show how to exploit a structured editor with version-
history/branching to maintain mergeable ASTs (§3).

• We develop a general and conflict-free 3-way merge al-
gorithm for ASTs, and show that the merge function has
desirable properties (§4).

• Using the merge algorithm as a log evaluator, we build
on Cloud Types to create an eventually-consistent AST
datatype. We demonstrate the use of Cloud ASTs for

realtime collaboration, and present correctness results for
this technique (§5).

• We provide an implementation of this approach, enabling
patch-merge and real-time collaboration functionality in
a popular online programming environment (§6), and per-
form a preliminary evaluation of its usability (§7).

Overall, we make a definitive step towards enabling
seamless real-time collaboration in an online software devel-
opment environment. The results of this research can help
make developers more productive, allowing them to edit and
collaborate on-the-go. It can also help educators make their
programming classes more interactive, allowing an entire
classroom of students to participate in a “hands-on” way
with software development assignments.

2. Overview
In a cloud-based programming environment such as TouchDe-
velop, the editor assists the user in writing well-formed code,
and the source code is stored in the cloud in a structured way.
Namely, a script is stored in the form of an abstract syntax
tree (AST). We can keep track of unique identifiers for each
AST node, creating fresh IDs for new code, and propagat-
ing current IDs to forked versions of a script. For example,
consider this TouchDevelop script and corresponding AST:

1 action main() do
2 var x := 10
3 while x ≥ 1 do
4 x→post to wall
5 Bone(x)
6 x := x - 1
7 end while
8 end action

10 action one(p: Number)
11 p→post to wall
12 end action

Figure 1: Simple TouchDevelop script

Figure 2: AST for script in Figure 1

This is a simple script that displays the numbers 1 through
10 in decreasing order, repeating each one twice. Let us now
assume that two users A,B have forked this script, and they
both find themselves wishing to print the factorial of each
number. Both users do not wish to re-implement this func-
tionality, so they browse the repository of TouchDevelop
scripts, finding a user C who has a straightforward factorial-
printing function fact. Users A,B select-copy the fact
function, and paste into their fork, adding a line after 4 which

2 2015/2/25

calls fact(x). However, user A has pasted the function
definition before line 1, and user B has pasted it after line 8.

If users A,B now attempted to merge their code using
a Diff3-style line-based merge, or even a smarter syntax-
based merge, they would now have a new script with two
definitions of fact, one before and one after the main def-
inition. While possibly syntactically correct, this new script
is semantically incorrect, and causes a compile error.

We avoid situations like this by merging the ASTs based
on the unique IDs of the nodes. In this case, we would
recognize that the pasted fact functions have the same IDs,
making them identical in both the users’ forks, and would
simply need to decide whether the fact function should
be placed before or after main. In this case, either choice
would be semantically correct, but in general, our merge
needs to make sure the merged program respects define-
before-use statement ordering.

We show that our merge preserves define-before-use and
other basic well-formedness properties in the absence of
conflicts (where users A,B both change an AST node from
its base version in differing ways), and makes a sensible
automatic choice in the case of a conflict. This presents the
user with a useful and intuitive merge. We also show that
in the absence of conflicts, the merge has an associativity
property, and a “transitivity” property which equates the
merging of two branches with the result of successively
cherry-picking each commit from the two branches. These
properties ensure that real-time collaboration behaves in a
seamless way.

Our real-time collaboration functionality is based on the
eventual consistency model of Cloud Types. Cloud Types
use a (logically) centralized log of operations which rep-
resents the correct global state. Each device stores a local
log containing their own local operations, and a prefix of
the global log. As a device continues operating, it will pe-
riodically inform the centralized log server of its newly-
performed operations, and possibly receive a longer prefix of
the global log. In this way, the devices all progress towards
the consistent global state (see Figure 3).

Figure 3: Cloud Types - Global Log of Update Transactions

This eventual consistency mechanism is known as Global
Log of Update Transactions (GLUT). In our case, the logged
operations are diffs of the AST, represented by pairs of
before-after trees. The state seen by each device is repre-
sented by a list of these pairs, and the device produces a

current view of the AST by “folding” over the local log us-
ing the merge function. As devices receive longer log pre-
fixes, this view will change to bring in modifications from
other users. We also implement a “local undo” operation by
pushing a reverse diff onto the log. The merge causes this to
cancel out the previous local edit.

Our work provides a preliminary framework for real-
time collaborative source-code editing. Building all of these
pieces into TouchDevelop, we have created a working pro-
totype which can be used and tested by a large audience.

3. Language and Environment for
Collaborative Editing

TouchDevelop is a web-based application development en-
vironment which allows participants to use a structured code
editor (see Figure 4) to write scripts in a simple impera-
tive programming language, and then run these scripts in a
browser. Many libraries are made available, allowing users
to easily create interactive forms, quizzes, games, etc.

Figure 4: TouchDevelop structured code editor

This environment is cross-platform compatible, since
it runs in the browser, and works with a wide range of
browsers. Additionally, it allows users to interact by “cloning”
(forking) scripts of other users. These features, in combina-
tion with the structured code-editor where users write their
applications, make TouchDevelop an especially good place
to investigate collaborative editing.

In Figure 5, we show the syntax of TouchDevelop pro-
grams. TouchDevelop makes a distinction between a state-
ment (block-like code structure) and expression (single line
containing tokens). Statements, which include declarations,
loops, comments, etc. are always syntactically well-formed,
while expressions such as a + b + c may not be.

A TouchDevelop program is stored in the cloud as text,
and then parsed and loaded into the structured editor as an
AST. Each node in the AST (and in the stored version of the
program) has a globally-unique ID which is created on node

3 2015/2/25

v ∈ Var (variable)
τ ∈ {Number, Boolean, String} (type)
n ∈ R (number)
b ∈ {true, false} (boolean)
s ∈ {“c · · · ” : c ∈ Char} (string)
id ∈ Ident (identifier)
op ∈ {+,−, ∗, /,<,=, and, not} (operator)
prog ::= (action | decl) · · · (program)
decl ::= varx ::= expr (declaration)
stmt ::= decl | x ::= expr (statement)

| x→ id(v, · · ·) | Bid(v, · · ·) | block
| comment | if | for | while

expr ::= op | n | b | s | v (expression)
| expr · · ·

param ::= v : τ (param)
block ::= stmt · · · (block)

comment ::= // · · · (comment)
action ::= action id(param, · · ·) (action)

returns(param, · · ·) do block
end action

if ::= if expr then block else block (if)
end if

for ::= for 0 <= v < n do block (for)
end for

while ::= while expr do block (while)
end while

Figure 5: Basic TouchDevelop AST

creation, and maintained appropriately as the node is moved
around within the script or cut/copied to other scripts.

4. AST-based Merge Functionality
Using this ID-enriched TouchDevelop AST, we can build an
AST merge function, with the following basic requirements.

Merge requirements: Define a 3-valued merge function
M(TO, TA, TB) where TO is a common ancestor of TA, TB .
The function returns a new tree TM , and

1. Keeps invariants of TA, TB , i.e. merging trees should
result in a tree, and merging sequences should result in
a sequence.

2. Prefers change over no change.

3. Prefers A over B on conflict.

We represent an Abstract Syntax Tree T as a set of tuples
of the form (n, p, S), where n ∈ N is the unique node
identifier, p ∈ N ∪ {ε} is the parent node (or ε if there is
no parent), and S is the set of subsequent sibling nodes,

i.e. nodes which are siblings of n and appear to the right
of n in the AST. We denote the set of all ASTs by T . We
want a three-way merge function M : T × T × T → T
such that M(TO, TA, TB) merges TA, TB using the base
AST TO, resulting in a new AST TM . Let ids : T → N
be a function that obtains all node IDs from an AST, i.e.
ids(T) = {n : (n, p, S) ∈ T for some p, S}. We use
notation (x→ y) ∈ T to indicate ∃(x, p, S) ∈ T s.t. y ∈ S.

4.1 Merge Algorithm
The merge algorithm works by first computing the set of
nodes that will appear in the merged program, taking into
account nodes which should be added or deleted. Then, it
computes the tree structure of the merged program. Finally,
it orders siblings properly in the result tree.

1. Perform additions and deletions. Let IM = ((ids(TA)∪
ids(TB))− ids(TO))∪ (ids(TA)∩ ids(TB)∩ ids(TO)).
These are the nodes that will appear in TM .

2. Determine parents (Tree Merge). We construct a func-
tion par : IM → IM which maps vertices to parents:

(a) For all x ∈ IM , if (x, p1) ∈ TO ∧ (x, p2) ∈ TA where
p1 6= p2, then require par(x) = p2, add x to VL.

(b) For all x ∈ IM , if (x, p1) ∈ TO ∧ (x, p3) ∈ TB where
p1 6= p3 ∧ x 6∈ VL, then require par(x) = p3.

(c) Find the strongly-connected components of the graph
represented by par. Do a DFS traversal of TA, and
upon first entering a non-trivial (size > 1) component
via some vertex n, reset par(n) to the parent of n in
TA.

3. Determine ordering (Sequence Merge). For each p ∈
IM , we can compute the set of children C = par−1(p).
We wish to produce an ordering R(C) of the elements in
C.

(a) For x, y ∈ C where y 6= x:
• If (x → y) ∈ TA and ((x → y) 6∈ TO or
(y → x) 6∈ TB), then add (x

A→ y) ∈ R(C).
(b) For x, y ∈ C with y 6= x ∧ (x, y) 6∈ R(C) ∧ (y, x) 6∈

R(C):
• If (x → y) ∈ TB and (y → x) ∈ TO ∩ TA, then

add (x
B→ y) ∈ R(C).

(c) Compute strongly-connected components of R(C),
and replace any (x

B→ y) edge occurring in a non-
trivial (size > 1) component with (y

A→ x).

Now, TM = {(n, p, S) : n ∈ IM , p = par(n), S = {y ∈
IM : (n, y) ∈ R(par−1(p))}}

4.2 Simple Tree Merge Examples
In this section, we present some simple examples of the Tree
Merge portion of the algorithm. In Figure 6, the left side

4 2015/2/25

(change in TB blocked
by change in TA)

(one nontrivial
strongly-connected
component)

Figure 6: Tree merge: automatic conflict resolution

Figure 7: Tree merge: TA unchanged–changes in TB allowed

shows a conflicting edit where both users A and B try to set
the parent of node D (conflict is resolved by choosing A’s
edit). The right side shows a conflicting edit where user A
moves the C,D subtree, and userB moves theA,B subtree.
This creates a nontrivial strongly-connected component, and
we must break the cycle deterministically by doing a DFS
traversal based on user A’s tree.

Figure 7 shows an edit from user B which does not con-
flict with user A’s edits. Finally, Figure 8 shows a highly
conflicting edit where usersA andB swap nodes in different
ways. This creates two nontrivial strongly-connected com-
ponents, and again cycles are broken deterministically.

4.3 Simple Sequence Merge Examples
In this section, we show some examples of the Sequence
Merge portion of the merge algorithm. In the left side of
Figure 9, no users have made any edits, so the resulting
sequence is unchanged. In the right side, users have made
conflicting edits, with user A swapping the order of 3, 1,
and user B moving 2 between the originally-ordered 3, 1.
This results in a cycle, which is deterministically resolved

Figure 8: Tree merge: two nontrivial strongly-connected
components

(no
changes)

(cycle
broken by
reversing B
edge)

Figure 9: Sequence merge: Non-conflicting and conflicting
sequence edits

Figure 10: Sequence merge: change in B

Figure 11: Sequence merge: cycle broken by reversing blue
(B) edge

by reversing all blue edges (ones caused by user B) in the
cycle. Figure 11 shows another example of breaking cycles.
Figure 10 shows a non-conflicting change caused by user B.

4.4 Properties of Merge Function
In this section, we briefly mention three important properties
of the merge function.

5 2015/2/25

Theorem 1. The merge function has basic identity proper-
ties that one would expect from a sensible merge:

• M(TO, TO, TO) = TO
• M(TO, TA, TO) = TA
• M(TO, TO, TB) = TB

Theorem 2. The merge function M can be applied “tran-
sitively”. That is, if TA, TB are derived from base TO, and
T ′A is derived from TA, and edits are well-separated, then
M(TA, T

′
A,M(TO, TA, TB)) =M(TO, T

′
A, TB).

Theorem 3. The merge function M is associative. That
is, if TA, TB , TC are derived from base TO, and edits
are well-separated, then M(TO,M(TO, TA, TB), TC) =
M(TO, TA,M(TO, TB , TC)).

As previously mentioned, we wish to use the merge func-
tion continuously to enable realtime collaborative editing.
While these properties are not needed for eventual consis-
tency of collaborative edits when using Cloud Types, as we
will see in the next section, they ensure that users’ edits are
merged in a “sensible” way.

5. Merge-based Collaborative Editing
When multiple remote users are collaborating on a piece of
code, we want to ensure that they will all eventually see the
same AST, a requirement known as eventual consistency. As
described in the Overview section, Cloud Types form a clean
eventual consistency solution. Cloud Types have been used
to allow a TouchDevelop program to store data in the cloud
for synchronization across other running instances, but now
we want the program currently loaded into the editor to be
synchronized across other running instances. We do this by
creating a new cloud type called Cloud AST.

Conceptually, Cloud Types uses the Revision Diagrams
eventual consistency model. The actual implementation of
this uses a log of operations on the data. As seen in Fig-
ure 3, a prefix of the log (shown below in blue) is known
to be synchronized, and this prefix is expanded as clients
communicate with the server. In the meantime, clients can
temporarily see an inconsistent state. Clients compute their
current “view” of a Cloud variable by reducing their local
log using a function collapse : L× L→ L.

5.1 Encoding ASTs Using Cloud Types
We add a new Cloud AST type by letting each log entry be
a change (i.e. diff) to the AST, stored as a pair (TA, T ′A).

T1 T3 (entry L1)
T1 T2 (entry L2)
T3 T5 (entry L3)
T2 T4 (entry L4)

...

Then we can use our merge function for log evaluation:
collapse((TO, TM), (TA, T

′
A)) = (TO,M(TA, T

′
A, TM)).

This handles local edits sensibly, since by the identity prop-
erties, collapse((T1, T2), (T2, T3)) = (T1, T3). The “transi-
tive” merge property described in Theorem 2 shows that a
local edit (TA, T ′A) is merged with remote edits sensibly.

Figure 12: Log Evaluation – Client (right branch) and Server
(left branch)

Note that associativity (Theorem 3) ensures that this also
behaves properly for more than one client.

5.2 Local Undo
In a collaborative-editing context where we are editing code
alongside other (remote) users, special care must be taken
when implementing an undo operation. Specifically, each
time user A performs an undo, she should see only her own
local edits being reverted, and this should have no effect on
changes merged in from remote users.

We implement this local undo operation by utilizing the
merge function. As with regular undo, a local history is saved
as the user makes edits, but instead of simply reverting to a
saved history item, our undo operation pushes an inverse diff
of the previous edit. That is, if the user previously changed
the AST from TA to T ′A, then we push the diff (T ′A, TA).

Figure 13: Undo (only local edits)

Notice that this works trivially in the case where the
log evaluates to (TO, T

′
A) and there are only local edits. In

this case, pushing (T ′A, TA) to the log clearly restores TA,
since eval((TO, T ′A)(T

′
A, TA)) = (TO,M(T ′A, TA, T

′
A)) =

(TO, TA) by the identity properties (see Figure 13).

6 2015/2/25

If there are remote edits, we should restoreM(TO, TA, TB),
and this is indeed the case if local/remote edits are well sep-
arated. Figure 14 shows an example of this operation.

Figure 14: Undo (local + remote edits)

6. Implementation
We have implemented the merge algorithm in about 1700
lines of TypeScript. This functionality accepts three TouchDe-
velop ASTs TO, TA, TB and produces a merged AST TM .

Before connecting this with the user-facing TouchDe-
velop functionality, we needed to make several large modifi-
cations to TouchDevelop’s TypeScript codebase. We first re-
structured the TouchDevelop AST to make it more straight-
forward, and added support in AST nodes for node-IDs and
multiple base IDs. We also made modifications to the cut/-
copy operations in the TouchDevelop Editor, allowing track-
ing of script/node ID for cut/copied AST nodes.

Then, we added Editor buttons for patch merge, allow-
ing users to click “merge” and merge changes from an-
other script. For this, we also implemented least-common-
ancestor computation to automatically compute a sensible
common ancestor (base) TO for the patch merge.

To enable realtime collaboration, we modified the Cloud
Sessions functionality to add a Cloud-AST datatype, where
the log entries are AST diffs (stored as pairs of TouchDe-
velop ASTs) and our merge function is used for log eval-
uation. We also modified the Editor to connect to an AST
Cloud Session, display the Cloud-AST (which is updated as
other users collaborate), and push any local AST changes.
Finally, we modified the Editor’s undo operation to push a
reverse diff of the previous local edit.

7. Evaluation
Our TypeScript merge implementation is derived from a
Scala baseline implementation. We have run identity and
associativity regression tests with thousands of randomly-
generated trees on the Scala implementation, to confirm that
we have properly realized the formal specification of the
merge algorithm.

As a basic merge performance test, we have iterated
through the full collection of 100K+ actual TouchDevelop
scripts, merging each one with itself (Figure 15). The results
show that the maximum time is almost always below 8 sec-
onds. One script required about 10 seconds to merge due to
a 1000-line block of variable declarations, which makes the

Figure 15: Merge Performance on M(TO, TO, TO) Experi-
ment

strongly-connected components call slow. We expect that
future optimizations will reduce this time significantly (see
Future Work).

8. Related Work
Much work has been done by the research community in
terms of merge algorithms. The classic text-level merge
[Khanna et al. 2007] is widely used in version-control sys-
tems, etc. This is generally fast, but suffers from inability
to understand the source code that is being merged, often
resulting in confusing conflicts that must be fixed manually
by the user(s), with the risk of a malformed merged result.

Syntactic [Apel et al. 2012] and semantic [Mens 2002]
merge approaches take into account structure and meaning
of the merged programs respectively. This can improve qual-
ity of the merge, making sure that the result program is well-
formed in certain ways, but can only do so at the expense
of time. Additionally, as seen in [Horwitz et al. 1989] [Reps
1991], many of these approaches do not have an ability to re-
cover from merge conflicts, and we need automatic conflict
resolution functionality to enable real-time collaboration.

Ensuring eventual consistency across all collaborating
devices is another area of related work. One existing ap-
proach uses Operational Transformations (OT) [Ellis and
Gibbs 1989], which works by transforming operations (add,
insert, delete, etc.) based on the order in which they end up
executing. This is the approach used by Google for their
Docs and Wave products, but has shown to be extremely
complicated to implement/maintain, with a former Google
engineer indicating that it took two years to implement OT
properly [Wikipedia 2014].

Additionally, errors have been found in published OT
algorithms [Preguica et al. 2009]. Motivated by these diffi-
culties of the OT approach, others have proposed a cleaner
approach, Commutative Replicated Data Types (CRDT)
[Shapiro et al. 2011]. However, this places strong require-
ments on the datatype operations, namely commutativity,
which would make our automatic conflict resolution im-
possible. Instead, we use the similarly-clean Cloud Types

7 2015/2/25

[Burckhardt et al. 2012] eventual consistency model, which
does not place this restriction on our merge algorithm.

9. Conclusion and Future Work
We have presented a framework for collaborative editing of
source code within a structured online editor. Our approach
is based on a conflict-free AST-based merge function, which
is used in conjunction with the Cloud Types eventual consis-
tency model to enable both standard branch/merge version
control, and realtime collaborative editing. An implementa-
tion which allows standard branching/merging, and a pre-
liminary implementation enabling single-user (multi-device)
realtime collaboration has been added to the TouchDevelop
online programming environment.

In the future, we will work on fully deploying and eval-
uating the multi-user collaborative editing functionality in
TouchDevelop. This will likely involve many optimizations.
Currently the merge algorithm works on monolithic scripts,
so we are interested in allowing the merge/editor to handle
small changes locally. Additionally, we need to reduce the
communication overhead by compressing the AST diffs that
are sent over the network as users collaborate.

Another interesting area of research would be Longitudi-
nal Program Analysis in this collaborative editing context.
The paper [Notkin 2002] proposes that program analysis ap-
proaches take into consideration the full version-history life-
time of a program, rather than just individual snapshots. A
few approaches have moved in this direction [Lahiri et al.
2010] [Logozzo et al. 2014], but they focus on analyzing a
single diff, i.e. using information from the analysis of pro-
gram P to analyze a modified program P ′. It would be in-
teresting to see how we could do this in general, using our
version history and a carefully-specified merge algorithm.

References
S. Apel, O. Leßenich, and C. Lengauer. Structured Merge with

Auto-tuning: Balancing Precision and Performance. In Proceed-
ings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2012, pages 120–129, New
York, NY, USA, 2012. ACM.

S. Burckhardt, M. Fhndrich, D. Leijen, and B. Wood. Cloud
types for eventual consistency. In J. Noble, editor, ECOOP
2012 Object-Oriented Programming, volume 7313 of Lecture
Notes in Computer Science, pages 283–307. Springer Berlin
Heidelberg, 2012.

S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid,
M. Moskal, N. Tillmann, and J. Kato. It’s Alive! Continuous
Feedback in UI Programming. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 95–104, New York, NY, USA,
2013. ACM.

C. A. Ellis and S. J. Gibbs. Concurrency Control in Groupware
Systems. In Proceedings of the 1989 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’89, pages
399–407, New York, NY, USA, 1989. ACM.

S. Horwitz, J. Prins, and T. Reps. Integrating Noninterfering Ver-
sions of Programs. ACM Trans. Program. Lang. Syst., 11(3):
345–387, July 1989.

S. Khanna, K. Kunal, and B. Pierce. A Formal Investigation of
Diff3. In V. Arvind and S. Prasad, editors, FSTTCS 2007:
Foundations of Software Technology and Theoretical Computer
Science, volume 4855 of Lecture Notes in Computer Science,
pages 485–496. Springer Berlin Heidelberg, 2007.

S. K. Lahiri, K. Vaswani, and T. Hoare. Differential static analysis:
Opportunities, applications, and challenges. In 2010 FSE/SDP
Workshop on the Future of Software Engineering Research (Po-
sition paper). Association for Computing Machinery, Inc., Nov.
2010.

F. Logozzo, S. K. Lahiri, M. Fähndrich, and S. Blackshear. Veri-
fication modulo versions: Towards usable verification. In Pro-
ceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, pages
294–304, New York, NY, USA, 2014. ACM.

T. Mens. A state-of-the-art survey on software merging. Software
Engineering, IEEE Transactions on, 28(5):449–462, May 2002.

D. Notkin. Longitudinal program analysis. In Proceedings of the
2002 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’02, pages 1–1,
New York, NY, USA, 2002. ACM.

N. Preguica, J. M. Marques, M. Shapiro, and M. Letia. A Commu-
tative Replicated Data Type for Cooperative Editing. In Proceed-
ings of the 2009 29th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS ’09, pages 395–403, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

T. Reps. Algebraic properties of program integration. Science of
Computer Programming, 17:139–215, 1991.

M. Shapiro, N. Preguia, C. Baquero, and M. Zawirski. Conflict-free
replicated data types. In X. Dfago, F. Petit, and V. Villain, ed-
itors, Stabilization, Safety, and Security of Distributed Systems,
volume 6976 of Lecture Notes in Computer Science, pages 386–
400. Springer Berlin Heidelberg, 2011.

Wikipedia. Operational transformation, Dec. 2014. URL
http://en.wikipedia.org/wiki/Operational_
transformation.

8 2015/2/25

http://en.wikipedia.org/wiki/Operational_transformation
http://en.wikipedia.org/wiki/Operational_transformation

	Introduction
	Overview
	Language and Environment for Collaborative Editing
	AST-based Merge Functionality
	Merge Algorithm
	Simple Tree Merge Examples
	Simple Sequence Merge Examples
	Properties of Merge Function

	Merge-based Collaborative Editing
	Encoding ASTs Using Cloud Types
	Local Undo

	Implementation
	Evaluation
	Related Work
	Conclusion and Future Work

