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I. ABSTRACT 

This paper presents KAist Indoor LOcating System 
(KAILOS), which aims to provide a global indoor 
positioning service through crowdsourcing. KAILOS 
provides methods and tools for volunteers to develop indoor 
positioning systems for their buildings. Anyone can deploy 
indoor positioning systems in their buildings on KAILOS. In 
addition, various location based applications can also be 
developed on KAILOS using APIs provided by the system.  

KAILOS has many unique features distinguishing it form 
other indoor positioning systems. Positioning algorithm is one 
of such features. KAILOS employs advanced positioning 
algorithms to provide accurate positioning service. For 
example, an extended Viterbi algorithm was developed for the 
tracking of a user using the historical data of Wi-Fi 
fingerprints, magnetic fingerprints, and sensing data from 
inertial sensors such as a 3- axis accelerometer, a gyroscope, a 
compass, and a barometer. The extended Viterbi algorithm 
successfully integrates the readings from various smartphone 
sensors in its probabilistic framework. In addition, a novel Wi-
Fi fingerprinting scheme, named Signal Fluctuation matrix 
(SFM), was developed to extract an optimized performance 
from sparsely collected fingerprint data.  

A. Tools to deploy an indoor positioning system  
 KAILOS provides tools and interfaces for volunteers to register 

indoor maps and fingerprint DB of any building. They are available at 
KAILOS web site (http://kailos.io) as shown in Fig. 1. Once 
the indoor map of a building is registered, Wi-Fi and magnetic 
fingerprints of the building can be contributed to KAILOS 
through either point-by-point manual calibration, walking 
survey [1] or reference-free calibration [2]. 

Fingerprint DB construction is another feature distinguishing 
KAILOS from other indoor positioning systems. It attempts to 
support all kinds of fingerprint DB construction methods 
including a novel unsupervised learning-based reference-free 

calibration method [2]. The method automatically labels 
locations of crowdsourced fingerprints that are collected 
without location information. Since the reference-free 
calibration method does not require any explicit efforts from 
participants or additional information from GPS and inertial 
sensors for the calibration, it can be effectively used for 
constructing radio maps for buildings all over the world.  

Volunteers who want to deploy indoor positioning systems 
in their buildings can choose one of the three calibration 
methods considering the construction cost and accuracy of the 
system. The point-by-point manual calibration method can be 
used to construct a highly accurate positioning system for a 
particular indoor space such as exhibition and convention 
centers, discount stores, indoor shopping malls, and others. On 
the other hand, though the cost of the reference-free calibration 
is almost zero, it may results in a less accurate positioning 
system. Thus, this method would be effectively used for large-
scale buildings or buildings where crowdsourced fingerprints 
are available.  

B. Probabilistic framework for user-tracking & sensor fusion  
The accuracy of positioning algorithms changes by the way 

of incorporating available data, such as fingerprint DB, inertial 
sensor readings, and results of trajectory-tracking and map-
matching. The fusion of these data is also one of the key issues. 
KAILOS addresses these problems in the probabilistic 
framework of the extended Viterbi algorithm on Hidden Markov 
Model (HMM) used to model an indoor area. In KAILOS, the 
topology of an HMM is automatically constructed using the 
structures of a building, such as walls and barriers, specified in 
an indoor map. This topology is used to speculate user 
movements in an indoor space, and perform a map-matching. 

Meanwhile, we categorize sensor data into two types; one to 
reflect absolute positions, and the other to reflect relative 
position changes of users. Wi-Fi and magnetic fingerprints have 
been used to indicate absolute position of a user. They are used 
to calculate the emission probabilities of an HMM. The 
transition probabilities of the HMM are calculated in run-time 
using inertial sensor readings indicating relative position 
changes. Using the emission and transition probabilities, the two 
types of sensor data are fused in the probabilistic framework of 
HMM, which also provides accurate trajectory-tracking and 
positioning of a user.   

 

1) Signal Fluctuation Matrix: Traditionally, Wi-Fi 
fingerprints have been constructed for each AP at each location 
with a histogram, Gaussian distribution, or lognormal 
distribution of Received Signal Strength (RSS). These strategies 
require a large amount of samples at each location in order to 
fully observe the RSS distribution phenomena. Here, we 
propose a new fingerprint design called SFM to mitigate the 
need for the large amount of samples, because not so many 

 
   (a) Indoor map construction.      (b) Fingerprint map construction. 

Fig. 1. Process of indoor positioning system deployment. 
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samples are assumed to be available at each location in 
crowdsourced fingerprint datasets. The method ignores the 
differences of RSS distribution patterns for each locations and 
APs, but considers the probability of fluctuating between two 
RSS values at a same location. The universal patterns of the 
fluctuations are stored in a two-dimensional matrix called 
SFM. Because a fluctuation of a certain pair of RSS values 
can be observed from any location and AP, a reliable SFM can 
be obtained even if a small number of samples are available at 
each location.  

Fig. 2 illustrates the difference of fingerprints DBs 
represented by SFM and normal histogram. We collected 20 
samples at each location in 7th floor of 1N building, KAIST, 
Daejeon, for the experiment. As can be seen in Fig. 2, the 
histogram constructed from only 20 samples seems to be 
unreliable because many bins are empty. However, the SFM 
could address the lack of training samples; all of the cells in 
the matrix are filled with frequency values. SFM can be seen 
as a universal histogram of RSS values irrespective of 
locations and APs. With the SFM, the probability of observing 
an online RSS i of an AP at a location l is calculated as log-
odd probability as follows,  

 

𝑃𝑃(𝑖𝑖|𝑙𝑙) = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃(𝑖𝑖,𝑗𝑗)
𝑃𝑃(𝑖𝑖)𝑃𝑃(𝑗𝑗)

� , 
 

where, j is mean RSS of the AP trained at l,  𝑃𝑃(𝑖𝑖, 𝑗𝑗) is the 
observed fluctuation probability of an RSS pair (𝑖𝑖, 𝑗𝑗) stored in 
SFM, and 𝑃𝑃(𝑖𝑖)𝑃𝑃(𝑗𝑗) is the expected fluctuation probability of 
the pair [3]. The emission probability 𝑃𝑃(𝑙𝑙|𝑙𝑙) of an online Wi-
Fi fingerprint o is simply calculated by ∏ 𝑃𝑃(𝑖𝑖|𝑙𝑙)𝑖𝑖∈𝑜𝑜 .  

Fig. 3 shows comparison of positioning errors using SFM 
and typical fingerprint representations in the 7th floor, 1N 
building. As can be seen in the figure, SFM-based positioning 
outperformed the other conventional positioning methods.  

Magnetic fingerprints can also be stored in a similar structure 
to SFM. Nevertheless, we use Gaussian distribution for the 
magnetic fingerprints, because the fluctuation of the magnetic 
norm at a location is not so severe as Wi-Fi signals. When a 
magnetic norm m is measured along with o in the online phase, 
the emission probability of the measurements 𝑃𝑃(𝑙𝑙,𝑚𝑚|𝑙𝑙)  is 
simply calculated by 𝑃𝑃(𝑙𝑙|𝑙𝑙) × 𝑃𝑃(𝑚𝑚|𝑙𝑙). 

 

2) Fusion of inertial sensor data: With the calculated 
emission probabilities, the Viterbi algorithm can track a user if 
transition probabilities are given by inertial sensors. Inertial 
sensors in a smartphone usually provide deterministic relative 
position changes with considerable errors in distance and 
heading calculations. Therefore, the deterministic results should 
be converted to a probabilistic distribution at each location, and 
the errors should be compensated. The extended Viterbi 
tracking algorithm addresses these problems by accumulating 
the distributions of errors in the distance and heading 
calculations. The errors are estimated under the assumption that 
the tracking results are fairly close to the correct answers.  

Fig. 4 illustrates the process of transition probability 
calculation. Suppose trajectory-tracking for time t0 to t3 has been 
performed as shown in the figure.  The bold arrows depict the 
tracking results, and dotted arrows indicate distance and heading 
information given by the inertial sensors at each time. At time t0, 
the probability distribution of the transitions out of the first 
location is shown as a gray circle with the center indicated by 
the inertial sensor readings. However, there has been a 
mismatch between the inertial sensor readings and the tracking 
result. This mismatch is regarded as the error of inertial sensors, 
and compensated for the calculation of the next transition 
probabilities. As time goes by, the errors in distance and 
heading calculations are gradually mitigated as seen in the 
figure. As a result, at time t4, the tracking algorithm can utilize 
the corrected probability distributions depicted by a dark circle. 
Fig. 5 is an overview of KAILOS positioning framework.  
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(a) histogram.                                 (b) SFM 

Fig. 2. Comparison of SFM- and histogram-based Wi-Fi fingerprints. 

 

   
Fig. 4 Transition probability calculation and error compensation.  

 

 
Fig. 5 Extended Viterbi algorithm for sensor fusion.  

 

   
 

Fig. 3. The CDF of positioning errors of probabilistic positioning 
algorithms using various fingerprint types. 

 


