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ABSTRACT
We propose a framework for simultaneous phase unwrapping
and multipath interference cancellation (SPUMIC) in homo-
dyne time-of-flight (ToF) cameras. Our multi-frequency ac-
quisition framework is based on parametric modeling of the
multipath interference phenomena. We use robust spectral es-
timation methods with low computational complexity to de-
tect and estimate multipath parameters. Using simulations
and analysis we demonstrate that our proposed solution is im-
plementable in real-time on existing ToF cameras without re-
quiring any hardware modifications.

Index Terms— Time-of-flight range imaging, depth sens-
ing, 3D camera, phase unwrapping, multipath cancellation,
mixed, flying pixel, spectral estimation.

1. INTRODUCTION

Time-of-flight (ToF) depth cameras enable real-time acqui-
sition of three-dimensional (3D) scene structure with high
range resolution from a single viewpoint. They are also less
sensitive to ambient light compared to their active stereo and
structured light counterparts. Due to these desirable features,
ToF cameras are being rapidly integrated into an array of
applications including navigation, automation and consumer
electronics [1]. Development of new image and signal pro-
cessing techniques to improve ToF range imaging quality is
also subject to growing research interest.

Range imaging using homodyne ToF cameras [2] presents
two fundamental challenges: phase unwrapping and mul-
tipath interference cancellation. With the growing deploy-
ment of ToF cameras, these two problems have recently re-
ceived significant attention [3, 4, 5, 6, 7, 8, 9, 10]. Thus far,
phase unwrapping (PUW) and multipath interference cancel-
lation (MIC) have been investigated independently and sev-
eral methods have been proposed for each one. Moreover, for
both these problems there is a lack of solutions that work in
real time as well as produce accurate range estimates in the
presence of signal dependent shot noise experienced by ToF
measurements.
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In this paper, we jointly address PUW and MIC in ToF
cameras using the theory of spectral estimation. Our inte-
grated solution, SPUMIC, is a pointwise multipath detection
and parameter estimation framework. SPUMIC is based on
multi-frequency ToF acquisition and parametric modeling of
multipath signals. Our measurement process involves sam-
pling cross-correlation functions at five or more uniformly
spaced modulation frequencies. For every sensor pixel,
SPUMIC first detects the presence or absence of multipath
and then estimates the unwrapped distance and amplitude pa-
rameters.

Our analysis and simulations demonstrate that SPUMIC
1. produces accurate depth estimates of the direct scene

path in presence of signal dependent noise, and
2. is implementable in real-time on existing ToF cameras

without requiring hardware modifications.

We proceed as follows: in Section 2 we explain the theory
of ToF camera operation, in Section 3 we discuss paramet-
ric modeling of multipath interference in ToF cameras and in
Section 4, we present our joint framework for PUW and MIC.
We conclude with analysis and simulations of our method in
Section 5.

2. TIME-OF-FLIGHT CAMERA OPERATION

Figure 1 shows a signal processing abstraction of the opera-
tion of a amplitude modulated cosine wave (AMCW) homo-
dyne ToF camera. The radiant power of transmitted light is
temporally modulated using a non-negative sinusoidal signal

s(t) = s(t+T0) = 1+cos 2πf0t (1)

with modulation frequency f0 = 1/T0. In the absence of
multipath interference, the reflected light from the scene is
well modeled as

r(t) = r(t+T0) = a cos 2πf0(t−τ)+(a+b), (2)

where a is the amplitude attenuation due to propagation losses
and target reflectivity; τ = 2d/c is the time-delay introduced
due to the to and fro propagation of light with speed c from
the camera to a scene point at distance d, and b is the time-
invariant background or ambient light contribution from the



Fig. 1. Signal processing pipeline of ToF camera operation.

scene. Our goal is to estimate a and the unwrapped distance
d.

In a homodyne ToF camera, the light signal, r(t), inci-
dent at the sensor pixel is correlated with a periodic reference
signal, x(t+φ) = x(t+φ+T0), and its time-shifted copy,
x(t+φ+T0/2). The role of the shift parameter, φ, will be-
come imminently clear. The reference signal, x(t), is chosen
such that

x(t)+x(t+T0/2) ≈ 1 [light flux preservation]

x(t)−x(t+T0/2) ≈ (−1)sign{T0/2−t}[background rejection]

(3)
For simplicity we also assume that the second Fourier series
coefficient of x(t) corresponding to frequency f0 is 1. Un-
der the aforementioned conditions, the cross-correlation func-
tions, denoted using ya and yb are computed as

ya(φ+τ) =

∫ T0

0

r(t)x(t+φ) dt

= a cos 2πf0(φ+τ)+(a+b)

yb(φ+τ) =

∫ T0

0

r(t)x(t+φ+T0/2) dt

= −a cos 2πf0(φ+τ)+(a+b)

(4)

For a fixed value of φ, the following values are measured at
the output of a ToF sensor pixel,

z+(φ; τ) = [ya+yb]/2 = a+b

z−(φ; τ) = [ya−yb]/2 = a cos 2πf0(φ+τ)
(5)

Note z+(φ; τ) = z+ is a constant and provides an estimate
of the total incident radiant power. The function z−(φ; τ) is a
sinusoid with no background component.

To estimate a and τ , we sample z−(φ; τ) atM ≥ 2 values
of φ. The m-th sample is z−[m; τ ] = a cos 2πf0 (mT0/M+
τ) for m = 0, . . . ,M−1. For modulation frequency, f0, the
amplitude estimate is

â (f0) =
√
z−[0; τ ]2+. . .+z−[M−1; τ ]2 /M (6)

and an estimate of the wrapped or aliased distance is,

d̂ (f0) =
1

2π

(
c T0

2

)
arg

{
M−1∑
m=0

z−[m; τ ]e
−j 2πm

M

}
=
c ϕ(f0)

4πf0
(7)

2.1. Phase Unwrapping in ToF cameras

The maximum non-wrapped or unaliased distance when using
modulation frequency f0 is c/(2f0). Thus, one must choose
a low modulation frequency to avoid wrapping. However, the
error in the distance estimate ∆d̂ (f0) ∝ ∆ϕ(f0)/f0 . Us-
ing the noise model in Section 2.2, it is easy to conclude that
∆ϕ(f0) = ∆ϕ is independent of modulation frequency. This
immediately implies that the use of a high modulation fre-
quency leads to more accurate distance estimates, although
they will be undesirably wrapped. The use of two or more
high modulation frequencies allows us to capture high accu-
racy distance estimates as well as accomplish reliable phase
or distance unwrapping [7]. For example, using modulation
frequencies, f0 and f1, the unwrapped distance estimation
problem is the solution of following system of equations in
variables d̂ ≥ 0 and k1, k2 ∈ {0, 1, 2, . . .},

d̂ = c (ϕ(f0)+2πk0)/4πf0 = c (ϕ(f1)+2πk1)/4πf1 (8)

Using two frequencies, the maximum unaliased distance is
increased to c/(2 gcd(f0, f1)).

2.2. Modeling Poisson (shot) noise in ToF cameras

It is well known that ToF cameras suffer from signal depen-
dent shot noise [11]. This is because the process of measur-
ing instantaneous light power using semiconductor substrates
involves conversion of photon energy to electron displace-
ment. This stochastic process is accurately modeled as a time-
inhomogeneous Poisson process [12] with rate λ(t) = η r(t),
where η is quantum efficiency of the detector. In order to re-
duce the effect of shot noise, the cross-correlation samples are
averaged over a large number of time-periods, N . Using the
central limit theorem, it is easy to conclude that the averaged
output at the sensor pixel is distributed as,

Z−(φ; τ) ∼ N
(
η a cos 2πf0(φ+τ) , η (a+b)/2N

)
Z+ ∼ N

(
η (a+b) , η (a+b)/2N

) (9)

In Section 5 we will use this physically accurate noise model
in our simulations to validate the performance of SPUMIC.
In the next section, we briefly discuss a parametric model for
multipath interference in ToF cameras.

3. MULTIPATH INTERFERENCE MODELING

As shown in Figure 2, multipath interference in ToF camera
arises when a sensor pixel receives contributions from two or
more scene points at different depths.
There are various signal models for multipath returns [3] but
the one that works particularly well in practice models the
reflected return as a sum of a first (direct) return and a second
(indirect) path, i.e.,

r(t; τ̃) = a1 cos 2πf0(t−τ1)+a2 cos 2πf0(t−τ2)+b̃

= ã cos 2πf0(t−τ̃)+b̃
(10)



Fig. 2. Mechanism of multipath interference in TOF cameras.

The four multipath parameters of interest are {a1, a2, d1, d2}.
b̃
.
= a1+a2+b and τ1 = 2d1/c, τ2 = 2d2/c. The resultant

amplitude and phase shift sensed by a ToF camera using mod-
ulation frequency f0 are,

ã (f0) =
√
a21+a22+2 a1a2 cos 2πf0(τ1−τ2)

τ̃ (f0) = tan−1
(
a1 sin 2πf0τ1+a2 sin 2πf0τ2
a1 cos 2πf0τ1+a2 cos 2πf0τ2

) (11)

Assume without loss of generality (w.l.o.g), τ1 < τ2. Also
physical laws dictate that 0 ≤ a1, a2 ≤ 1. Under these con-
ditions, it is easy to show that τ1 ≤ τ̃(f0) ≤ τ2. Sensor
pixels corrupted with multipath, are often referred to as fly-
ing pixels (Figure 2). Other effects of multipath interference
in ToF cameras include shape distortion at scene corners and
flattening of curved objects.

The goal of MIC is to accurately detect the presence
of multipath interference at a sensor pixel, and estimate
the direct path distance, d1, and amplitude, a1, from sam-
ples z−[m; τ̃ ]. Clearly a single modulation frequency is not
enough for detecting multipath and estimating the four mul-
tipath parameters. Multi-frequency based methods for MIC
have been recently proposed [5] but these techniques are com-
putationally complex since they involve solving a difficult,
non-convex optimization problem. Other methods that use
scene priors for multipath modeling and correction have also
been recently proposed [13].

In the next section, we introduce SPUMIC, a low com-
plexity method for joint PUW and MIC. Our technique is also
based on multiple modulation frequencies for ToF acquisi-
tion.

4. SIMULTANEOUS PHASE UNWRAPPING AND
MULTIPATH CANCELLATION

The key concept behind our method, SPUMIC, is formula-
tion of PUW and MIC as line spectra estimation problems.
To accomplish this, fix the modulation frequency, f , and use
the two-path model defined in Equation 10 to compute sensor
output described in Equation 5,

z−(φ, f) = a1 cos 2πf(φ+τ1)+a2 cos 2πf(φ+τ2) (12)

Note the explicit dependence of sensor output on φ as well
as the modulation frequency, f . SPUMIC is based on sam-
pling the sensor output in both f and φ. First, fix f = 1/T
and sample z−(φ, f) as before, i.e, at φ = mT/M ;m =
0, . . . , (M−1). Using the samples, z−[m, f), we define the
complex phasor,

C (f) =
2

M

M−1∑
m=0

z−[m, f)e
j 2πm
M (13)

Using simple algebraic manipulations, we show that the pha-
sor C (f) is the sum of two complex exponentials, i.e.,

C (f) = a1

(
ej 4πd1/c

)f
+a2

(
ej 4πd2/c

)f
(14)

Equation 14 describes a line spectra model of order 2. This
fact suggests sampling the phasor in four or more frequen-
cies, f , and using spectral estimation techniques [14] to detect
multipath interference and recover the multipath parameters,
{a1, a2, d1, d2}. Note that no multipath ⇐⇒ a2 = 0.

Next, based on the above motivation we present our
framework SPUMIC for joint PUW and MIC which uses
spectral estimation and comprises the following steps:

4.1. Sampling and Data Acquisition

SPUMIC requires sampling the cross-correlation function
(Equation 4) in both φ and f . For two-path MIC (Equa-
tion 10) we require that the number of frequency samples,
K ≥ 4 and since we are using sinusoidal modulation we re-
quire the number of phase samples, M ≥ 2.

Our data acquisition is as follows: we pick a base mod-
ulation frequency, f0, which governs the maximum aliased
distance, c/2f0, and a positive integer K0 which governs the
minimum modulation frequency, K0f . As mentioned be-
fore, higher modulation frequencies provide more accurate
distance estimates but also leads to more phase wrapping. We
modulate the ToF camera using K uniformly spaced modu-
lation frequencies, f = {(K0+k)f0 : k = 1, . . . ,K} and
for value of f we acquire M samples of the cross-correlation
function phase, φ. We collect a total of K×M samples de-
noted by z−[m, k]. Next we discuss phase unwrapping and
multipath detection and estimation using our data.

4.2. Parametric Spectral Estimation for PUW and MIC

We first discuss the noiseless recovery, described as follows:
Step 1. Compute phasors: Use samples, z−[m, k], to com-
pute K complex phasors, one for each modulation frequency

C [k] =
2

M

M−1∑
m=0

z−[m, k]e
j 2πm
M , k = 1, . . . ,K (15)

Step 2. Detect multipath: For simplicity let K = 2r+1.
Form a Hankel matrix of dimensions r×r using the K com-
plex phasors, C [k]. Compute the rank of this matrix, and if



Fig. 3. Simulated data with SNR = 25 dB (a) Ground truth depth map. (b-f) Noisy, aliased depth map computed at modulation f = 22, 33, 44, 55, 66 MHz
computed using the noisy samples. Note the values of maximum distances in each of the images (all values are in meters).

Fig. 4. (a) Noisy depth map acquired using a single, low modulation frequency, f = 11 MHz that does not have any aliasing. (b Error image for single
frequency depth estimate with mean-square error (MSE) = 29.9 dB. (c, d) Depth map reconstruction using SPUMIC and the error image with an MSE = 20.4
dB. (e, f) Depth map reconstruction obtained using the maximum likelihood estimation described in Section 5 and the error image with an MSE = 10.8 dB.

rank ≥ 2, declare multipath else there is one direct path.
Step 3a. Parameter estimation with no multipath: As we
will show shortly, in the absence of noise as well as multi-
path the amplitude estimate â = |C [k]| and the unwrapped
distance estimate is simply given by

d̂ =
c

4πf0
arg

{
C [k+1]

C [k]

}
, for any k ≥ 1 (16)

Step 3b. Multipath parameter estimation: If multipath is
detected, then we employ the total least square (TLS) Prony’s
method [15, 14, 16, 17] to recover {d1, d2}. First we com-
pute the nullspace eigenvector, v defined as the solution to
the following Hankel system of equations, C [1] C [2] C [3]

C [2] C [3] C [4]

. .
.

. .
.

. .
.

C [K−2] C [K−1] C [K]

 v1
v2
v3

 = 0 (17)

Then we compute the roots of the quadratic v1+v2 ω+v3 ω
2.

It follows from spectral estimation theory [14] that ω1 =
ej 4πf0d1/c and ω2 = ej 4πf0d2/c and hence we can easily re-
cover estimates {d̂1, d̂2}. Finally the amplitude estimates are
obtained by solving a Vandermonde least square system,

ej 4π(K0+1)f0d1/c ej 4π(K0+1)f0d2/c
...

...
ej 4π(K0+1)f0d1/c ej 4π(K0+K)f0d2/c

[â1
â2

]
=

[
C [1]
...

C [K]

]
(18)

The algorithms described in Steps 1−3 is precisely the
Prony’s method [15] for line spectra estimation applied to the
problem of multipath parameters estimation, {a1, a2, d1, d2}.
In the noiseless case, it is straight forward to show that us-
ing our proposed algorithm we perfectly recover amplitudes
{a1, a2} and distances {d1, d2} within the maximum alias-
ing distance c/2f0. In the noisy case we use robust versions
of Steps 1−3; for model order estimation and multipath de-
tection we employ singular value based methods [14] and

for multipath estimation, we use Cadzow’s denoising proce-
dure [16, 17] before computing estimates in Step 3. As shown
in our next section, the robust version of SPUMIC achieves
accurate phase unwrapping and multipath cancellation even
in the presence of signal dependent noise.

5. SIMULATIONS AND RESULTS

The simulations are divided into two parts, one that evalu-
ates the performance of SPUMIC for PUW and the other one
that is an evaluation of SPUMIC for simultaneous PUW and
MIC problems. All simulations were carried out at an SNR =
a/(a+b) of 25 dB with signal dependent additive Gaussian
noise. All scene points were assumed to have a unit re-
flectance, i.e., a = 1 along with no radial-off attenuation. The
five chosen frequencies were, f = 22, 33, 44, 55, 66 MHz.
Using this choice of of modulation frequencies any method
will be able to alias up to a distance of c/(2×11MHz) ≈ 13
meters. At each frequency, the cross-correlation function was
sampled at four values of φ = 0, π/4, π/2, 3π/4.

5.1. Phase Unwrapping results:

Figures 3 and 4 show simulations results comparing the per-
formance of SPUMIC with two other methods:
1. Depth acquisition using a single, low modulation fre-
quency that does not cause any aliasing. In our case, this
frequency was chosen to be f = f0 = 11 MHz, and,
2. The nonconvex maximum likelihood depth estimate at each
pixel which is defined as the value the minimizes the least
square error between the model and data,

d̂ML = arg min
d

∑
φ

∑
f

[z−(φ, f)−cos 2πf(φ+2d/c)]
2

(19)
As shown in Figure 4, the performance of SPUMIC is better
than using a single modulation frequency to estimate depth.
This gain explained by the fact that more samples at other



Fig. 5. (Left) Ground truth depth map of scene shown in Figure 6. (Center) Depth map computed using single, low modulation frequency of f = 11 MHz.
(Right) The absolute error image shows the multipath error pattern. Multipath error due to diffuse inter-reflection increases at first, but again decreases because
the direct and second path lengths become close near the wedge center. MSE = 28.5107 dB at an SNR = 25 dB. All units are in meters.

frequencies allow for a robust estimation of depth. The per-
formance of SPUMIC is not as good as the maximum like-
lihood (ML) estimate. The use of high resolution frequency
estimation methods like matrix pencil and ESPRIT could al-
low SPUMIC to achieve performance comparable to the ML
estimate. Also note that the ML problem is non-convex and in
general it is difficult to guarantee global minimum solutions
unless we use methods with higher computational complex-
ity such as grid search followed by Newton descent. Com-
pared to the high computational complexity of ML, and the
poor performance of single frequency methods, SPUMIC of-
fers a intermediate solution which has both good performance
as well as low computational complexity.

5.2. Joint Multipath Interference Cancellation and Phase
Unwrapping:

Figures 6 shows the scene setup for the multipath interference
simulations. The scene is a wedge shaped object and suffers
for multipath interference due to inter-reflections of light. A
sensor pixel receives two contributions, a direct path (shown
in solid arrow) and a delayed and attenuated second path (dot-
ted arrow). Thus the estimated single path depth is an erro-
neous estimate of the true, direct depth value. Our goal is to
recover the estimate of the direct and shorter first path.

Fig. 6. Scene setup for multipath simulations. The closest depth in deep
blue is 3 meters and the farthest depth in red is 6 meters. The vertical and
horizontal dimensions are chosen to be 8 meters.

As shown in Figure 5, the multipath error is high near the
intersection of the two surfaces. The multipath error is
computed as a difference of the ground truth image and the
single path estimated obtained using a single, low modulation
frequency, f = f0 = 11 MHz. The edges of the wedge
suffer from very little multipath interference due to decaying
strength of the diffuse inter-reflections.

Figure 7 shows the performance of SPUMIC for simultane-
ous phase unwrapping and multipath interference cancella-
tion. The goal of SPUMIC is two-fold:
1. Detect the presence of multipath. This is done by com-
puting the singular values of the Hankel matrix as described
in Section 4.2. We found that the ratio of the second singular
value to the first one is a good indicator of the presence of
multipath as well as the amount of multipath. As shown in
Figure 7(left) the ratio of singular values is very well corre-
lated with the amount of multipath error, even in the presence
of noise (SNR = 25 dB).
2. Multipath parameter estimation. Using a simple thresh-
olding scheme on the ratio of singular values, we first detect
multipath and then use Cadzow’s method to denoise the data
before estimating the direct and second path distances and
amplitudes. The corrected distance values as well as the error
image indicate a significant reduction in the multipath error.
The center of the wedge remains a tough area to correct for
multipath interference.

6. DISCUSSION AND CONCLUSION

We presented a new framework for simultaneous phase un-
wrapping and multipath interference cancellation in homo-
dyne TOF cameras. These two problems are two of the main
challenges in improving the imaging quality of TOF cameras.
Several methods have been proposed for individually solving
each of the two problems but no joint framework exists as per
as our knowledge. Moreover, all of the proposed methods typ-
ically either use image or scene priors and are computation-
ally intensive. Our method, SPUMIC, is a pointwise estimator



Fig. 7. (Left) Ratio of the first and second singular value of the Hankel matrix constructed using the correlation samples. Note the high correlation between
this figure and Figure 5 (right). (Center) Unwrapped, direct path depth map computed using SPUMIC. (Right) The absolute error image shows significant
reduction in the multipath error in the reconstructed depth map that contains only the first, shortest path depth values. MSE = 14 dB at an SNR = 25 dB.

that allows both multipath interference as well as phase un-
wrapping at very low computational complexity. However, it
requires more number of captures or samples to be collected.
An increasing number of TOF cameras are supporting multi-
ple modulation frequencies. On such cameras, our technique
will be immediately applicable without requiring any hard-
ware modifications.

Our future work involves more extensive simulations to
validate estimator performance on a variety of scenes. We
will also carry out experiments with data acquired from com-
mercial TOF imagers. On the theoretical side, it is important
to develop robust versions of SPUMIC that may use high res-
olution spectral estimation techniques like matrix pencil, MU-
SIC and ESPRIT. We will also derive Cramér-Rao bounds for
both multipath detection based on our method of using singu-
lar value ratios, and for the estimation problem of computing
multipath parameter values.
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[9] D. Jiménez, D. Pizarro, M. Mazo, and S. Palazuelos, “Mod-
elling and correction of multipath interference in time of
flight cameras,” in Computer Vision and Pattern Recognition
(CVPR), 2012, pp. 893–900.

[10] T. Edeler, K. Ohliger, S. Hussmann, and A. Mertins, “Time-
of-flight depth image denoising using prior noise information,”
in proceedings ICSP, 2010, pp. 119–122.

[11] F. Mufti and R. Mahony, “Statistical analysis of measurement
processes for time-of-flight cameras,” in Proceedings of SPIE,
2009, vol. 7447, p. 74470I.

[12] D.L. Snyder, “Random point processes,” 1975.

[13] M. Reynolds, J. Dobos, L. Peel, T. Weyrich, and G.J. Brostow,
“Capturing time-of-flight data with confidence,” in Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on. IEEE, 2011, pp. 945–952.

[14] P. Stoica and R.L. Moses, Introduction to spectral analysis,
vol. 89, Prentice Hall Upper Saddle River, NJ, 1997.

[15] R. Prony, “Essai experimental–,-,” J. de l’Ecole Polytechnique
(Paris), vol. 1, no. 2, pp. 24–76, 1795.

[16] T. Blu, P.L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot,
“Sparse sampling of signal innovations,” Signal Processing
Magazine, IEEE, vol. 25, no. 2, pp. 31–40, 2008.

[17] P.L. Dragotti, M. Vetterli, and T. Blu, “Sampling moments
and reconstructing signals of finite rate of innovation: Shannon
meets strang–fix,” Signal Processing, IEEE Transactions on,
vol. 55, no. 5, pp. 1741–1757, 2007.


