
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 1

Optimizing FEC Transmission Strategy for

Minimizing Delay in Lossless Sequential

Streaming

Sanjeev Mehrotra, Senior Member, Jin Li, Senior Member, and Ying-zong Huang Student Member

Abstract

As Cloud Computing is taking off, the presence of high performance interactive Internet applications is exploding.

By nature, these applications require responsive client-server data exchange and lossless, in-order delivery. Previous

work has shown that by using forward error correction (FEC), it is possible to reduce the data streaming latency

caused by retransmissions of lost packets. However, the prior schemes only send FEC packets when there are no

original packets pending transmission. In this paper, we further expand the hybrid FEC-ARQ protocol and show that

sometimes, the transmission latency can be further reduced by preempting original data packets with FEC packets.

We have formulated the decision of whether to send new original data packets, FEC packets, or resend original data

packets as a transmission policy. An optimal transmission policy is selected to minimize the delay experienced by the

application subject to a constraint on the amount of overhead. By using this optimal policy, we significantly improve

the delay performance over straightforward FEC schemes while controlling the amount of overhead due to FEC.

Index Terms

Real-time communications, lossless data streaming, forward error correction

I. INTRODUCTION

With the rapid penetration of broadband networks and the rise of Cloud Computing, online interactive applications

are flourishing. Web-based applications, which use the browser as a thin client, are proliferating as the software can

be installed and maintained on centralized servers as opposed to distributing the software on potentially millions of

client computers. Some examples of web applications are wikis, online auctions, web-mail, and online retail sales.

Software as a service (SAAS) is projected to grow to $15 billion by 2012 [1], increasing its share in the enterprise

software market from 10.7% in 2007 to 18.2% in 2012. As another example, multi-player online games are seeing

rapid adoption as well. Many online games have associated online communities, making them a form of social

Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must

be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

S. Mehrotra and J. Li are with Microsoft Research, Redmond, WA, 98033, USA, e-mail: {sanjeevm, jinl}@microsoft.com.

Y. Huang is with MIT, Cambridge, MA, USA, e-mail: zong@mit.edu.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 2

TABLE I

MEDIA STREAMING VS INTERACTIVE APP VS FILE DELIVERY

Media streaming Interactive App File delivery

Strict deadline Delay sensitive No deadline

Best effort Reliable delivery Reliable delivery

No ordering In-order In-order

Low delay Delay-aware Delay agnostic

activity beyond single player games. Also, the rising popularity of Flash/Silverlight/HTML5 and Java has led to an

Internet revolution providing a unified platform to deliver streaming audio, video, and other forms of interactivity

to the client.

One crucial aspect that affects the user experience of an interactive software application is its responsiveness.

Whenever the client sends an input (e.g keyboard/mouse commands), the requests must be sent to the server in a

distant data center, which processes the incoming commands, and then sends updated data, audio, or video back to

the client for rendering. The responsiveness of the application is directly related to the timely interchange of the

request and the response between the client and the server.

Unlike interactive multimedia applications, such as VoIP and video conferencing, most interactive software

applications operate as a state machine. Therefore, the data has to be delivered losslessly and in-order so that

the client and server state are in sync. TCP (Transmission Control Protocol) provides reliable and ordered delivery

of content over the network and thus is commonly used. However, TCP and its variants (such as [2]–[4]) were

designed from the start to handle bulk data transfer (file download / static web page download), and therefore

optimizes throughput, while making no attempt to minimize the delay experienced by individual packets. Its use

of packet retransmission upon loss (ARQ) leads to higher delay on individual packets when loss is present. This

can lead to poor performance for interactive applications.

A. Related Work

There has been a lot of previous work on improving the quality of real-time media (audio/video) applications.

However, we note that there are different delay and reliability requirements when dealing with interactive software

applications. We summarize the differences of the quality of service requirements between interactive software

applications vs. that of file delivery and media streaming in Table I-A.

Note that many semi-interactive media applications with an end-to-end (E2E) delay tolerance of multiple-seconds,

such as video on demand (VOD) or internet TV, actually belong to the same category as file delivery. As these

applications can typically build up a client buffer of several seconds worth of content and simply use retransmissions

to combat packet losses, the traditional TCP algorithms work fine. In addition modern streaming solutions such as

Smooth Streaming start with small initial buffers [5], [6] and avoid initial startup latencies. However, interactive

applications, such as online game, remote desktop, and web applications, have an end-to-end delay requirement

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 3

of only hundreds of milliseconds. With such stringent E2E delay requirements, the increased latency caused by a

retransmission becomes significant.

Although we can attempt to use delay sensitive congestion control strategies such as [7] to minimize congestion

induced packet loss, non congestion-induced packet loss is still fairly prevalent in the internet, especially on wireless

links where the signal-to-noise ratio (SNR) may be sometimes low, or in long distance, cross continent Internet

links [8], [9]. In addition, when the interactive application is sharing a bottleneck with a flow using a loss based

congestion control such as TCP, it may experience congestion induced packet loss as well [10], [11].

An effective technology to reduce the delay caused by packet loss is Forward Error Correction (FEC), that is,

sending additional encoded packets to protect the data packets. In congestion induced packet loss cases, sending

FEC packets will result in the reduction of the rate that can be used to send source (innovative data) packets since

the overall rate into the network has to be held constant in order to avoid further congestion induced loss. However,

a lower source rate with lower delay may still be preferable for many interactive cases where the source has some

level of rate control.

FEC has been promoted widely in media (audio and video) streaming applications, e.g., in [12]–[16], and has been

used in practice in interactive (VoIP/conferencing scenarios) and in multicast / broadcast media distribution. There

has also been work in optimizing proactive retransmissions for media transmission so as to minimize distortion

subject to a rate constraint, where distortion is caused by lost packets as well as packets which exceed their deadline

[17]. However, the use of proactive retransmissions or FEC in protecting reliable lossless data (such as in interactive

software or web applications) has been less common.

In [18], Rizzo and Vicisano have used FEC to support reliable multicast thereby reducing the bandwidth usage

needed. In [19], Sundararajan et. al. describe how to modify TCP by using random linear codes to protect against

packet loss over the network. The idea is to retain all existing TCP mechanisms for congestion control and triggering

of retransmission, but apply FEC (more specifically, random linear codes across all data in the window) at the sender

and receiver, thereby masking loss in the network and improving responsiveness. In [20], we have optimized FEC

transmission strategy but for lossy online game data with a deadline constraint. However, none of the previous

work has concentrated on finding an optimal transmission strategy for delay minimization for real-time lossless

interactive data.

B. Contributions

This paper combines and extends a series of our previous works, such as [21] and [22], in which we have

developed a hybrid FEC-ARQ protocol for optimized sequential (in-order) delivery. Our protocol is functionally

compatible with TCP, though it is not packet-level compatible. Whenever a transmission opportunity arises, the

protocol will either retransmit a lost packet, send a new packet (if present), or send an FEC packet. The naive

approach, adopted in the earlier work [21], is to simply opportunistically send FEC packets whenever there is a

“free” transmission opportunity. Moreover, the FEC packet in this work is simply a linear combinations of all

unacknowledged source packets. However, in the later work [22], we showed that only sending FEC packets when

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 4

Application

Application

Rate Control

Congestion

Control

Transmission

Strategy
Original

Packets

Coded

Packets

Network

Feedback

Coded

Packets

Transport Protocol

Fig. 1. Block Diagram.

there are “free” transmission opportunities is not an optimal solution. In certain situations, e.g., in networks with

high packet loss ratio, or when the traffic is bursty, or in congested cases (when the maximum application rate is

higher than the network capacity), it sometimes makes sense to preempt sending a new source packet with an FEC

packet of previously sent source packets. Although the source packets waiting in the sender queue get delayed, the

overall delay experienced by the application can be reduced. We also showed that sometimes it makes sense to

only create an FEC packet of the first few packets rather than all the unacknowledged packets. We formulated the

problem of figuring which packet to send as an optimized transmission policy problem, where for each transmission

opportunity, we can choose to send one of three types of packets: 1) a new source packet, 2) an FEC packet, or 3)

a resent packet.

Though some of this paper covers similar material as discussed in [21] and [22], this paper is able to explain

the algorithm in greater detail and discuss more corner cases of the algorithm. In particular this paper presents the

following contributions.

• We show an analysis of how to modify the cost function to take into account variable transmission rate and

delay.

• This paper also presents new results which validate that the proposed algorithm runs well under real network

conditions by using data from a real network trace as opposed to just a simulated network channel with random

loss and fixed delay.

• We show detailed experiments that evaluate how the performance of our protocol (delay, overhead, and

application bitrate) are affected as a function of channel loss rate as well as burstiness of the application

traffic.

The rest of the paper is organized as follows. In Sec. II, we go over the transmission strategy in detail, explaining

the definitions of overhead and choice of packets and policies. The cost function is explained in Sec. II-B and

the definition of overhead and computation of the overhead packets is discussed in Sec III. In Sec. IV, we show

detailed simulation results to demonstrate the effectiveness of the proposed scheme.

II. TRANSMISSION STRATEGY

Fig. 1 shows a block diagram of a typical network setup of an interactive application that uses our proposed

protocol. Since our protocol is functionally compatible with TCP, it may be used by any application that is currently

using TCP but demands responsiveness and low delay. The sender application produces original source packets to

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 5

send to the receiver. These packets typically come in a burst and consist of data which the receiver will process in

order. The packets are sent to the transport module. The transport module typically has a buffer to temporarily hold

the packets. The packets leave the buffer only when they have been acknowledged by the receiver. If the sending

buffer is full, the sending application receives feedback of this event from the transport module and reduces its

sending rate. For example, for an application that is sending audio/video, it can re-compress the audio/video at

a lower bit rate. For game applications, it can reduce the game status update interval to reduce the sending rate.

However, once the packets enter the transport module’s buffer, they must be delivered losslessly to the receiver.

The transport module consists of two components. One is the congestion control module which estimates the

available bandwidth in the communications channel, determines the current sending rate, and backs off (reduces

sending rate) when congestion is detected. It tries to find a fair share of the bandwidth for the sending application

while trying to minimize self congestion induced loss and queuing delay. The hybrid FEC-ARQ protocol developed

in this paper can work with many existing congestion control modules, e.g., TFRC rate control. The second module

is a transmission strategy module. It determines which type of packet to send at each transmission opportunity.

Since delay is the most important factor in determining the perceived user performance of interactive applications,

the overarching goal for the transport module is to minimize the expected delay incurred by each packet while

ensuring reliable in-order delivery. The delay incurred by the packets has several components – e.g., waiting time in

the sender’s queue, propagation delay, network queuing delay, retransmission delay, and decoding delay if a coding

scheme is used. The requirement of in-order delivery can also cause additional delay as a packet may need to wait

for prior missing packets to be delivered or decoded.

For the following discussion, we define original packets as the data packets which the application wishes to

send from the sender to the receiver. For a stream with an in-order reliable delivery requirement, original packet

i is defined to be sequentially decodable (i.e. usable) if and only if it and all prior packets j ≤ i are delivered

or decoded. Let sequential decodability delay (SDD) refer to the time span between when a packet enters the

sender queue (from the application) to the time it becomes sequentially decodable. This delay is important for

many interactive software applications which require reliable, in-order delivery. Many software applications operate

as a state machine and thus a packet is useless until it and all the previous packets have been reliably received.

SDD is the measure which essentially captures this delay metric. Thus, the lower the SDD, the better the perceived

performance for such applications.

Let coded packets refer to the packets that actually enter the network. These packets can be original, FEC packets,

or resent packets. Let transmission delay be the delay sending these coded packets from the sender to the receiver.

This delay consists of the network propagation delay and queuing delay. The SDD on the original packets is a

function of transmission delay incurred by the coded packets as well as loss rate suffered by the coded packets and

the coding strategy being used.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 6

t

B[n] Source Pkts

Channel Pkts

Recv Ch. Pkts

D[n] E[n]
0

γ
1

γ
2

γ
3

γ
4

γ
5

γ

[]nτ

[]n∆

Legend:

Packets already sent

Packets not yet sent

Fig. 2. Timeline. The first row shows original packets. The first three original packets have been sent, but are not necessarily decodable. The

last three original packets have not yet been sent. At time τ [n], the nth coded packet is generated which reaches the receiver after ∆[n] time.

The coded packet generated at time n can either be a linear combination of the some of the first three original packets which have already been

sent B[n] to D[n] − 1 (an FEC packet) or an original packet which is the original packet D[n].

A. Choice of packets and policies

The transmission strategy can send one of three types of packets: original packet, FEC packet, or resent packet.

The FEC packets consist of linear combinations (over a Galois field) of existing unacknowledged (undecodable)

packets in the sender queue. Let x[l] be the lth original source packet which is represented as a vector of bytes,

each of which is an element in GF (28). Then, if y[k] is the kth packet sent from the sender to the receiver, it can

be written as y[k] =
∑e[k]

l=b[k] fk,lx[l] = f∗kx, where fk,l are coefficients from GF (28), b[k] is the first packet in the

linear combination, and e[k] is the last packet. If an original packet is sent, then y[k] = x[b[k]], for some b[k] and

e[k] = b[k]. Because of the in-order requirement, it can be shown that for FEC packets, without loss of optimality

(in terms of SDD), b[k] can be assumed to be the index of the first undecoded original packet in the sender queue.

The transmission strategy chooses from amongst the following three transmission policies.

• Sending a new source packet without coding.

• Sending an FEC packet of only the first certain number of undecoded packets.

• Resending an already sent packet which has timed out or been negatively acknowledged.

B. Cost function used to decide amongst policies

At any given transmission opportunity, the cost that we use to decide amongst the various policies is to minimize

the expected SDD. For our discussion, we define the following terms, which are shown in the timeline in Fig. 2.

The timeline shows a queue of original packets in the first row. The second row shows an coded packet being

generated. This coded packet can be either an FEC packet (of the first three original packets) or an original packet

(the fourth packet in the queue). The coded packet then reaches the destination after some time (shown in the third

row). The figure defines the following terms.

• n is the current transmission opportunity.

• B[n] is the index of the first unacknowledged packet in the sender queue prior to transmission n.

• E[n] is the index of the last packet in the sender’s queue.

• D[n] ≤ E[n] is the index of the first packet which has not yet been sent.

• τ [k] is the time when coded packet k leaves the sender.

• ∆[k] is the transmission delay experienced by coded packet k (propagation delay plus queuing delay).

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 7

• γl is the time original packet l enters the sender queue.

The expected SDD for original packet l can be written as Dl =
∑

δ∈D
δ Prob(SDD = δ), where D is the

set of possible values for SDD. Original packets can only be decoded once a coded packet is received by the

receiver. Suppose coded packet k leaves the receiver at time τ [k] and reaches the receiver at time τ [k] + ∆[k].

If this coded packet allows a previously sequentially undecodable original packet l to now become sequentially

decodable, then original packet l experiences an SDD of τ [k] + ∆[k]− γl. If pl[k] is the probability that packet l

is sequentially decodable using coded packets up to k, then the probability of the SDD being τ [k] + ∆[k] − γl is

given by pl[k] − pl[k − 1] (probability that is decodable now minus the probability that it was already decodable

before). The sequential decodability probability can be computed exactly with reasonable complexity as shown in

[21]. This gives

Dl =

∞∑

k=0

(pl[k]− pl[k − 1])(τ [k] + ∆[k]− γl). (1)

The SDD is affected by the transmission delay through the term ∆[k], the time spent in the sender queue by

τ [k]− γl, and the network loss and coding strategy by pl[k].

We assume that the congestion control module is able to achieve a smooth transmission rate and queuing delay as

in [7], Thus τ [k +1]− τ [k] = T (the time between successive transmission opportunities is relatively constant) and

∆[k] = ∆ (transmission delay is stable and approaches the network propagation plus queuing delay). In Sec. II-C,

we will show that even varying rate and delay does not change the optimization problem. Then, rearranging terms

in (1), we get

Dl = (τ [sl] + ∆− γl) +

∞∑

k=sl

(1− pl[k])T, (2)

where sl is the first packet transmission opportunity that comes after packet l enters the queue, that is sl = min{j :

τ [j] ≥ γl}. Intuitively, we can view this expected delay in terms of waiting times. With probability 1, packet l

waits until the first transmission opportunity that comes after it enters the queue, τ [sl] − γl. Thus the minimum

SDD is given by this waiting time plus the transmission delay ∆ giving the first term in Eqn. 2, τ [sl] + ∆ − γl.

However, since coded packets may be lost and depending on the transmission strategy, it may have to wait for future

transmission opportunities. With probability 1 − pl[k] it waits an additional time of T for the next transmission

opportunity.

At a given transmission opportunity n for M original packets, γl and τ [sl] are the same for all transmission

policies. We can remove these common terms to obtain the cost function to be optimized as

C =

M−1∑

l=0

∞∑

k=max(sl,n)

(1 − pl[k]). (3)

That is we wish to find a transmission policy such that the sum of sequentially undecodable packets is minimized.

This results in minimizing the expected SDD.

To simplify further, we only consider source packets starting from l = B[n] (all other packets have already been

decoded) and ending at E[n] which is the last packet entering the sender queue. We could also consider other

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 8

packets past E[n] that will enter the sender’s queue, but this will be application-specific. For each packet n, we

only consider certain terms in the summation over k. For packets which currently have non-zero probability of

decodability (pl[n− 1] 6= 0), we only consider the first term in the summation, and for original packets which have

pl[n− 1] = 0, we look at the first Ll terms which is defined to be the expected time till pl becomes non-zero. This

gives,

C ≈

D[n]−1∑

l=B[n]

(1− pl[n]) +

E[n]∑

l=D[n]

n+Ll−1∑

k=n

1. (4)

Ll can also be estimated as the expected number of transmission opportunities needed to successfully deliver all

packets prior to original packet l. Ll can be computed using the current expected number of missing packets Qn

and the current loss estimate ǫ as

Ll =
Qn + l −D[n]

1− ǫ
. (5)

The expected number of missing packets can easily be computed from the probabilities pl. If we remove common

terms and simplify, we get the following cost functions for sending an FEC and an original packet respectively

CFEC =

D[n]−1∑

l=B[n]

(1− pl[n]) +
(E[n]−D[n] + 1)(Qn + 1)

1− ǫ
,

CORIG =

D[n]∑

l=B[n]

(1 − pl[n]) +
(E[n]−D[n])Qn

1− ǫ
. (6)

pl[n] is the new probability of sequential decodability if that packet is sent and Qn is the new value for the

expected number of missing packets up to the last packet sent – if an FEC packet is sent, the last packet sent

stays at D[n] and if an original packet is sent, it increases to D[n] + 1. Using (6), we compute the cost for each

possible FEC packet (each value of e[k] = B[n], B[n] + 1, . . . , D[n] − 1, with b[k] = B[n]) and for an original

packet (b[k] = e[k] = D[n]) and send the one with minimum cost. The case when b[k] = e[k] = B[n] is evaluating

the benefit of retransmitting the first packet in the sent queue, and in cases when packets in the sent queue have

timed out, the algorithm will choose such a strategy.

C. Effect of varying channel characteristics

In practice, the transmission rate and delay of the channel may not be constant. In this section we show that

our optimization algorithm is still valid in this case. If the rate and delay are varying and not constant as assumed

before, we can write Eqn. 2 as

Dl = (τ [sl] + ∆[sl]− γl) +
∞∑

k=sl

(1− pl[k])(T [k] + ∆[k + 1]−∆[k]), (7)

where T [k] is the spacing between transmission opportunity k and k + 1, and ∆[k] is the transmission delay

experienced by coded packet k.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 9

0 100 200 300 400
0

0.05

0.1

0.15

0.2

Pkt Index
L
o
s
s
 R

a
te

Loss rate

Loss Rate Estimate

Fig. 3. Performance of loss rate estimator.

When we are considering sending coded packet n, then from the standpoint of optimization, the previous decisions

cannot be changed and only affect the expected delay. The cost function to optimize can then be written as

C =

M−1∑

l=0

∞∑

k=max(sl,n)

(1− pl[k])(T [k] + ∆[k + 1]−∆[k]). (8)

Since the summation is only over future packets k ≥ n, we only need to know a value for ∆ and T for future

packets. The best estimate for these is the same, i.e. there is no reason to use different ∆[k] or T [k] value for each

k, and thus the cost function to optimize remains the same as in Eqn. 3.

D. Estimating Loss Rate

The value for ǫ used by (6) is estimated using a sliding window of certain number of packets into the past. The

loss for this window is computed (ǫW) and the overall loss rate is updated using ǫ← ηǫ + (1− η)ǫW using some

weight η. In our simulations, we use η = 0.9. In Fig. 3, we show the accuracy of the loss rate estimate.

E. Example of cost computation

As an example, consider ǫ = 0.1, B[n] = 1, D[n] = 5, E[n] = 6. That is, there are six packets in the burst, out

of which four have been sent but not yet acknowledged as being decodable. The values for pl[n− 1] would be the

following.

l 1 2 3 4 5 6

pl 0.9000 0.8100 0.7290 0.6561 0 0

Then, depending on whether we send an FEC packet which encompasses all the original source packets or whether

we send a new original packet (packet 5), pl would become

FEC 0.9656 0.9412 0.9258 0.9185 0 0

ORIG 0.9000 0.8100 0.7290 0.6561 0.5905 0.

For FEC, the expected number of missing packets with index ≤ 4 would become Qn = 0.0905, and for an original

packet the expected number of missing packets with index ≤ 5 would be Qn = 0.5000. Using (6), we would get

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 10

CFEC = 3.8838, and CORIG = 2.4255. Thus, in this case between the two, we should send the original packet.

As another example, suppose the loss rate is still 0.1, but now B[n] = 1, D[n] = 11, and E[n] = 11. That is,

almost the entire burst has been sent, but no packets have yet been acknowledged. Using the same computations as

above, the costs are CFEC = 5.3622 and CORIG = 6.0465, and thus here we preempt a source packet to send an

FEC packet. In general, the advantage of sending an FEC packet increases as loss rate increases and as the ratio

of unacknowledged packets (in-flight) to waiting packets (in sender queue) increases.

III. OVERHEAD

The optimization presented in the previous section was simply to minimize the average packet delay subject to

the current buffer conditions presented (packets waiting in the sender queue). The current buffer conditions are a

function of both the application traffic pattern as well as the transmission rate. In this section, we analyze additional

constraints which relate to the amount of “overhead” which we are allowed to use.

The normalized overhead (referred to as just “overhead”) is defined as the number of actual packets sent on the

network minus the minimum number of packets that need to be sent divided by the minimum number of packets.

Since we require lossless transmission, the minimum number of packets that need to be sent is simply the number

of original packets plus the number of lost packets. For example, if we wish to send 95 packets in a network with

5% packet loss, then sending 100 packets is zero overhead (since 5 out of 100 packets will be lost). If we send 110

packets corresponding to the 95 original source packets, then we say that the overhead is 0.10 (10/(95+5)), that is

10 additional packets are sent for the minimum 100 packets that need to be sent.

If the feedback on whether a packet is received or lost is accurate, we note that only using retransmissions has

a overhead of zero since only those packets which are actually lost are retransmitted. For example if the client

has sufficient buffer relative to the network round-trip time (RTT) (say 5 seconds of buffer with 200ms RTT),

then it can simply re-request (using ARQ) the missing packets. For any reasonable loss probability, the packet will

arrive within the buffered time period. For unicast scenarios with sufficient client buffer and where the server is

not overloaded, this is actually the best way to deliver content.

For interactive scenarios, where the client cannot afford a significant buffer, hybrid FEC-ARQ is used to improve

performance. Since there is no way to know which packets are actually lost, the use of FEC packets will result in

some overhead.

In the above scenario, if the source wishes to send 95 packets in a certain unit of time (say 1 second), and if the

channel allows for 110 packets, then the overhead can be at least 10% (with no reduction in source rate) and can

even be higher if we allow it (at the expense of source rate). However, if the overhead constraint is set to 10%,

then the allocation is fairly straightforward (simply let the application transmit at full rate and use 15 packets for

FEC and ARQ). If the channel rate is reduced to 105 packets / sec, then we can achieve an overhead of at least

5%. If the constraint allows for up to 10%, then we can achieve any overhead between 5%-10%, by sacrificing

source rate to achieve better delay performance. If the channel rate is further reduced (say to 90 packets/sec), and

if our constraint is still up to 10% overhead, then we can use anywhere between 0-10% overhead – in this case,

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 11

we have to reduce source rate even without FEC.

If we don’t consider source characteristics, it may seem that simply maximizing the overhead (and minimizing

the rate) may result in minimal delay. However, this results in a low application source rate. Here we consider

applications which wish to maximize their source rate by giving them a buffer (the sender queue). That is the

application simply pushes as many packets as it can into a buffer of a certain size. The goal of the optimization

strategy is to try to minimize the delay for all packets currently in the buffer.

A. Computing FEC Overhead

An overhead constraint is needed to ensure that the percentage of non-innovative packets (overhead) does not

take more than a certain amount. This constraint is met by simply looking at estimated overhead that any given

FEC packet will give. If sending that particular FEC packet results in the constraint being violated, it is simply

removed from consideration.

The overhead can be computed using a deterministic term (based upon feedback) and a probabilistic term for the

in-flight coded packets (those which have not been acknowledged or timed out). At a given transmission opportunity

n, let w be the number of packets that are known to the sender to have been useless by the receiver (from feedback),

and let t be the total number of packets received (from feedback). We can compute the expected fraction of packets

which are overhead (more than the needed amount defined as FEC packets minus lost packets) as

u =
w +

∑
k∈F

pe[k][k − 1]

(t + |F|)− (w +
∑

k∈F
pe[k][k − 1])

, (9)

where F is the set of in-flight coded packets, and |F| is the number of such packets. The probability pe[k][k − 1]

is the probability that we were already able to decode up to e[k] given transmissions up to k − 1, and thus is the

probability that the kth coded packet with ending position e[k] was useless.

For any given packet that we are considering on transmitting at n, we can update the set F , and can calculate

an updated value of u. We control the amount of overhead u to below a certain threshold UMAX . If sending a

particular FEC packet causes u to be above this threshold, we do not consider it for transmission. We note that

sending original packets for the first time and resending lost packets cannot increase u.

We believe that this definition of overhead – as a fraction of overhead packets to needed packets – is more useful

than the typical definition of redundancy which is the fraction of FEC packets to source packets. For example, if

the loss rate is 5% and if 5% of the total packets are FEC, then most of the FEC packets are actually used to

recover lost packets, and thus there is no overhead.

IV. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed hybrid FEC-ARQ protocol and transmission policy

optimization. We simulate the setup as shown in Fig. 1. The notation used in the experiments is as follows.

The application produces P packets of size V bits with an inter-burst gap of G seconds. This gives a maximum

application source rate of S = PB/G bits/sec. We assume that if the source rate exceeds network bandwidth and

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 12

the sending buffer is full, the application rate control module will kick in, and excess packets will be dropped

by the application. Once packets enter the transmission buffer queue, they cannot be dropped by the network and

must be received on the other end. The sending buffer size is W packets. The congestion control module provides

a transmission opportunity to send a single V -bit packet every T seconds giving a network transmission rate of

R = V/T bits/sec. We assume that the channel has a delay of D seconds (round trip time) and a loss rate of ǫ.

UMAX is the maximum amount of overhead that is allowed.

For all the experiments, we show two figures, one is the cumulative density function (CDF) of the sequential

decodability delay (SDD), and the other is the CDF of the instantaneous application bit rate defined as the number

of packets from the burst that are sent divided by the spacing between the bursts. We compare the following four

transmission strategies.

• The “lower bound”. This is the performance if the sender has immediate knowledge of which packets will

be lost and retransmits them immediately at the next transmission opportunity. This gives the lowest SDD

for a given packet if given the same series of loss events and if the sender buffer queue is equally empty.

However, in some cases, a certain percentile SDD may appear larger since this strategy results in a higher

source transmission rate (closer to capacity) and thus some packets wait longer in the sender queue.

• The strategy using only retransmission (ARQ).

• The strategy adopted in [21]. This is referred to as the “no cost” FEC or opportunistic FEC. In this strategy,

an FEC packet of all unacknowledged source packets is sent whenever the sender queue is empty. Otherwise

an original packet is sent.

• The cost based transmission strategy developed in this paper.

We restate that for all four strategies, the total transmission rate R is identical. The additional overhead introduced

by FEC packets is compensated for by a reduction in source rate. The main goal is to show that intelligent insertion

of FEC using the cost function is better than simple opportunistic FEC insertion.

For all simulations, we set V = 8000 bits (1KB) and P = 10 packets (the burst length). We first show the

achievable performance if we are allowed to send as much FEC as the network allows (set the overhead constraint

UMAX = 10) in a congested network, when S = 500Kbps, R = 400Kbps, D = 0.15sec, ǫ = 0.05, and W =

16packets. We note that the total sending rate is constrained by the network bandwidth, and the source application

will reduce its sending rate through notification of the sending buffer being full. The results are shown in Fig. 4

and summarized in Table IV. The 90th percentile of SDD reduces by over 14% when using the cost function vs.

not using the cost function, the 95th percentile by over 12%, and the 99th percentile is about the same. The actual

percentage of overhead packets is 11.2%. We also see that the application bit rate is smoother, with the application

capable of delivering a bit rate of at least 300Kbps 90% of the time, rather that 70% of the time if the cost function

is not used. This is due to the fact that lowering SDD results in the sender queue being emptier.

From Fig. 4, we can also see that retransmissions alone (labeled ARQ) and opportunistic FEC (labeled FEC)

also have almost 20% cases where the bitrate is 500kbps, whereas the FEC with cost function only has about 8%

of such cases. The reason for ARQ having a higher percentage of cases with larger bitrate is that ARQ has no

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 13

TABLE II

SDD PERCENTILES (90%, 95%, 99%) FOR W = 16 PACKETS, UMAX = 10, S = 500KBPS, R = 400KBPS. ǫ IS THE LOSS RATE, D IS

THE ROUND TRIP DELAY IN SEC. TYPE SHOWS THE STRATEGY BEING USED, “NO COST” REFERS TO THE OPPORTUNISTIC FEC STRATEGY

IN [21], “COST” REFERS TO FEC WITH USE OF COST FUNCTION, AND “ARQ” REFERS TO RETRANSMISSION ONLY. “LB” IS THE LOWER

BOUND OBTAINED FROM AN “ORACLE” WHICH HAS INFORMATION ON EXACTLY WHICH PACKETS WILL BE LOST, AND THUS THEY ARE

IMMEDIATELY RETRANSMITTED. U IS THE ACTUAL FRACTION OF OVERHEAD PACKETS.

ǫ D Type 90% 95% 99% U

0.05 0.15 ARQ 0.47 0.51 0.63 0.00

0.05 0.15 No Cost 0.43 0.47 0.51 0.11

0.05 0.15 Cost 0.37 0.41 0.51 0.11

0.05 0.15 LB 0.33 0.33 0.37 0.00

0.15 0.15 ARQ 0.63 0.71 1.01 0.00

0.15 0.15 No Cost 0.53 0.59 0.67 0.11

0.15 0.15 Cost 0.47 0.53 0.63 0.22

0.15 0.15 LB 0.37 0.39 0.43 0.00

0.15 0.40 ARQ 1.64 1.79 2.55 0.00

0.15 0.40 No Cost 0.76 0.80 1.46 0.29

0.15 0.40 Cost 0.56 0.58 0.68 0.39

0.15 0.40 LB 0.52 0.54 0.58 0.00

TABLE III

SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FOR W = 16 PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS.

ǫ D Type 90% 95% 99% U

0.05 0.15 ARQ 0.46 0.58 0.68 0.00

0.05 0.15 No Cost 0.36 0.38 0.40 0.28

0.05 0.15 Cost 0.36 0.38 0.41 0.30

0.05 0.15 LB 0.34 0.35 0.38 0.00

0.15 0.15 ARQ 0.70 0.86 1.15 0.00

0.15 0.15 No Cost 0.41 0.54 0.66 0.18

0.15 0.15 Cost 0.46 0.50 0.62 0.24

0.15 0.15 LB 0.37 0.40 0.44 0.00

0.15 0.40 ARQ 1.67 1.77 3.10 0.00

0.15 0.40 No Cost 0.65 0.66 0.83 0.33

0.15 0.40 Cost 0.62 0.65 0.75 0.54

0.15 0.40 LB 0.58 0.61 0.66 0.00

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 14

TABLE IV

SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FOR W = 16 PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS, USING

REAL COLLECTED NETWORK TRACES. THIS PARTICULAR TRACE FROM NORTH AMERICA TO EUROPE HAD AN AVERAGE LOSS RATE OF 5%

AND RTT=200MS.

ǫ D Type 90% 95% 99% U

0.05 0.20 ARQ 0.34 0.40 0.57 0.02

0.05 0.20 No Cost 0.32 0.35 0.48 0.10

0.05 0.20 Cost 0.31 0.34 0.39 0.09

0.05 0.20 LB 0.26 0.28 0.31 0.00

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

SDD (sec)

F
ra

c
ti
o

n

Lower bound
ARQ
FEC
FEC−Cost

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

BW (Kbps)

F
ra

c
ti
o

n

(b)

Fig. 4. Results with W = 16packets, ǫ = 5%, D = 0.15sec. (a) CDF of SDD, (b) CDF of application bitrate.

overhead, that is all packets are useful. So the overall throughput for ARQ systems must be higher than a system

with FEC (at the expense of delay). The reason for opportunistic FEC and ARQ systems having a larger percentage

of cases with bitrate 500kbps than even the “lower bound” case is that opportunistic FEC and ARQ often result

in some packets being blocked (head of line blocking) due to a previous packet which has not yet been delivered.

This blocking causes the bitrate to reduce since the sender buffer is full. However, once the previous packet which

is blocking future packets is received, it clears the sender buffer, causing the future burst to be transmitted at a

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 15

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

SDD (sec)

F
ra

c
ti
o

n

Lower bound
ARQ
FEC
FEC−Cost

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

BW (Kbps)

F
ra

c
ti
o

n

(b)

Fig. 5. Results with W = 16packets, ǫ = 15%, D = 0.15sec. (a) CDF of SDD, (b) CDF of application bitrate.

higher rate. FEC with cost and “lower bound” are quicker at clearing such blocks and thus have fewer cases where

the sender buffer empties quickly. Thus both the SDD and bitrate have less variance as well.

Keeping other parameters the same, if we increase W to 32 packets, we observe that few FEC packets are sent

(regardless of whether we use the cost function or not). The reason is that since S > T , the buffer is almost always

full, and since W is relatively large, the penalty for sending FEC packets is high since E[n]−D[n] in Eqn. (6) is

large.

In the second experiment, we increase the loss rate to ǫ = 0.15 (see Fig. 5 and Table IV). From Table IV, we

observe that cost based transmission policy reduces 90th percentile SDD by 11%, 95th percentile SDD by 10%,

and 99th percentile SDD by 6%. The application sending bit rate is also much smoother with the cost function

than without. However, both of the schemes reach a median (50th percentile) bit rate of about 250 kbps.

In the third experiment, we further increase delay to D = 0.4seconds. From Fig. 6, we see that by using the

cost function, we are able to achieve a result very close to the lower bound (in terms of SDD and application bit

rate). From Table IV, we can see that this comes at the expense of increasing the percentage of overhead packets

to close to 40%.

In the fourth experiment, we consider the case when the network is not congested (S < R). We reduce the the

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 16

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

SDD (sec)

F
ra

c
ti
o

n

Lower bound
ARQ
FEC
FEC−Cost

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

BW (Kbps)

F
ra

c
ti
o

n

(b)

Fig. 6. Results with W = 16packets, ǫ = 15%, D = 0.40sec. (a) CDF of SDD, (b) CDF of application bitrate.

maximum source rate S to below capacity (300 kbps) and keep other parameters the same. We observe that the

cost function based transmission policy gains no advantage over the opportunistic FEC (see Fig. 7 and Table IV).

Opportunistic FEC is able to achieve a result close to the lower bound especially in the high-loss, high-delay case

where we have spare capacity. This confirms the results presented in [21]. This is basically a case where even

without any additional constraints, we can use up to 12% overhead.

Finally, in Fig. 9, we show the effect of modifying the fraction of overhead packets allowed, UMAX , in the

ǫ = 0.15, D = 0.4sec case. We see that the SDD performance keeps getting better as UMAX is increased (at the

expense of reducing application rate). We note that although the UMAX = 10 case is intended to show the best

case, the actual overhead for this is only U = 0.39.

A. Results using real network trace

In Fig. 8 and in Table IV, we show the performance using real packet trace to drive the simulation. In the trace

collection, we connect from one machine in North America to one in Europe, and measure RTT for each packet

sent, and whether the packet is received or not. The average loss rate for this trace was 5% and the RTT was

approximately 200ms. However, the losses were not necessarily random, and there were some periods of burst loss.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 17

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

SDD (sec)

F
ra

c
ti
o

n

Lower bound
ARQ
FEC
FEC−Cost

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

1

BW (Kbps)

F
ra

c
ti
o

n

(b)

Fig. 7. Results with W = 16packets, ǫ = 15%, D = 0.40sec, but source rate lowered to below capacity (300Kbps).

We show the statistics of the delay and loss pattern in Fig. 12. We see that the delay distribution along with the

distribution of the instantaneous loss rate. Although the average loss rate is 5%, sometimes the loss rate is small,

while at other times it is up to 12%. We see that if we use this trace, the results are similar and we still see gains in

the SDD. The SDD reduces from 600ms in pure ARQ case to 500ms in opportunistic FEC to 400ms when using

the cost based optimization presented here.

B. Function of loss rate

In Fig. 10, we show how the overhead, the 99% SDD, and application bitrate are affected by loss rate (all other

parameters are same as in the original experiment) for the cost based scheme and the opportunistic FEC scheme.

We see that in as the loss rate increases, so does the overhead to minimize delay. This comes of course at the

expense of application bitrate. The opportunistic FEC reverts back to a pure ARQ scheme as loss rate increases

as there are very few free opportunities to send FEC packets (maximum source rate is much larger than capacity).

Thus, we also see that the improvement in SDD from using the cost function increases as loss rate increases.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 18

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Delay (sec)

F
ra

c
ti
o

n

Lower bound
ARQ
FEC
FEC−Cost

(a)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

BW (kbps)

F
ra

c
ti
o

n

(b)

Fig. 8. Results with W = 16packets, Loss rate and round trip time determined by results collected from real network packet traces.

Average loss rate for this trace was 5% and average round-trip time was approx. 200ms.

C. Function of burst length

In Fig. 11, we show how the overhead, the 99% SDD, and application bitrate are affected by burst length for

the cost based scheme and the opportunistic FEC scheme. We note that as burst length increases, the advantage of

the cost based scheme over the opportunistic scheme also increases. This is because the cost based scheme will

periodically insert FEC packets into the burst whereas the opportunistic FEC will wait for the entire burst to finish.

V. CONCLUSION

We have presented a hybrid FEC-ARQ protocol that is functionally compatible with TCP but optimized for low-

delay data delivery. The protocol uses a cost based transmission strategy to optimally choose amongst transmission

policies of sending 1) a source packet, 2) an FEC packet of the first certain number of undecoded packets, and 3) a

resent packet which has timed out or been negatively acknowledged. Through extensive experimental results, we have

shown that the proposed scheme achieves better delay performance than the opportunistic FEC scheme especially

for cases when the application traffic is bursty, the maximum source rate exceeds that of the network capacity, the

network packet loss rate is high, and/or the network delay is high. We have also examined the performance of the

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 19

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

SDD (sec)

F
ra

c
ti
o

n

ARQ
U

MAX
=0.1

U
MAX

=0.2

U
MAX

=10

(a)

0 100 200 300
0

0.2

0.4

0.6

0.8

1

BW (Kbps)

F
ra

c
ti
o

n

(b)

Fig. 9. Results showing effect of different UMAX .

scheme as a function of loss rate and burstiness of the application traffic.

REFERENCES

[1] J. Humphreys, “Worldwide virtual machine software 2008-2012 forecast,” May, 2008, IDC.

[2] S. Floyd and T. Henderson, The NewReno Modification to TCP’s Fast Recovery Algorithm, Apr. 1999, rFC 2582.

[3] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP approach for high-speed and long distance networks,” in INFOCOM.

IEEE, Apr. 2006, pp. 1 – 12.

[4] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: motivation, architecture, algorithms, performance,” IEEE/ACM Trans. Networking,

vol. 14, pp. 1246 – 1259, Dec. 2006.

[5] Smooth streaming : The official microsoft iis site. [Online]. Available: http://www.iis.net/download/SmoothStreaming

[6] S. Mehrotra and W. Zhao, “Rate-distortion optimized client side rate control for adaptive media streaming,” in Proc. Workshop on Multimedia

Signal Processing. IEEE, Oct. 2009.

[7] S. Mehrotra, J. Li, S. Sengupta, M. Jain, and S. Sen, “Hybrid window and rate based congestion control for delay sensitive applications,”

in Proc. of IEEE Globecom. IEEE, Dec. 2010.

[8] A. Mondal, R. Cutler, C. Huang, J. Li, and A. Kuzmanovic, “Surecall: Towards glitch-free real-time audio/video conferencing,” in In

Proceedings of IEEE IWQoS. IEEE, Jun. 2010.

[9] V. Vasudevan, S. Sengupta, and J. Li, “A first look at media conferencing traffic in the global enterprise,” in Passive and Active Measurement

Conference (PAM), Apr. 2009.

http://www.iis.net/download/SmoothStreaming

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 20

0 0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Loss Rate

O
v
e

rh
e

a
d

FEC−Cost

FEC

(a)

0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

Loss Rate

9
9

%
 S

D
D

FEC−Cost

FEC

(b)

0 0.1 0.2 0.3 0.4 0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Loss Rate

B
it
ra

te

FEC−Cost

FEC

Capacity

(c)

Fig. 10. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of loss rate.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 21

10 20 30 40
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Burst length

O
v
e

rh
e

a
d

FEC−Cost

FEC

(a)

10 20 30 40

0.8

1

1.2

1.4

1.6

1.8

Burst length

9
9

%
 S

D
D

FEC−Cost

FEC

(b)

10 20 30 40

1.6

1.8

2

2.2

2.4

2.6

x 10
5

Burst length

B
it
ra

te

FEC−Cost

FEC

(c)

Fig. 11. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of burst length.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 22

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

Delay (ms)

F
ra

c
ti
o

n

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

Loss Rate

F
ra

c
ti
o

n

(a) (b)

Fig. 12. Statistics for real trace, (a) Shows PDF of delay measurements, (b) PDF of loss rate averaged over sliding window of 32 packets.

[10] M. Allman, W. M. Eddy, and S. Ostermann, “Estimating loss rates with tcp,” in ACM SIGMETRICS Performance Evaluation Review,

2003.

[11] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A simple model and its empirical validation,” in Proc. ACM

SIGCOMM, 1998, pp. 303 – 314.

[12] T. Tsugawa, N. Fujita, T. Hama, H. Shimonishi, and T. Murase, “TCP-AFEC: An adaptive FEC code control for end-to-end bandwidth

guarantee,” in Packet Video Workshop, Nov. 2007, pp. 294–301.

[13] R. Puri, K. Ramchandran, and A. Ortega, “Joint source channel coding with hybrid ARQ/FEC for robust video transmission,” in IEEE

Multimedia Signal Processing Workshop, Dec. 1998.

[14] P. A. Chou, A. E. Mohr, A. Wang, and S. Mehrotra, “FEC and pseudo-ARQ for receiver-driven layered multicast of audio and video,” in

Proc. Data Compression Conference. Snowbird, UT: IEEE Computer Society, Mar. 2000, pp. 440–449.

[15] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley, “FEC-based error control for internet telephony,” in INFOCOM. IEEE, 1999.

[16] I. Rhee and S. Joshi, “FEC-based loss recovery for interactive video transmission experimental study,” in International Conference on

Multimedia Computing. IEEE, 1998.

[17] P. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized media,” IEEE Trans. Multimedia, vol. 8, no. 2, pp. 390–404,

Apr. 2006.

[18] L. Rizzo and L. Vicisano, “RMDP: An FEC-based reliable multicast protocol for wireless environments,” ACM SIGMOBILE: Mobile

Computing and Communications Review, vol. 2, no. 2, pp. 23–31, April 1998.

[19] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J. Barros, “Network coding meets TCP,” in INFOCOM. IEEE, Apr.

2009.

[20] C. Zhang, C. Huang, P. Chou, J. Li, S. Mehrotra, K. Ross, H. Chen, F. Livni, and J. Thaler, “Can every vote count? ensuring latency

fairness for cloud-based social gaming,” Microsoft Research, Tech. Rep. MSR-TR-2010-126, 2010.

[21] Y. Huang, S. Mehrotra, and J. Li, “A hybrid FEC-ARQ protocol for low-delay lossless sequential data streaming,” in Proc. Int’l Conf.

Multimedia and Expo. IEEE, Jun. 2009, pp. 718–725.

[22] S. Mehrotra, J. Li, and Y. Huang, “Minimizing delay in lossless sequential data streaming,” in Proc. Int’l Conf. Multimedia and Expo.

IEEE, Jul. 2010.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON MULTIMEDIA 23

Sanjeev Mehrotra is a Principal Software Architect in the Communications and Collaboration Systems group in

Microsoft Research where his current research focuses on protocols for low delay and interactive communications

and video conferencing, media delivery protocols, media coding, and media processing. He received his M.Sc. and

Ph.D. degrees from Stanford University in 1996 and 2000 respectively. Prior to joining Microsoft Research, he was

the development manager of the Audio Codecs and DSP group in the Core Media Processing Technology team at

Microsoft which did work on all the audio and speech codecs and audio processing technology shipped in various

products such as Windows, Office Communicator, Windows Mobile, Xbox, and Zune. He is the primary inventor of

version 2 of the Windows Media Screen codec and the primary inventor and developer of the low bitrate extensions to the Windows Media

Audio Pro codec used by Verizon’s V CAST Music Service. He has also shipped numerous technologies related to media processing, media

delivery, and error correction codes in various products. He and his team also invented and developed the first version of the adaptive streaming

technology which eventually became Microsoft’s IIS Smooth Streaming. He has also developed and contributed technology currently being used

in the H.264 advanced video coding (AVC) standard. Dr. Mehrotra is an author on 25 conference and journal publications and is an author on

almost 70 US patent applications, out of which more than 25 have been granted. During graduate studies, he was the recipient of the NSF, Tau

Beta Pi, and Kodak graduate research fellowships.

Jin Li is currently a Principal Researcher managing the Multimedia Communication and Storage team at Microsoft

Research, (Redmond, WA). He received his Ph.D. in electrical engineering from Tsinghua University (Beijing, China)

in 1994. From 1994 to 1996, he served as a Research Associate at the University of Southern California (USC). From

1996 to 1999, he was a Member of the Technical Staff at the Sharp Laboratories of America (SLA), (Camas, WA), and

represented the interests of SLA in the JPEG2000 and MPEG4 standardization efforts. He joined Microsoft Research,

first as a Lead Researcher at Microsoft Research Asia (Beijing, China) from 1999 to 2000, and then moved back to

Redmond in 2001. From 2000, Dr. Li has also served as an Adjunct Professor in the Electrical Engineering Department,

Tsinghua University (Beijing, China). Dr. Li has 100+ referred conference and journal papers in a diversified research field, with interests cover

audio/image/video compression, multimedia streaming, VoIP and video conferencing, P2P networking, distributed storage system with erasure

coding and deduplication, high performance storage system design. His invention has been integrated into many Microsoft products, such as

Microsoft Office Communicator/Lync, Live Messenger, Live Mesh, Windows 7, Windows 8, etc.. He holds 42 issued US patents, with more

than three dozens pending. He was the general chair for 17th International Packet Video workshop 2009 (PV 2009), and is the lead TPC Chair

for ICME 2011.

Ying-zong Huang was born in Shanghai, China, in 1982. He received the B.S. (with honors) and M.S. degrees, both

in electrical engineering, from Stanford University, in 2004. He is currently a doctoral student in the Department of

Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, where his research interests

encompass coding and compression, signal processing, and digital communication problems arising in streaming media

systems. From 2005-2010, he held the NSF Graduate Research Fellowship, and he is also a Tau Beta Pi Fellow. He

is an inventor on three published patents.

