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Abstract—Peer-to-peer (P2P) systems provide a scalable way
to stream content to multiple receivers over the Internet. The
maximum rate achievable by all receivers is the capacity of a P2P
streaming session. We provide a taxonomy of sixteen problem for-
mulations, depending on whether there is a single P2P session or
there are multiple concurrent sessions, whether the given topology
is a full mesh graph or an arbitrary graph, whether the number
of peers a node can have is bounded or not, and whether there are
nonreceiver relay nodes or not. In each formulation, computing
P2P streaming capacity requires the computation of an optimal
set of multicast trees, with an exponential complexity, except in
three simplest formulations that have been recently solved with
polynomial time algorithms. These solutions, however, do not
extend to the other more general formulations. In this paper, we
develop a family of constructive, polynomial-time algorithms that
can compute P2P streaming capacity and the associated multicast
trees, arbitrarily accurately for seven formulations, to a factor of
4-approximation for two formulations, and to a factor of log of
the number of receivers for two formulations. The optimization
problem is reformulated in each case so as to convert the com-
binatorial problem into a linear program with an exponential
number of variables. The linear program is then solved using a
primal-dual approach. The algorithms combine an outer loop of
primal-dual update with an inner loop of smallest price tree con-
struction, driven by the update of dual variables in the outer loop.
We show that when the construction of smallest price tree can be
carried out arbitrarily accurately in polynomial time, so can the
computation of P2P streaming capacity. We also develop several
efficient algorithms for smallest price tree construction. Using the
developed algorithms, we investigate the impact of several factors
on P2P streaming capacity using topologies derived from statistics
of uplink capacities of Internet hosts.

Index Terms—Internet content distribution, linear program,
multicast tree, network degree bound, peer-to-peer network,
primal-dual, streaming capacity.

I. INTRODUCTION

C ONSIDER the following problem: given a directed graph
with a source node and a set of receiver nodes, how to

embed a set of trees spanning the receivers and to determine the
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amount of flow in each tree, such that the sum of flows over
these trees is maximized? Constraints of this problem include
an upper bound on the amount of flow from each node to its
children, degree of a node in each tree, and other topological
constraints of the given graph. This is the basic version of the
problem of P2P streaming capacity computation that we try to
solve in this paper.

Multicasting content over the Internet can be carried out in
two ways: a “client-server” system has one server for each mul-
ticast session serving the given set of receivers, and a “peer-as-
sisted” system uses the upload capacity of each user, rather than
relying only on the server, to help scale the content delivery as
the number of users increases. In a typical P2P system, peering
relationships are established among users in the logical overlay
network on top of the physical underlay network, giving rise
to multiple multicast trees that simultaneously support one ses-
sion. A user may be in a different level in each of these trees.
These P2P systems have enabled scalable file sharing and video
streaming since 2000, and consume between one third to half of
the entire Internet traffic volume in recent years.

The following fundamental question remains open: what is
the P2P streaming capacity and what is an optimal peering con-
figuration to achieve the capacity? Here, capacity is defined as
the largest rate that can be achieved for all receivers in a multi-
cast session with a given source, a set of receivers, and possibly
a set of helper (nonreceiver relay) nodes. Notice that it is not the
queuing-theoretic or Shannon-theoretic capacity of a network,
as we have assumed infinite backlog for each streaming session
and noiseless channels.

There are 16 formulations of this question: depending on
whether there is a single P2P session or there are multiple con-
current sessions, whether the given topology is a full mesh graph
or an arbitrary graph, whether the number of peers a node can
have is bounded or not, and whether there are helper nodes or
not. In each formulation, computing P2P streaming capacity re-
quires the determination of how to embed an optimal set of mul-
ticast trees and what should the rate in each tree be. The majority
of these problems appear to be hard to solve exactly, except in
three simplest formulations that have recently been solved with
polynomial time combinatorial algorithms [11], [9], [15], [14],
[13]. These algorithms and their correctness proofs, however,
do not extend to the other formulations that remain open.

In this paper, we develop a family of constructive, polynomial
time algorithms that can compute P2P streaming capacity, and
the associated multicast trees, arbitrarily accurately for seven
formulations, to a factor of 4 approximation for two formula-
tions, and to a factor of log of the number of receivers for two
formulations. The optimization is reformulated to turn the com-
binatorial problems into linear programs with an exponential
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TABLE I
MAIN NOTATION

number of variables. The algorithms combine a primal-dual up-
date outer loop with an inner loop of smallest price tree con-
struction, driven by the update of Lagrange dual variables in
the outer loop. Graph-theoretic solutions to various cases of the
smallest price tree problem are then presented.

Certain special cases of P2P streaming capacity have been
studied recently. For example, [4] develops a primal-dual algo-
rithm for the following special case: undirected overlay graph
without degree bounds on nodes or the presence of helper nodes.
Existence of degree bounds and helper nodes make the for-
mulations in this paper more relevant to the practice of P2P
streaming. They also make the development and analysis of the
algorithms more challenging.

The rest of this paper is organized as follows. We introduce
the unifying system model in Section II and review related work.
We formulate the streaming capacity problem and develop the
main algorithms for single-session and multiple-session appli-
cations in Sections III, IV, and V. We then present performance
evaluation in Section VI. Finally, we conclude in Section VII.
All proofs are presented in the Appendices. Main notation is
summarized in Table I.

II. P2P STREAMING MODEL AND CAPACITY DEFINITION

Consider streaming sessions, indexed by . A streaming
session originates from one source, and is distributed to a given
set of receivers. For example, in video conferencing, there are
multiple participants, each may initiate a session and distribute
her video to others, and each participant can subscribe to others’
videos. In an IPTV network, different channels may originate
from different servers, with different sets of subscribers. For
the -th session, denote by the original source, by the
set of receivers, and by the set of helpers. We say that a
session has rate if all the receivers in this session receive
the streaming packets at a rate of or above (bits per second).

Now consider the P2P network as a graph , where
each node represents a user, and each edge

represents a neighboring relationship between vertices .
A user may be the source, or a receiver, or a helper that serves
only as a relay. A helper does not need to get all packets but
only the ones that it relays. This graph is an overlay on top

of the given underlay graph representing the physical connec-
tions among users. It may constrain the design of peering rela-
tionships: if two nodes and are not neighbors, they cannot
be peered. At the same time, neighbors do not have to become
peers. Neighboring relationship is given while peering relation-
ship is to be designed as part of the P2P streaming capacity com-
putation. The graph may or may not be full mesh. Typically,
full mesh is only possible in a small network with small number
of users, while a large network has a sparse topology. For ex-
ample, in P2P systems widely used today, such as BitTorrent
or PPLive, when a user joins the system, the server provides a
small list of selected users that can be neighbors of the new user
and exchange packets among them.

Consider a given stream and a packet in it: it starts from the
source , and traverses over all nodes in , and some nodes
in —the traversed paths form a Steiner tree in the overlay
graph . Different packets may traverse different trees,
and we call each tree a substream tree, or subtree or simply tree
in short, and call the superposition of all the subtrees belonging
to the same session a multitree. For each tree , we denote by
the rate of the substream supported by this tree.

The use of a P2P protocol imposes certain constraints on sub-
trees. The most frequently encountered one is the node degree
constraint. For example, in BitTorrent, although one node has
30–50 neighbors in , it can upload to at most five of them as
peers. This gives an outgoing degree bound for each node and
constrains the construction of the trees. Degree bounds always
apply to receivers and helpers, and, in some scenarios, to the
source as well. Here we examine the case of degree bound for
each node per tree. The more general case of degree bound for
each node across all the trees is more difficult, and has recently
been treated in our separate work [12]. Let be the number
of outgoing edges of node in tree , and the bound be :

. We denote by the set of all allowed sub-
trees for the -th session: trees that satisfy the constraints such
as the degree bounds. Obviously, rate for all .

We will make the following assumptions for streaming ap-
plications: there is a static set of stationary users and all de-
sired chunks of packets are available at each node. The issues
of peer churn and chunk availability will be studied in future
work. We also assume that data rate bottlenecks only appear at
user uplinks. This assumption is widely adopted in the P2P lit-
erature because in today’s Internet, access links are the bottle-
necks rather than backbone links, and uplink capacity is several
times smaller than downlink capacity in access networks. De-
note by the uplink capacity of node . We have the fol-
lowing bound on the total uplink rate for each node :

where is the streaming rate node transmits to node .
A rate is called achievable if there is a multitree in which all

trees satisfy the topology constraint and transmission
rates satisfy the uplink capacity constraint . We
define P2P streaming capacity as the largest achievable rate.
When there are multiple sessions in the same given graph ,
each session’s capacity is denoted as , the P2P streaming rate
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Fig. 1. Classification of P2P streaming capacity problems: single or multiple session, full mesh, or non-full mesh graph � given, bounded or unbounded node
degrees in each tree, and existence or absence of helper nodes. The combination of these four classifications leads to 16 cases of problem formulations.

TABLE II
CONNECTIONS BETWEEN TYPICAL APPLICATION SCENARIOS AND PROBLEM

FORMULATIONS (PROBLEMS 1–16 IN FIG. 1). IPTV IS A SINGLE SESSION

FOR EACH CHANNEL, WHILE VIDEO CONFERENCING TYPICALLY CONTAIN

MULTIPLE SESSIONS. FULL MESH GRAPH WITHOUT DEGREE BOUND MODELS

A SMALL NETWORK, WHILE EITHER NON-FULL MESH GRAPH OR DEGREE

BOUNDED TREE MODELS A LARGE NETWORK

region is defined as the set of that can be simultaneously
achieved, and the P2P streaming capacity region is the Pareto-
optimal boundary of the rate region. Except in relatively easy
special cases, these fundamental limits of P2P performance are
unknown. The rest of this paper studies the polynomial-time
computation of P2P streaming capacity or capacity region, and
the multitrees that achieve them.

A taxonomy of P2P streaming capacity is shown as a “tree
of problem formulations” in Fig. 1. Each leaf node in this tree
is a specific problem formulation. There are four levels of di-
chotomy: whether there is one session or multiple sessions,
whether is full mesh or not, whether there are degree bounds
for each node in the trees or not, and whether there are helper
nodes or not. Some formulations are significantly more difficult
than others. When is not full mesh, not all nodes can become
neighbors in a tree. When there are degree bounds per node per
tree, the constraint set further complicates the tree optimiza-
tion. When there are helper nodes, capacity may be increased but
the task of computing capacity also becomes more challenging.
In formulations 1, 2, and 3, capacity can be computed exactly
and in polynomial time as shown in recent papers using combi-
natorial algorithms [11], [13], [14]. The other formulations are
much more difficult, and form the subject of study in this paper.
We also summarize in Table II the connection between typical
applications and our classification, and in Table III, the state of
solution for each problem formulation in this paper.

III. SINGLE SESSION

We first consider the single session case. Typical applications
include the streaming of a single channel in IPTV and single-
source video conferencing. In particular, the source of IPTV is
usually a powerful server and it is either not degree bounded,

TABLE III
SUMMARY OF THE RESULTS IN THIS PAPER FOR THE

16 PROBLEM FORMULATIONS

or has a very large bound. The source of video conference is
usually a peer node, and its degree bound is of the same order
as the other peers.

Since there is only one multicast session, we remove the su-
perscripts , and denote by the sender, by the set of re-
ceivers, by the set of helpers, by the set of all allowed sub-
trees, and by the supported streaming rate in the multitree. We
further use and to denote the number of receivers and
helpers, respectively. The total number of nodes in the system
is .

A. Problem Formulation

We represent the single-session streaming capacity problem
as the following optimization, where the objective function and
constraints are as explained in the previous section. For those
trees not selected in the optimizer, their rates are simply 0.
The representation is deceptively simple: the difficulty lies in
searching through all combinations of trees in the set of al-
lowed trees

(1)

(2)

(3)

(4)
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From linear programming duality theory [1], solving the
above problem is equivalent to solving its dual problem, and
an optimizer of the dual problem readily leads to an opti-
mizer of the primal algorithm. The dual problem associates a
non-negative variable , interpreted as price, with each node

corresponding to constraint (2). It can be derived to be the
following problem:

(5)

(6)

(7)

(8)

We can interpret the dual problem this way: is the per
unit flow price for any edge outgoing from . If node uploads
with full capacity, the incurred cost is . There are
connections outgoing from node in tree , and thus the total
tree price for tree , which is defined as the sum of prices in any
edge in tree , is . Therefore, the dual problem
is to minimize the total full capacity tree cost given that the tree
price is at least 1, and the minimization is over all possible ,
where is the price vector. For notational
simplicity, we use to represent .

In general, the number of trees we need to search when com-
puting the right multitree grows exponentially in the size of
the network. This dimensionality increase is the consequence
of turning a difficult graph-theoretic, discrete problem into a
continuous optimization problem. Hence, the primal problem
can have possibly exponential number of variables and its dual
can have an exponential number of constraints, neither of which
suitable for direct solution if we want to compute P2P streaming
capacity in polynomial time as the network size increases. How-
ever, the above representations turn out to be very useful to allow
a primal-dual update outer loop that converts the combinatorial
problem of multitree construction into a much simpler problem
of smallest price tree construction.

B. Algorithm and Performance

We now design an iterative combinatorial algorithm that
solves the primal and dual problems approximately. We adapt
the technique for solving the maximum multicommodity flow
problem in [6], where flows are augmented in the primal solu-
tion and dual variables are updated iteratively. Our algorithm
constructs peering multitrees that achieve an objective function
value within -factor of optimal.

For a given tree and prices , let denote the left-
hand-side (LHS) of constraint (6), which we call the price of
tree . A set of prices is a feasible solution for the dual
program if and only if

The algorithm works as follows. Start with initial weights
for all . Parameter depends on and is

Fig. 2. Primal-Dual Algorithm for Single-Session P2P streaming capacity
computation.

described in more detail later. Repeat the following steps until
the dual objective function value becomes greater than 1.

1) Compute a tree for which is minimum. We call
a smallest price tree problem, algorithms for which are

developed in Section V.
2) Send the maximum flow on this tree such that uplink

capacity of at least one internal node is saturated. Let
be the set of internal nodes in tree . The flow sent on this
tree is

(9)

3) Update the prices as

where depends on and is explained in more detail later.
4) Increment the flow sent so far by .
The optimality gap can be estimated by computing the ratio

of the primal and dual objective function values in each step
of the above iteration, which can be terminated after the de-
sired proximity to optimality is achieved. When the above it-
eration terminates, primal capacity constraints on each uplink
may be violated, since we were working with the original (and
not the residual) uplink capacities at each stage. To remedy this,
we scale down the flows uniformly so that uplink capacity con-
straints are satisfied.

The pseudocode for the above procedure is provided in Fig. 2.
Array keeps track of the traffic on uplink of node as
the algorithm progresses. The dual objective function value is
tracked by variable which is initialized to 0. After the “while”
loop terminates, the maximum factor by which the uplink ca-
pacity constraint is violated on any uplink is computed as ,
which divides the total flow , and the resulting value is output
as .

The following theorem, proved in Appendix A, states the ac-
curacy and complexity properties of the algorithm:

Theorem 1: For any given , the Single-Session Primal-
Dual Algorithm computes a solution with objective function
value within -factor of the optimum, for algorithmic pa-
rameters and . It runs



5076 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 8, AUGUST 2011

in time polynomial in the input size and : ,
where is the time to compute a smallest price tree.

This unifying primal-dual framework works for all of the
single session problems in Section II. The core issue now lies
with the inner loop of smallest price tree computation: can this
be accomplished in polynomial time for a given price vector?
This graph-theoretic problem is generally more tractable than
the original problem of searching for the multitree that maxi-
mizes the achievable rate. However, when the given graph is
not full mesh, or when there are degree bounds on nodes in each
tree, or when there are helper nodes, computing a smallest price
tree becomes difficult. These are described in Section V, which
is devoted to constructing smallest price trees for the various
cases.

IV. MULTIPLE SESSIONS

Now we turn to the more general case of concurrent
streaming sessions sharing the same P2P network. Each session
is supported by a multitree. This models the multichannel IPTV
and multiparty video conference scenarios. Here the notion of
capacity becomes a region in the -dimensional space, with
tradeoffs among the sessions quantified by the shape of this
capacity region.

A. Problem Formulation

Given a session rate demand vector , let be
the maximum multiplier such that session rate can be sup-
ported for session . Hence, we have

The total uplink traffic at node is . Upload
link capacity constraint becomes

For a given “rate region direction vector” , solving the
following problem provides one point on the capacity region.
By varying , all points can be traced. This is the same
as scalarization of a vector-valued optimization problem and
sweeping through the scalarization parameter to obtain the en-
tire boundary of the tradeoff region, a polyhedron in this case

(10)

(11)

(12)

(13)

(14)

In the special cases of formulations 1 and 2 in Fig. 1, the set of
trees for session can be chosen to comprise of Mutualcast
trees [11] and this guarantees the solution to be optimal. Hence,

the linear program is of polynomial size and can be solved in
polynomial time in these cases.

We can also readily derive the dual linear programming
problem for the multisession case. The dual problem associates
a variable with each session corresponding to constraint
(11), and a non-negative variable with each node corre-
sponding to constraint (12)

(15)

(16)

(17)

(18)

(19)

B. Algorithm and Performance

For multisession P2P streaming capacity region computation,
we again construct an outer loop of primal-dual update that is
complemented by an inner loop of smallest price tree construc-
tion. A key observation is that, from constraint (16), for each
session can be set to be the minimum value of LHS, over
all , under given prices for all . Hence, a set of
prices is a dual feasible solution if constraint (17) is satis-
fied, after is determined. If constraint (17) is not satisfied for
a given set of prices , these prices can be scaled to satisfy
the constraint.

Start with initial prices for all . The
algorithm proceeds in phases. In each phase, we route units
of flow from node to receivers in along the multitrees in

, for each session . A phase ends when all sessions
have been routed.

The flow of value of session is routed from to receivers
in in multiple iterations. In each iteration, a tree that
minimizes the LHS of constraint (16) under current prices
is computed. The maximum flow that can be sent on this tree

subject to original node uplink constraints is given by

The amount of flow sent along tree , denoted by , in an itera-
tion is the minimum of (i) the quantity , and (ii) the remaining
amount of flow that needs to be sent from to receivers in
to make a total of .

After the flow of value is sent along tree , the prices
and the uplink flow values at each node are updated as follows.

1) Update the prices as

2) Increment the uplink flow value for each node by .
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Fig. 3. Primal-Dual Algorithm for multisession P2P streaming capacity com-
putation.

This update happens after each iteration associated with routing
a portion of flow for each session . The algorithm terminates
when the dual objective function value becomes less than unity.

When the algorithm terminates, dual feasibility constraints
will be satisfied. However, link capacity constraints (12) in the
primal solution will be violated, since we were working with
the original (not the residual) uplink capacities at each stage. To
remedy this, we scale down the traffic at each node uniformly
so that uplink capacity constraints are satisfied.

Again, we need smallest price tree algorithms in the next sec-
tion to compute a tree that minimizes the LHS of con-
straint (16) during each iteration.

The pseudocode for the above procedure is described in
Fig. 3. Array keeps track of the uplink traffic at node

. After the completion of a phase, the variable equals
the number of phases completed. The dual objective function
value is computed as at the end of each phase. The iteration
over the phases in the “repeat” loop continues as long as this
value remains less than one. After the “repeat” loop terminates,
the maximum factor by which the uplink capacity constraint at
a node gets violated is computed into variable . Finally, the
value of is output.

Similar to the single-session case, the multi-session primal-
dual algorithm also achieves an objective function value within

-factor of the optimum, as stated in the following theorem
proved in Appendix B.

Theorem 2: For any , the Multi-Session Primal-Dual
Algorithm computes a solution with objective function value
within -factor of the optimum, if the algorithmic param-

eters are and . It runs

Fig. 4. SPT Computation Module: Full mesh graph�, and no degree bound in
multicast trees.

in time , where is the time to
compute a smallest price tree.

V. COMPUTING SMALLEST PRICE TREE

In iterative algorithms for both the single and multiple session
cases, efficiently and accurately computing a smallest price tree
(SPT) for a given set of node prices is the key module in each
outer loop. Theorems 1 and 2 can also be readily extended to
show that, if there is an -approximation algorithm for
the SPT problem, then the primal-dual algorithm can guarantee
an approximation factor of for any . We now
develop SPT algorithms for increasingly more general problem
formulations.

A. Full Mesh Graph Without Degree Bound

We start with the simplest case: the given graph is full mesh
(all nodes are neighbors of each other), and there is no degree
bound in the trees (each node can form peering relationship with
any number of other nodes).

When there is no helper node, it is easy to construct the
smallest price tree in the following way. Given , let

be the node with the smallest price. If
there are multiple such nodes, we can randomly pick one. If

, let be a 1-hop tree: . Otherwise, let
be a 2 hop tree: . The resulting tree
is a smallest price tree with .

The presence of helpers complicate the SPT computation. We
define an effective price for all the nodes in the following way:

(20)

With the effective prices, it turns out that we can treat helpers
the same way as receivers, and have the following algorithm for
both the cases with or without helpers, as described in Fig. 4.

The following theorem is proved in Appendix C:

Theorem 3: For a full mesh graph with no degree bound on
trees, the algorithm in Fig. 4 computes an SPT optimally in
linear time.

B. Full Mesh Graph With Degree Bound

We now study a more complicated case, where the given
graph is still full mesh, but the outgoing degree in each tree in
the P2P design is bounded.

With degree bounds, we cannot simply find the smallest price
node and forward all receivers from that node. Instead, we need
more than two internal nodes, and we want the internal nodes
to have as small prices as possible. We make smallest price
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Fig. 5. SPT Computation Module: Full mesh graph � with degree bounds on
nodes in the multicast trees and no helper nodes.

receivers be the internal node, and let these small price nodes
forward with maximum degrees until all receivers are included
in the tree. For the receivers, we order them by their capacity
so that

For a given positive integer , define

(21)

Receivers 1 to can support nodes altogether. If source
has children, it is obvious that the smallest price tree with

source degree , denoted by , satisfies the following
properties:

where . This
means that, in tree , node 1 to have
maximum degrees and the last internal node
take the remaining receivers as children. The smallest price tree
is thus the minimum price tree among for all

, and

Based on the above argument, we design the algorithm in
Fig. 5 for the case without helper nodes.

The following result is proved in Appendix D:

Theorem 4: For a full mesh graph with degree bound on trees,
the algorithm in Fig. 5 computes an SPT optimally in linear
time.

We now allow the presence of helper nodes, and study a spe-
cial case for this scenario: , and

. From Section V-A, we have already seen that, if
a tree contains a helper, it contains more edges than the helper-
free tree. Therefore, if , it does
not necessarily mean that is more favored to be a parent than

. To compare a helper with a receiver, we need to define some

Fig. 6. SPT Finding Module. Full mesh graph with homogeneous non-source
peer degree bound, with helpers.

“effective prices” under the degree bound
.

Consider a tree containing a helper . A leaf helper is
meaningless, and we suppose has children. If we
wish to remove this helper, we can replace with a leaf node

, and let support the children of . By replacing with
, the degree of ’s parent node is decreased by 1, and we can

thus let support children and let ’s old parent node
support the last child. Then we arrive at a new tree where

Therefore, we should compare with
when deciding who should be the parent. We redefine the ef-
fective price for to be if is
to support children. Only when the effective price of a helper
is smaller than the price of receiver is more favored than

to be a parent.
Based on the above analysis, we modify the helper-free algo-

rithm in Fig. 5 and arrive at a linear-complexity SPT computa-
tion algorithm in Fig. 6.

C. General Graph Without Degree Bound

We now study the cases where the given graph is not
full mesh, thus for any given node, not all other nodes are
its neighbors that can be peered. First are the cases without
degree bounds in the trees. For the helper-free case, the SPT
computation problem becomes the minimum cost arborescence
problem (rooted directed spanning tree), which was solved in
[3]. Hence, we consider the case with the presence of helpers.
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Fig. 7. (a) Overlay graph with source node �, receiver nodes � and �, and
Steiner node � with node prices being � � � � � , and � , respectively. (b) Undi-
rected graph mapped from the overlay graph in (a); for example, the link pair
between � and � in (a) maps to the node � in (b), and node � maps to three
links with link cost � in (b).

In this case, the SPT computation problem is a minimum cost
directed Steiner tree problem with symmetric connectivity and
a special structure on the costs—costs of all edges going out
of a node are equal. We leverage these two special features to
accelerate the algorithm through a graph transformation.

Let represent the pair of links connecting two neigh-
boring nodes and . We want to find the minimum price
directed Steiner tree connecting source and a set of receivers
in . We transform the directed graph to an undirected graph

, which represents the adjacency between link
pairs and the source node .

• For source node , we copy it into .
• For every two neighboring nodes , we map the

link pair to a node in .
• For every node in , we map it to a series of

undirected links connecting nodes and in
where and are any neighbors of in ; we set

the prices of these undirected links to .
• In graph , we connect any two of nodes and , with

a series of undirected links, where is any neighbor of
in ; we set the prices of these links to be .

An example of such transformation is illustrated in Fig. 7.
For the undirected graph , we consider the following group

Steiner tree problem. For every receiver in , we group
all the nodes , into a set, denoted by . Set
in corresponds to the set of link pairs in connecting to all
its neighbors. We also construct a set that contains only the
source in . The group Steiner tree problem in is to find
the minimum price Steiner tree that connects at least one node
from each of sets and . Solving the group Steiner
tree problem in undirected graph is NP-hard [7]. The authors in
[7] proposed a polynomial time algorithm that achieves an ap-
proximation factor of , where is the number
of groups and is total number of nodes.

The following theorem, proved in the Appendix, states that
finding the minimum cost Steiner tree in is equivalent to
searching the minimum cost group Steiner tree in .

Theorem 5: Consider finding a Steiner tree in that connects
and all nodes in , and searching a group Steiner tree in

that connects at least one node from each of node sets and
, the followings are true:

1) a directed Steiner tree in can be mapped to a group
Steiner tree in with the same price in polynomial time.

Fig. 8. Schematic for algorithms for the P2P streaming capacity problem. All
approximation algorithms are contributions of this paper.

2) a group Steiner tree in can be mapped to a directed
Steiner tree in with the same or less price in polynomial
time.

Consequently, the optimal group Steiner tree in can be
mapped to the optimal directed Steiner tree in in polynomial
time and vice versa. Furthermore, their prices are equal.

The minimum cost directed Steiner tree problem is hard to
approximate to a factor better than [5]. An -factor
approximation algorithm that runs in polynomial time for any
fixed was given in [2]. Theorem 5 states that the directed
Steiner tree problem in graph can be approached by studying
a group Steiner tree problem in . We first apply the random-
ized algorithm proposed in [7] to , and get a group Steiner
tree with an approximation factor of . cor-
responds to total number of link pairs in , and is at most .
We then map this group Steiner tree to a directed Steiner tree
in . Since this mapping keeps or reduces the price, at the end
we compute a directed Steiner tree in with an approximation
factor of in polynomial time. In the case where

, we can compute a directed Steiner tree with an
approximation factor of in polynomial time.

D. General Graph With Degree Bound

The most general cases of SPT computation are much harder
than all cases before: the given graph is not full mesh and there
are degree bounds in the multicast trees. Even determination of
the existence of a feasible tree is NP-hard. When there are no
helpers, the problem can be solved as a special case of a factor-4
approximation recently developed in [10]. It remains an open
problem on whether this approximation can be further improved
by leveraging the special structure in SPT computation that the
prices of all the links going out of a node are equal. When there
are helpers, polynomial-time computation of SPT for any factor
of approximation accuracy is completely open.

E. Summary

As illustrated in Fig. 8, before this paper the approach towards
computing P2P streaming capacity was entirely combinatorial
and successful only for the simple cases such as formulations
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TABLE IV
PEER UPLINK CAPACITY DISTRIBUTION

Fig. 9. Streaming rate for different algorithms (for IPTV case) as a function of
source uplink capacity; � � ���� nodes, degree bound� � �.

1, 2, and 3. Now we have added an alternative approach: an
outer-loop of primal-dual update that provides pricing guidance
on how much more can a node be of help to distribute the con-
tent, embedding an inner-loop of the less challenging, though
sometimes still difficult, combinatorial problem of SPT compu-
tation for the given prices. As long as SPT computation can be
carried out accurately and efficiently, P2P streaming capacity
can be computed accurately and efficiently as in Theorems 1
and 2. Polynomial time computation of SPT is now shown as
the case for 10 of the 16 formulations of the P2P streaming ca-
pacity problem.

VI. NUMERICAL EVALUATION

The algorithms developed in this paper can be used either as
an offline benchmarking tool or embodied in the control plane
of P2P streaming systems to construct peering relationships that
achieves the capacity. In our simulations, we consider networks
with nodes and draw the node up-
link capacities from a distribution that is obtained from real
peer usage data as reported in [8]. The possible uplink capaci-
ties of peers and their respective fractions in the peer population
is summarized in Table IV.

A. Algorithm Accuracy

We first examine a scenario with a full-mesh , degree bound
, and no helpers. We compare the streaming rates com-

puted by two different algorithms—the primal-dual (and SPT)
based algorithm in Sections III and IV, which is applicable for
the general case, and the mutualcast algorithm in [11], which
only works optimally for the case of full-mesh without degree
bounds. It turns out that in this numerical example is suf-
ficiently loose that it becomes equivalent to the case of no degree
bound. We plot the versus curve for each for a range
of source uplink capacities in Fig. 9. This experimentally
validates the -factor approximation optimality of the
primal-dual algorithm, where in this case we set %.

As the source capacity increases, the streaming rate first in-
creases sharply, since at this point the source uplink capacity

Fig. 10. Streaming rate (kbps) versus degree bound� .

bounds the streaming rate. Later the streaming rate (almost) flat-
tens out, since now all peers’ capacities have been used up and
the extra rate for each user must come from the source directly.
From such curves we can determine the most efficient source
uplink capacity: the smallest value at which all peers’ capaci-
ties are (almost) fully utilized.

B. Streaming Rate

We study the impact of the degree bound on the maximum
streaming rate, total node degree per node across all the trees,
and maximum receiver delay. The results in the rest of this sec-
tion are for the single session scenario on a full-mesh graph with
degree bound on all nodes (including the source node) in
each tree. They are obtained using the primal-dual algorithm in
Section III with optimality guarantee of %. The source
node uplink capacity is fixed at 768 Kbps and the uplink ca-
pacities of other nodes are chosen according to the empirical
distribution above.

In Fig. 10, we plot the maximum streaming rate as a function
of the degree bound for the different topologies. We observe
a big jump in streaming rate as the degree bound is relaxed from

to . The streaming rate (approximately) flattens
out at onwards in this example. The rate for the
topology is higher than that of the others, simply due to the
random sampling of uplink capacities for a small number of
nodes resulting in a higher fraction of 768 kbps uplink capacity
nodes.

C. Node Total Degree

Since multiple trees support the same streaming session, the
total number of children a node has is the sum of the number of
children in all the trees. We refer to this as the total-out-degree of
a node. In Fig. 11, we plot the average node total-out-degree as a
function of the degree bound for the different topologies. At
degree bound , the average degree usage in the overlay is
about 50 for topologies with nodes. For on-
wards, we see that the overlay degree can be up to an order-of-
magnitude higher than the degree bound per tree—about few
hundreds for the larger networks . This sug-
gests that for large topologies, bounding the out-degree per tree
is not effective in keeping the total-out-degree in the overlay
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Fig. 11. Average degree usage in overlay versus degree bound� .

Fig. 12. Maximum receiver delay (sec.) versus degree bound� .

to a small value. Future work needs to address the challenging
issue of computing P2P streaming capacity under total-out-de-
gree across for each node across all the trees.

We also make the following observation about the effect of
the approximation parameter in the primal-dual algorithm on
the total-out-degree distribution. If we set to be very small
(e.g., 1%), it leads to the usage of additional trees with very
small rates assigned to them. This increases the streaming rate a
little while raising the node total-out-degree significantly. Given
the resource constraints such as CPU per node, it is desirable to
avoid too large a total-out-degree, implying that should not be
too close to zero.

D. Delay

Delay properties of P2P streaming were not the main focus
of this paper and is generally under-explored. Here we provide
a brief exploration. In Fig. 12, we plot the maximum receiver
delay as a function of the degree bound for the different
topologies. Here, delay for a receiver is the maximum delay ex-
perienced by that receiver across all trees that it receives data
from. For each tree, the delay is the time it takes from a packet
originating at the source of the tree to its reaching the receiver.
This delay is a function of both propagation delay, which is set at
20 ms between two directly connected peers in this example, and
fan-out delay at a node, which is the by-product of the peering
relationships of the multicast trees. The fan-out delay at a node
in a tree is the delay involved in pushing out a packet to each

of its children peers sequentially. For example, for a packet of
1 kB, if this node uses an uplink rate of bps to distribute con-
tent on this tree, then the beginning of data transfer to the -th
child node starts with a delay of sec-
onds—this is the fan-out delay experienced by the -th child
node. Clearly, minimizing receiver delay involves a tradeoff be-
tween minimizing propagation delay through small tree depth
and minimizing fan-out delay through low out-degree.

From Fig. 12, we observe that for all networks considered, the
delay is under 1 min and of the order of few tens of seconds, for
degree bound values from to . Beyond ,
the contribution of fan-out delay leads to a larger increase in
maximum delay.

VII. CONCLUSION

P2P has become an essential part of content distribution and
streaming applications on the Internet, with applications ranging
from IPTV to video conferencing. But just how much content
can P2P systems stream to all the users remains unknown, in
part because of the difficult combinatorial problems involved in
multicast tree construction. This paper presents the first com-
prehensive framework to answer this question.

We provide a taxonomy of sixteen problem formulations and
develop a general framework of iterative primal-dual algorithms
for computing the P2P streaming capacity (or, capacity region
in the multiple sessions case), under topology constraints, node
degree bounds, and possible presence of helpers. The results can
be used to quantify the impact of these factors on P2P capacity in
streaming applications. Their application in inspiring practical
P2P protocols is discussed in [12].

To complete each step in the primal-dual updates, we also
develop efficient and accurate algorithms to compute smallest
price trees, as guided by the given dual variables at that it-
eration and further guiding the primal-dual-variable update in
the next iteration. For some of the formulations, these algo-
rithms benchmark P2P streaming systems in polynomial time
rather than the apparent need for exponential time search of
multi-trees. For two formulations, polynomial time computation
of P2P streaming capacity remains open.

APPENDIX

A. Correctness and Complexity Proof: Single Session

We begin with some notation, then state some useful lemmas,
and finally conclude with the proof of Theorem 1 from the pre-
vious section. The proof is adapted from techniques used in [6].

Given a set of dual weights , let denote the dual
objective function value and let denote the minimum value
of the LHS of dual program constraint (6) over all trees .
Then, solving the dual program is equivalent to finding a set
of weights such that is minimized. Denote the
optimal objective function value of the latter by , i.e.,

.
We introduce some more notation before stating an important

lemma. Let denote the weight function at the beginning
of iteration of the while loop, and let be the value of

(primal objective function) up to the end of iteration
. Suppose the algorithm terminates after iteration .
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Lemma 6: At the end of every iteration of the
single-session primal-dual algorithm, the following holds

Proof: Let be the node for which is minimum.
Recall that the weights are updated as

where is the total flow sent on tree during iteration . Using
this, we have

Using this for each iteration down to the first one, we have

(22)

From the definition of , we have , whence
. Also, . Using these in

equation (22), we have

(23)

The property claimed in the lemma can now be proved
using inequality (23) and mathematical induction on the it-
eration number . We omit the details here, but point out
that the induction basis case (iteration ) holds since

and .

We now estimate the factor by which the objective function
value value in the primal solution when the algorithm termi-
nates needs to be scaled to ensure that link capacity constraints
are not violated.

Lemma 7: When the Single-Session Primal-Dual Algorithm
terminates, the primal solution needs to be scaled by a factor of
at most to ensure primal feasibility.

Proof: Consider the uplink of any node and associated
weight . The value of is updated when flow is aug-
mented on uplink of node . Let the sequence of flow augmen-
tations (per iteration) on uplink of node be ,
where . Let , i.e., the total flow routed
on uplink of node exceeds its capacity by a factor of .

Because of the way in which augmented flow is chosen in
accordance with equation (9), we have for all .
Hence, the dual weight is updated by a factor of at most

after each iteration. Since the algorithm terminates when

, and since dual weights are updated by a factor of at
most after each iteration, we have . Since
the weight , with coefficient , is one of the summing
components of , we have . Also, the
value of is given by

Using the inequality and any
and setting and , we have

whence

Proof of Theorem 1: Using Lemma 6 and the inequality
, we have

The simplification in the above step uses telescopic cancellation
of the sum over . Since the algorithm terminates
after iteration , we must have . Thus

whence

(24)

From Lemma 7, the objective function value of the feasible
primal solution after scaling is at least

The approximation factor for the primal solution is at most
the gap (ratio) between the primal and dual solution. Using (24),
this is given by

The quantity equals for
. Using this value of , the approximation factor

is upper bounded by
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Setting and solving for , we get the value
of stated in the theorem.

To obtain the running time for the Single-Session Primal-
Dual Algorithm, we first consider the running time of each iter-
ation of the algorithm during which a tree is chosen to augment
flow. Selection of this tree involves a smallest price tree compu-
tation which takes time (say). All other operations within
an iteration are absorbed (up to a constant factor) by the time
taken for this smallest price computation, leading to a total of

time per iteration.
We next estimate the number of iterations before the algo-

rithm terminates. Recall that in each iteration, flow is aug-
mented along the tree v such that the total flow sent on any
node uplink during that iteration is at most . Thus, for at
least one node and increases by a factor
of . Accordingly, with each iteration, we can associate a
weight which increases by a factor of .

Consider the weight for fixed . Since
and (as deduced in the proof of Lemma 2),

the maximum number of times that this weight can be associated
with any iteration is

Since there are a total of weights , hence the total
number of iterations is upper bounded by . Mul-
tiplying this by the running time per iteration, we obtain the
overall algorithm running time as .

B. Correctness and Complexity Proof: Multiple Sessions

We first introduce some notation, then state some useful
lemmas, and finally provide the proof of Theorem 2 from the
previous section. The proof is adapted from techniques used in
[6].

Recall that the Multi-Session Primal-Dual Algorithm runs in
phases. In each phase, we route units for session from
source to receivers in during iteration for each

. The rate for session in phase is routed in
multiple steps. In step of phase of session , we compute a
smallest price tree (under current value of prices for
all ) and route flow along the associated tree. The weights

for nodes in the tree are then adjusted as described earlier.
Let represent the remaining amount of flow to be sent in

steps in phase for session . Since we have
to route units of flow for session in each phase, we have

for all phases . Let represent the node prices
at the beginning of step for routing session during phase .
In this step, we determine the tree in with smallest price

Denote this tree by and the amount of flow routed on it by
. Then, . The prices associated with

each node are updated as

To simplify the notation, we will drop the superscript (corre-
sponding to step number) when we refer to prices at the end of
routing one session during a phase or at the end of a complete
phase, e.g., will denote the price after routing session
during phase , and will denote the same after comple-
tion of phase .

Let denote the dual objective function value. The Multi-
Session Primal-Dual Algorithm terminates at the first phase
for which . Define a function on the prices that
computes the LHS of (16) of the dual program, that is

Then, solving the dual program is equivalent to finding a set
of weights such that is minimized. Denote the
optimal objective function value for the latter by , i.e.,

.

Lemma 8: When the Multi-Session Primal-Dual Algorithm
terminates, the primal solution needs to be scaled by a factor of
at most to ensure primal feasibility (i.e., satisfying
node uplink capacity constraints).

Proof: Consider any node and associated price . The
value of is updated when flow is augmented on the uplink
of node because of routing on a tree. Let the sequence of flow
augmentations on the uplink of node be . Let

, i.e., the total flow routed on the uplink of
node exceeds its capacity by a factor of .

Since the algorithm terminates when , and since
prices are updated by a factor of at most after each iteration,
we have and . Since the
quantity is one of the summing components of ,
hence . Also, the value of is
given by

Using the fact that and any
and setting and , we have

whence

Lemma 9: At the end of phases in the Multi-Session Primal-
Dual Algorithm, we have

Proof: We first derive inequalities to relate the values of
across consecutive steps during routing of a given session
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during a phase. Using this, the relation between values of
across consecutive phases is derived. At the end of step for
routing session during phase , we have the equation shown at
the bottom of the page. Note the use of the fact that the weights

are nondecreasing as the algorithm progresses. Summing the
last inequality over all steps for routing session during phase
, we have

We now sum over all iterations during phase to obtain

Since , we have

Using the initial value , we have for

The last step uses the assumption that . The procedure
stops at the first phase for which

which implies that

Proof of Theorem 3: Let represent the ratio of the dual
to the primal solution. Then, we have

Substituting the bound on from Lemma 9, we obtain

Setting , we get . Equating the desired
approximation factor to this ratio and solving for , we
get the value of stated in the theorem.

To obtain the running time for the Multi-Session Primal-Dual
Algorithm, we first upper bound the number of phases after
which the algorithm terminates. Using weak-duality from linear
programming theory, we have

Hence, the number of phases is less than ,
and is upper bounded by .

For each step in an iteration, except possibly the last one, we
increase the weight associated with at least one node by a
factor of . Since each weight has an initial value of
and a final weight less than , the number of steps exceeds
the number of iterations by at most . Thus, the
total number of steps is at most
and each such step takes time. Assuming that ,
the running time of the algorithm is obtained as stated in the
theorem.

Using a technique similar to that outlined in [6], the node up-
link capacities and/or session rates can be scaled (without in-
curring any additional running time overhead up to a constant
factor) so that . We omit the details here. Hence, the
assumption on is not restrictive.

C. Proof of SPT for Full Mesh Graph Without Degree Bound

We use , and to denote the price of the source , the
smallest price of receiver nodes, and the smallest price of the
helper nodes. Clearly, SPT has no leaf helper nodes. If there is
no helper node involved, then there are altogether nodes
and edges in the tree, and thus the total outgoing degree is .
As the root is the source, the source degree is at least 1. Denote
the tree price by , we have

If there are helper internal nodes in the tree, then
there are altogether edges, and there are total
outgoing degrees. We have the equation shown at the bottom of
the next page. So, we know that

Since the algorithm in Fig. 4 reaches the right hand side of the
above inequality, it is optimal.
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D. Proof of SPT for Full Mesh Graph With Degree Bound

Each tree has nodes and edges (and thus total
outgoing degrees). As the root is the source, at least one edge is
from the source. Index the first edge from the source by 1, and
index the remaining edges from 2 to . Denote the price
of the -th edge (the price of the outgoing node of the edge) by

, and denote the tree price by , then

Index all the nodes (no matter source or receivers) from
1 to by their prices, such that, . Then, for
smallest price tree purpose, we should use as many low indexed
nodes as possible for internal nodes, and we have

where is the smallest number such that

and if , and if is the
source. It is straightforward to see that the algorithm in Fig. 5
constructs a tree whose tree price equals to the right hand side
of the above inequality, so it is optimal.

E. Proof of SPT for General Graph Without Degree Bound

We start by proving the first claim. Let be a directed Steiner
tree in rooted at . We map to a group Steiner tree in
as follows:

• for source node in , we map it to in and include
into ;

• for every directed link in that connects node to node
, we map it to node in and include

into tree ;
• for all the nodes in , we include the link in that

connects and into ;
• for every intermediate node in with parent node and

a set of children, denoted by , we include the links
connecting node and every ,
into (Note these links in have the same price ).

Fig. 13 shows one example of the above mapping. Clearly the
complexity is polynomial in the number of links in .

We now show that is a tree. First, every link in maps to a
node in , and the shared vertexes of any two links in maps to
the links connecting the corresponding nodes in . Hence, is
a connected subgraph.

Second, there is no loop in . Otherwise, there exist two
nodes in , between which there are two disjoint paths. This

Fig. 13. (a) Direct Steiner tree � in � connecting �� � and �. (b) Group Steiner
tree � in � , mapped from � in (a); for example, the edge from � to � in � maps
to the node � in � , and node � in � maps to two undirected edges connecting
� to � and to � , respectively.

means there are two links in between which there are two dis-
joint paths (i.e., a loop). But this is not possible since is a tree
and contains no loop.

By this mapping, the source node and every link in maps
to a node in . Consequently, for the node sets and ,
in , at least one node from each set (corresponding to at least
one link coming out of or going into ) is included in

. Therefore, is a group Steiner tree in .
Moreover, source node and every intermediate node in

maps to a series of links in , the number of which is exactly
the number of children the node has in . The price of is hence
the sum of the products of every node ’s upload price
and its number of children, and is the same as the price of .

We now prove the second claim. Let be a group Steiner tree
in connecting at least one node from each of node sets and

. We map it to a directed Steiner tree in as follows.
This mapping is slightly complicated since now every node in
corresponds to a pair of links in and we need to specify which
to map to.

• For source in , we map it to in and include into .
• we sort the nodes in into levels, according to their hop

distances to . That is, level are the nodes hops away
from .

• We map a node in level 1, say , in to the directed
link from to its neighbor in and include it into . We
then deal with ’s child nodes in the next level. If its
name is of the form , then we map it to the directed
link from ( ’s neighbor) to in and include it into ;
otherwise, its name must be of the form , and we map
it to the directed link between and in and include it
into . We continue this process until every node in has
been mapped into a directed link in .

• For every directed link in , we also include its two end-
point nodes into . This way, all the nodes in that are
mapped from links in are included into . The links in

are also connected since nodes are connected in . This
way, has the same cost as , since all links in map to
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Fig. 14. (a) Group Steiner tree � in � connecting at least one node from each
of the groups: ���� �� � � � � � and �� � � �. (b) Connected
subgraph in �, mapped from � in a). (c) Final directed Steiner tree � in � after
pruning the connected subgraph mapped from � in (a).

nodes in and the number of children of a node in is ex-
actly the same as the number of links this node corresponds
to in .

• We perform a breath first search to construct a directed
spanning tree in rooted at and reaching all nodes in .
We remove any leaf node in the resulted spanning tree that
is not a receiver in , as well as the directed links reaching
these leaf nodes. We finally set to be the pruned directed
tree. This procedure can only reduce the price of .

Fig. 14 shows one example of the above mapping. By above
procedure, a group Steiner tree in maps to a directed Steiner
tree in with the same or less price. The complexity is again
polynomial.

By the two claims, a minimum group Steiner tree in , de-
noted by , can be mapped to a minimum directed Steiner tree in

, denoted by , with the same price and vice versa, following
the two mapping procedures we describe above.

We first prove the forward direction. Suppose it is not true.
Following the second mapping procedure we describe above,
maps to a tree in with a price higher than . We then map
to a group Steiner tree in using the first mapping procedure.
Then this new group Steiner tree has smaller price than , which
contradicts with the setting that has the minimum price. Hence,
our assumption cannot be correct and must map to a minimum
cost Steiner tree in .

The reverse direction can be proved by a similar set of
arguments.
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