
Parallelizing User-Defined Aggregations using Symbolic Execution

Veselin Raychev
ETH Zurich

veselin.raychev@inf.ethz.ch

Madanlal Musuvathi
Microsoft Research

madanm@microsoft.com

Todd Mytkowicz
Microsoft Research

toddm@microsoft.com

Abstract
User-defined aggregations (UDAs) are integral to large-scale
data-processing systems, such as MapReduce and Hadoop,
because they let programmers express application-specific ag-
gregation logic. System-supported associative aggregations,
such as counting or finding the maximum, are data-parallel
and thus these systems optimize their execution, leading in
many cases to orders-of-magnitude performance improve-
ments. These optimizations, however, are not possible on
arbitrary UDAs.

This paper presents SYMPLE, a system for performing
MapReduce-style groupby-aggregate queries that automati-
cally parallelizes UDAs. Users specify UDAs using stylized
C++ code with possible loop-carried dependences. SYMPLE
parallelizes these UDAs by breaking dependences using sym-
bolic execution, where unresolved dependences are treated
as symbolic values and the SYMPLE runtime partially eval-
uates the resulting symbolic expressions on concrete input.
Programmers write UDAs using SYMPLE’s symbolic data
types, which look and behave like standard C++ types. These
data types (i) encode specialized decision procedures for effi-
cient symbolic execution and (ii) generate compact symbolic
expressions for efficient network transfers. Evaluation on
both Amazon’s Elastic cloud and a private 380-node Hadoop
cluster housing terabytes of data demonstrates that SYMPLE
reduces network communication up to several orders of mag-
nitude and job latency by as much as 5.9x for a representative
set of queries.

1. Introduction
The explosive growth of data and the need to efficiently
mine them has led to several large-scale data-processing
systems [1, 2, 8, 9, 12, 14, 16, 22, 38, 39]. These systems are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815418

highly optimized to exploit the massive parallelism available
in data-centers while minimizing the disk and network I/O
required to perform a given computation.

The programming interface to these systems support data-
parallel operators, such as map, filter, and groupby, which lets
programmers easily expose the parallelism inherent in their
computation. In addition, these systems allow associative
aggregation functions, such as Sum or Max, that are easy to
parallelize and thus can be heavily optimized. But, these op-
timizations are not usually available for application-specific
user-defined-aggregations (UDAs). Thus, while UDAs in-
crease the expressivity of a system, they do so by sacrificing
its efficiency. For example, when a user specifies counting
as a UDA, rather than using a built-in aggregation primitive,
the resulting runtime can be orders-of-magnitude slower (e.g.
see [3]).

This paper proposes SYMPLE (symbolic parallel engine), a
system for performing MapReduce-style groupby-aggregate
queries that automatically parallelizes UDAs. In particular,
given an aggregation function that iterates over a list of
records with loop-carried dependences, SYMPLE provides
a general mechanism to process chunks of the input list
in parallel despite these dependences. The key idea is to
treat unresolved dependences as “unknown” symbolic values
and execute the UDA symbolically. The resulting symbolic
execution manipulates both the symbolic expressions arising
from these dependences as well as the concrete values from
the input. After processing its input chunk, the execution
returns a symbolic summary that represents its output as a
function of its input dependences. SYMPLE computes these
summaries in parallel for all input chunks and composes them
at a final reduction step to produce an output that matches
a sequential execution of the UDA. We call this notion of
breaking dependences using symbolic execution symbolic
parallelism.

Figure 1 shows an example UDA that a SYMPLE user can
write (barring few syntactic differences — see Section 2.1)
and which the SYMPLE runtime can automatically paral-
lelize. This UDA processes an input list of activity events
belonging to a single user from a timestamp-ordered web
log. The UDA detects those items that a user (i) searched for,
(ii) subsequently read at least ten reviews, and (iii) eventu-
ally purchased. Because of the data dependences in such a

153

1 Aggregate (Key user, vector<Event>& events) {
2 // state read/updated in the loop below
3 SymBool srch_found = false; // is a bool
4 SymInt count = 0; // is an int
5 SymVector<ItemId> ret; // is a vector
6
7 foreach (e in events) {
8 // look for a search event
9 if (!srch_found && is_search(e)) {

10 // start counting reviews
11 srch_found = true;
12 count = 0; }
13
14 // count reviews
15 if (srch_found && is_review(e))
16 count++;
17
18 // on a purchase event
19 if (srch_found && is_purchase(e)) {
20 // report if count > 10
21 if (count > 10)
22 ret.push_back(e.item);
23
24 // look for the next search
25 srch_found = false; }}
26
27 return ret; }

Figure 1. A SYMPLE UDA that reports the items that a user
purchased after searching for the item and reading at least 10
reviews.

UDA, Hadoop (and similar systems) will sequentially exe-
cute this UDA in a reducer, after a map phase that groups
activity-events per user (or per user-item pair, if a user can
simultaneously interact with multiple items).

In SYMPLE, programmers specify their UDAs in imper-
ative C++ code as a loop over a sequence of records with
the key requirement that the code uses symbolic data types,
such as SymInt and SymVector, for all variables with loop-
carried dependences. These data types behave like their corre-
sponding standard C++ data types, such as integer and vector,
but encode specialized decisions procedures necessary for
efficient symbolic execution. In addition, these data types
represent symbolic expressions in a compact canonical form
that can be efficiently serialized and transferred across the
network. Finally, the symbolic data types restrict the opera-
tions to only those that are amenable to efficient symbolic
execution. This provides a useful guide for programmers to
write efficiently-parallelizable UDAs.

1.1 Capabilities
By parallelizing such UDAs using symbolic parallelism,
SYMPLE is able to lift the UDA computation from reducers
to the mappers, just like built-in associative aggregations
like Sum or Max. This lifting optimization is implemented by
most data-processing systems [9, 12, 14, 39] for the built-
in aggregations, and provides two important benefits. First,
the sequential computation at a reducer is now performed in
parallel by multiple mappers. Exposing additional parallelism

is paramount for groupby-aggregate queries with little or
no group-level parallelism (e.g. grouping activity per U.S.
state). Second, the lifting optimization greatly reduces the
amount of data exchanged between mappers and reducers.
This data-shuffle is a critical bottleneck in data-processing
systems [40], making this optimization crucial for good
system performance.

Note that UDAs given to SYMPLE exploit symbolic par-
allelism, and may not be readily parallelizable with other
techniques. For the example in Figure 1, using data-flow anal-
ysis to discover independent loop iterations will not lead to
parallelism in the UDA computation. Further, the UDAs that
SYMPLE can parallelize are not necessarily commutative as
they process an ordered sequence of records. As a result, the
SYMPLE runtime has to maintain the temporal order when
symbolically executing UDAs and when composing symbolic
summaries.

1.2 System
We implement and evaluate SYMPLE in a Hadoop system.
Users of SYMPLE provide a groupby function (similar to
the map function in MapReduce) that parses and groups the
input based on a key, and a UDA specified using the SYMPLE
library. The SYMPLE runtime translates these functions into
appropriate Hadoop map and reduce functions.

To demonstrate the efficacy of SYMPLE, we evaluate
groupby-aggregate queries on temporal data such as click-
logs, process-logs, and telemetry data. We evaluate SYMPLE
on a private 380-node Hadoop cluster that hosts Bing query
logs (300GB) and Twitter tweets (1.23TB), and on a 10-
instance Amazon EC2 cluster housing a 1.2TB dataset of ad
impressions. Our evaluation uses queries that we believe are
representative of what users might ask on these datasets. For
these queries, SYMPLE reduces network communication up
to several orders of magnitude and job latency by as much as
5.9x.

The ideas behind SYMPLE are independent of the underly-
ing data-processing system and thus, are applicable to parallel
databases, Dryad [16, 38], and Spark [39]. Our goal in this
paper is to evaluate SYMPLE on the important application of
mining patterns from temporal data with a query plan that
consists of a groupby followed by an aggregate. Using sym-
bolic parallelism to optimize more sophisticated query plans
is an interesting area of future work that we do not address in
this paper.

2. Symbolic Parallelism
This section describes symbolic parallelism, a general method
for parallelizing user-defined aggregation functions and its
instantiation in the SYMPLE system. We first describe the
SYMPLE programming model.

2.1 SYMPLE Programming model
The input to SYMPLE is a groupby-aggregate query. This pro-
gramming model is similar to the MapReduce programming

154

model [12] except that the input data is a sequence of records
sorted by some field in the record, such as a timestamp. We
will assume that the input data is distributed across several
machines allowing us to exploit I/O parallelism. In addition,
we assume that each distributed chunk has an identifier that
allows the system to reconstitute the input data in the correct
order.

A groupby-aggregate query consists of the following two
functions

• GroupBy: List<R> → Set<(K, List<E>)> takes an
ordered sequence of input records, parses each record to
extract a key of type K, emits an output record of possibly
different type E per input record, and groups these output
records into per-key lists that retain the sorted order of the
input list. This is executed by a MapReduce mapper.

• Aggregate: (K, List<E>) → V takes a key and a
sequence of records and returns an aggregated result of
type V by iterating the input list once. This function is
normally executed by a MapReduce reducer, but the goal
of this paper is to lift most of this computation to the
mappers.

SYMPLE implements the Aggregate function with the fol-
lowing template:

V Aggregate (K key, List<E> input) {
State s; //init aggregation state
foreach (e in input)
// update state based on e
Update(s, e);

return Result(s); }

and requires the user to provide an initial aggregation state,
an Update function that updates the state for each record in
the input list, and a Result function that extracts the result
from the aggregation state. The programmer is responsible
for capturing all the side-effects of the Update function in
the aggregation state and for ensuring that Result is a pure
function. Figure 1 shows an example of an aggregate function
that fits the template above. For ease of exposition, we inline
the Update and the Result functions as in Figure 1, while in
practice, users have to use appropriate C++ lambda functions
to achieve the same effect. Similarly, we inline the State
structure in our examples.

2.2 Breaking dependences
The UDA above has an obvious loop-carried dependence
— every iteration reads and modifies the aggregation state.
Symbolic parallelism breaks this dependence using symbolic
execution [17]. Figure 2 describes the instantiation of sym-
bolic parallelism in SYMPLE. Each mapper processes a file
segment and groups the records into a per-key list. These
chunks for a given key, stitched in the right order, form the
input to a call to the UDA. In the standard MapReduce, a
reducer collects all these chunks and calls the UDA sequen-
tially.

Segment 1 Segment 2 Segment 3

Mapper 1

Partial
Aggregation

GroupBy

Chunk1

Mapper 2

Symbolic
Aggregation

GroupBy

Chunk2

Mapper 3

Symbolic
Aggregation

GroupBy

Chunk3

𝑺𝟎 𝒙 𝒙

𝑭𝟐(𝐱) 𝑭𝟑(𝐱)𝑺𝟏

Aggregation Output = 𝐹3 𝐹2 𝑆1

Data
Dependence

Data
Dependence

Figure 2. Using symbolic execution to break dependence in
aggregation. The latter two mappers symbolically execute
the UDA to compute symbolic summaries F2 and F3. The
aggregation output is composition of these summaries with
the output S1 from the first mapper.

In SYMPLE, however, each mapper executes the UDA on
its chunk (for every key). While the first mapper can start
from the initial aggregation state, all other mappers depend
on the output from the previous mapper, as shown by the
dashed-lines in Figure 2. To break this dependence, these
mappers execute the UDA symbolically from an “unknown”
symbolic state x. In a symbolic execution, variables contain
symbolic expressions and programs manipulate these expres-
sions rather than concrete values. For example, a variable
containing the expression x becomes x+ 1 on an increment.

The goal of each mapper is to create a symbolic sum-
mary of the output aggregation state as a function of its
input x. In the figure, the latter two mappers produce sum-
maries F2(x) and F3(x). These summaries represent a partial-
evaluation [21] of the UDA on the respective chunks. As a
result, evaluating these summaries for a given x does not
require rereading the chunk data. The mappers send the sum-
maries to a reducer which composes them in the right or-
der to produce the output of the aggregation. In the figure,
F3(F2(S1)) is the desired output, where S1 is the output of
the first mapper.

2.3 Challenges
There are several challenges in making symbolic parallelism
feasible, in practice. First, symbolic execution must be ac-
ceptably fast when compared to the concrete execution. At
the minimum, mappers should be able to process data at
disk speeds despite the overheads of manipulating symbolic
expressions. Second, the symbolic expression should be rep-
resented in a compact form for efficient serialization and
transfer across the network.

The third challenge, which has direct impact on the two
challenges above, is the path explosion problem. When a
symbolic execution incurs a branch that depends on the
symbolic input, execution has to proceed for both possible
outcomes. Thus, while a concrete execution executes one

155

path through the UDA, a symbolic execution might explore
a number of paths exponential in the size of the input. Even
worse, in the presence of loops, the number of paths could
be unbounded. One syntactic way to mitigate this latter issue
is to require programmers to avoid loops that depend on the
aggregation state. Nevertheless, the potential of exponential
blowups needs to be controlled.

Finally, in contrast to its applications in verification and
testing, the symbolic execution in SYMPLE has to be both
sound and precise — leaving no room for under- or over-
approximations. Any approximation can cause the output to
deviate from the sequential semantics. While it is interesting
to explore applications that can accept approximate outputs,
we do not consider those design points in this paper.

3. Efficient symbolic execution
This section describes how SYMPLE implements efficient
symbolic execution and the design decisions that let us handle
the challenges described in the previous section.

3.1 Running example
We will use a simple aggregate function below that computes
the maximum of a list of integers as our running example.

SymInt Max(K key, List<int> input) {
SymInt max = INT_MIN; // aggregation state
foreach(e in input)
// Update function (inlined)
if(max < e)
max = e;

return max; }

Obviously, Max is an associative operation and is thus readily
parallelizable. However, this is not apparent when the compu-
tation is presented imperatively as shown above. SYMPLE can
automatically parallelize this function. An interesting side-
effect of this is that SYMPLE programmers no longer have to
distinguish between in-built aggregation functions, such as
Sum or Max, from not-so-readily-parallelizable aggregations,
such as the one in Figure 1.

The symbolic execution in SYMPLE is encapsulated in
symbolic data types, like SymInt, used above. With some
restrictions, programmers can use these data types exactly
like the corresponding standard C++ types, such as integers.
Section 4 describes the implementation of these data types.
Programmers are responsible for encoding the aggregation
state in its entirety with symbolic data types.

Consider a run of the Max function on an input list of nine
elements split into three chunks:

first = [2,9,1] second = [5,3,10] third = [8,2,1]

The first chunk executes concretely as usual and produces
a result of 9. The second and the third chunk, executed in
parallel with the first, are unaware of this outcome and thus
start from a symbolic value for the max variable, say x and y
respectively.

max = 𝒙

< 5?

max = 5

max = 𝒙

max = 𝒙

max = 10 max = 𝒙

< 10?

< 3?< 3?

max = 5

< 10?

max = 10

Infeasible

if (max < 5)

if (max < 3)

if (max < 10)

max = 5;

max = 3;

max = 10;

iter 1

iter 2

iter 3

𝒙 < 𝟓 𝒙 ≥ 𝟓

𝒙 ≥ 𝟓

𝒙 ≥ 𝟏𝟎𝟓 ≤ 𝒙 < 𝟏𝟎

𝒙 < 𝟏𝟎 ⇒ 𝒎𝒂𝒙 = 𝟏𝟎 𝒙 ≥ 𝟏𝟎 ⇒ 𝒎𝒂𝒙 = 𝒙

Figure 3. Symbolic execution of the Max function on an
input list [5,3,10] generating a symbolic summary shown
above.

3.2 Symbolic Summaries
Figure 3 shows the symbolic execution for the second chunk.
In the first iteration, the execution compares max, which
currently holds the symbolic value x, with the first input 5.
Since both outcomes of the branch are feasible, symbolic
execution explores both branches. When exploring the then
branch, we know that x < 5. Symbolic execution adds this
predicate to the current path constraint. A path constraint
determines the conditions on the initial state that forces the
execution along a given path. When x < 5, the Max function
updates the max variable to 5. In the else branch, max remains
as x. These two outcomes are shown in Figure 3 as the
children of the first decision point. The state on the left is
unshaded as max now contains a concrete value 5.

After the first iteration, the two outcomes represent the
following symbolic summary.

x < 5 ⇒ max = 5 ∧
x ≥ 5 ⇒ max = x

In general, a symbolic summary is of the form∧
i

PCi(x)⇒ s = TFi(x)

Here, PCi represents the path constraint and TFi represents
the transfer function that determines the current state s as
a function of the initial input x. This essentially means that
if the UDA is executed with an initial aggregation state that
satisfies PCi(x), the aggregation state after executing the
UDA to the current point will be TFi(x).

A valid symbolic summary has
∨

i PCi(x) = true and
for all i 6= j, PCi ∧ PCj = false. This means that a
summary covers all possible execution paths of the UDA.

3.3 Decision Procedures
The second iteration compares max with 3. The symbolic
execution considers each path constraint in the summary
individually. Under the path constraint x < 5, max has a
concrete value of 5 and we can right away conclude that the

156

branch is not taken without any symbolic reasoning. Figure 3
emphasizes this by showing only one outcome for branches
on concrete paths.

The more interesting case is the path constraint x ≥ 5,
under which max = x is symbolic. On the branch x < 3,
the symbolic execution should check the feasibility of the
two branch outcomes: x < 3 and x ≥ 3 for the current path
constraint. The then branch is not feasible while the else
branch is. Thus, the symbolic execution has to only execute
the latter path.

In general, when exploring the path constraint PC(x) in
which the current aggregation state is s = TF (x), on a
branch with a predicate P (s), the symbolic execution needs
to check the feasibility of PC(x)∧P (TF (x)) and PC(x)∧
¬P (TF (x)). Doing so and pruning infeasible paths from
execution is crucial in limiting the path explosion problem. To
make such feasibility decisions, we need decision procedures
that can reason about symbolic constraints.

One could potentially use decision procedures imple-
mented in general purpose theorem provers [11] here. How-
ever, calling into an external prover several times for every
input record will be unacceptably slow even with recent ad-
vances in these provers. Instead, SYMPLE encodes special-
purpose efficient decision procedures in symbolic data types.

3.4 Canonical form
Each data type maintains path constraints in an easy-to-reason
canonical form. For instance, the SymInts only maintain
constraints of the form lb ≤ x ≤ ub for some constants
lb, ub. This canonical form enables deciding the feasibility
of branches in (small) constant times. In addition, they
recursively enable efficient simplification of path constraints
into canonical forms. For instance, in our running example,
the path constraint on the else branch in second iteration is
x ≥ 5 ∧ x ≥ 3. This can be simplified into x ≥ 5. Finally,
the canonical forms enable efficient serialization of symbolic
constraints.

To maintain the constraints in canonical form, each sym-
bolic data type restricts the operations allowed on variables
of that type. For instance, SymInts do not allow comparison
with another SymInt. This is a careful trade-off between ex-
pressivity of SYMPLE programs and the efficiency of decision
procedures.

Going back to our running example, the path constraint
simplification, along with the infeasibility of the then branch
results in the following summary after the second iteration.

x < 5⇒ max = 5 ∧ x ≥ 5⇒ max = x

which is the same as the summary after the first iteration.

3.5 Path merging
The third iteration compares max with 10. As before, the
concrete case of x < 5 is straightforward — max with a
current value of 5 is updated to 10. For the second path

constraint of x ≥ 5, the execution needs to explore both
branch outcomes, resulting in the following summary.

x < 5 ⇒ max = 10 ∧
5 ≤ x < 10 ⇒ max = 10 ∧

x ≥ 10 ⇒ max = x

as shown in Figure 3.
The first two path constraints produce the same transfer

function max = 10. This means that the fate of symbolic
execution from this point will be the same for input states
that satisfy these two path constraints. Thus, we can avoid
redundant exploration by merging these two paths. Doing
so is important to alleviate the path explosion problem. In
general, if the summary contains PC1(x)⇒ s = F (x) and
PC2(x) ⇒ s = F (x), the path constraints can be merged
into

(PC1(x) ∨ PC2(x))⇒ s = F (x)

Such a merging is useful only if the disjunction of path
constraints can be converted into the canonical form. In the
running example, the decision procedure in SymInt is able
to represent x < 5 ∨ 5 ≤ x < 10 simply as x < 10. This
results in the following summary.

x < 10 ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

The final summary tells us that if the input to the second
chunk x is less than 10, then the output of Max is 10, else it
is x. Of course, we would have come to the same conclusion
if we had known that maximum is an associative function
and that the maximum of a list is the maximum of the partial-
maximum of its chunks.

3.6 Summary composition
Using arguments similar to the one above, we can see that
symbolically executing the third chunk with an initial value
of y will produce the summary

y < 8 ⇒ max = 8 ∧
y ≥ 8 ⇒ max = y

Let S2(x) and S3(y) respectively refer to the summary of the
second and third chunks. The first chunk runs concretely and
produces a value of 9. In order to produce the outcome of
the entire computation, SYMPLE applies the summaries in
the order of the input chunks S3(S2(9)) = 10. Note, if the
summaries are sound and precise, this results in exactly the
same output as running the computation sequentially.

In general, if C1 is the concrete output of the first chunk,
and S2, S3, ...Sn are the symbolic summaries of the remain-
ing n − 1 chunks, the ouptut of the computation is given
by

Sn(. . . (S3(S2(C1))))

This evaluation can be done sequentially at the reducer.

157

Alternately, one can further parallelize this computation as
function composition is associative. That is, rather than com-
pute S3(S2(9)), one can first compose the two summaries
S3 ◦ S2 and apply the composed function to the output of
the first chunk. To do this composition, we start by renaming
max in the second-chunk summary to y, as the output of the
second chunk is now the input to the third chunk. Now, we per-
form a cross-product of the conjuncts in the two summaries
and eliminate infeasible paths. For example, the first conjunct
in the second-chunk summary has an outcome y = 10, which
when composed the second conjunct in the summary above
produces the constraint x < 10 ⇒ max = 10. In effect,
S3 ◦ S2 results in the following summary

x < 10 ⇒ max = 10 ∧
x ≥ 10 ⇒ max = x

4. Symbolic data types
Symbolic data types maintain path constraints in a canonical
form which in turn enable efficient decision procedures.
Programs manipulate these data types almost exactly like they
manipulate standard types such as integers. For instance, the
Update function in Figure 1 works as stated with SymBool,
SymInt, and SymVector data types and the appropriate
operator overloading. These operators provide a restricted set
of operations over their corresponding standard data types in
order to allow efficient symbolic execution. For instance, the
SymInt data type does not allow division operators.

4.1 Symbolic enumerations
The SymEnum is a symbolic version of C++ enum class that
supports checking equality or inequality with and assignment
to integral constants. Users can use SymEnums to represent
any state with bounded values.

Canonical Form A SymEnum variable v maintains its cur-
rent symbolic summary in the form:

x ∈ S ⇒ v = (bound ? c : x)

That is, an instance of SymEnum contains a bit-vector S, a
Boolean variable bound, and an integer constant c. When
bound is true, the variable has the concrete value c. Other-
wise, v is symbolic and can contain any value in S. SymEnum
overloads the equality and inequality operators that take an
integer as an argument. In particular, to maintain the canon-
ical form above, two SymEnums cannot be compared. The
value of a SymEnum is bound on an assignment to a constant.
Once bound, SymEnums are as fast as a C++ enum but for the
bound check.

Decision Procedures When a symbolic SymEnum which
can take any value from a set S is compared with a constant
c, there are two possible paths corresponding to the two
sets S ∩ {c} and S/{c}. If either of these sets is empty the
corresponding path is not feasible. This can be determined
efficiently from the bit-vector.

Merging Path Constraints Two path constraints x ∈ S1

and x ∈ S2 can be merged into x ∈ S1 ∪ S2.

4.2 Symbolic Booleans
Note that SymBool is an instance of SymEnum over the
bounded set true, false with the appropriate operator
overloading with boolean constants.

4.3 Symbolic integers
The SymInt is a symbolic version of C++ integer data type
(parametrized with the desired bit length) that supports ad-
dition, subtraction, multiplication, and standard comparison
operations. A conscious design decision is to only allow oper-
ations between a SymInt and a concrete integer. In particular,
the type system prevents adding two SymInts or comparing
them. This ensures that all the constraints generated during
symbolic execution contain a single symbolic variable. This
greatly simplifies the decision procedure as otherwise SYM-
PLE would have to call into a general-purpose integer-linear
solver with worst-case exponential time complexity. In con-
trast, SymInt constraints can be decided in (a small) constant
time.

Canonical Form Each SymInt variable contains four val-
ues (lb, ub, a, b) interpreted as follows. If x is the initial
symbolic value of this variable, under the path constraint
lb ≤ x ≤ ub, the current value of the variable is a∗x+b. Op-
erations that update variable update a and b appropriately. For
example, incrementing a SymInt amounts to incrementing b.

Decision Procedures When comparing a SymInt with
another constant, the two outcomes split the interval [lb, ub]
into two (possibly empty) intervals. For instance, we know
that SymInt s = (lb, ub, a, b) ≤ c holds whenever a.x+b ≤
c. Assuming a > 0 (the other case is similar), this implies a
constraint x ≤ b(c− b)/ac. Calling this new bound nb, we
have two possible intervals — [lb, nb] under which s ≤ c
holds and (nb, ub] under which s ≤ c does not hold. The
symbolic execution has to explore those outcomes in which
the corresponding intervals are not empty.

Merging Path Constraints If the symbolic summary con-
tains two SymInt symbolic data types which have overlap-
ping bounds and the same transfer function, SYMPLE merges
those two SymInts into a one such that the lower bound is
the min of the two and the upper bound is the max of the two.

4.4 Black-box predicates
There are instances where programmers need the flexibility
to evaluate complex predicates on the aggregation state and
for which symbolic reasoning is impossible or not practical.
SYMPLE provides a SymPred data type for this purpose. A
SymPred<T> is essentially a place holder for a, possibly
symbolic, value of type T with two operations: (a) assigning a
value of type T and (b) evaluating a pre-specified but arbitrary
“black-box” predicate between a SymPred<T> and T.

158

Consider the following example, where the programmer
wants to split a sequence of GPS events into sessions, where
each session is defined as a contiguous sequence in which ev-
ery event is within some bounded distance from the one prior.
The function CountEventsInSessions below breaks the
input into sessions by remembering the previously seen
event and computing its distance from the current event.
The evalPred function performs this check by calling the
distanceLessThanBound function, provided as an argu-
ment to the constructor of prev.

bool distanceLessThanBound(GPSCoord sym, GPSCoord
val) {

// check if distance between sym and val
// is less than a given bound
}

CountEventsInSessions(K users, List<Event> events) {
SymInt count = 0;
SymVector<SymInt> counts;
SymPred<GPSCoord> prev(distanceLessThanBound);

foreach(event in events) {
if (prev.evalPred(event.gpsCoord))
// same session
count++;

else {
// reset;
counts.push_back(count);
count = 0; }

prev.setValue(event.gpsCoord); }
return (users, counts); }

SymPreds allow the parallelization of this code by break-
ing the dependence on prev. Initially, prev represents an
unknown symbolic GPSCorrd value. On the first event, this
code requires computing the distance between a symbolic
value and a concrete value, a nonlinear computation that is
not amenable to symbolic reasoning.

Instead, SYMPLE blindly explores both outcomes of the
branch. Unfettered use of such SymPreds can obviously lead
to exponential path explosion. But an important point to note
here is that, in the program above, prev is assigned to a
concrete value in both branches when processing the first
event. Subsequent events can simply be processed concretely.
As a result, there can at most be a path blowup of two.

This pattern of windowed dependence, where the UDA
only depends on a small number of previous events, is fairly
common. As such, for these queries, SymPreds provide
powerful expressiveness without exponential path blowups.
All the queries we evaluate in this paper use a window of size
one.

4.5 Symbolic Aggregates
Symbolic Vector Inspired by reducer HyperObjects [13]
in Cilk, SYMPLE implements a SymVector<T>, a vector
of a possibly symbolic type T that can only be appended
to. SymVectors are useful for capturing the output of a
UDA computation. Like reducer HyperObjects, each sym-
bolic UDA computation appends to a local vector which is

then stitched in the right order at summary composition. Ad-
ditionally, a SymVector symbolically evaluates its elements
on a composition, converting them to concrete values when
appropriate. For instance, if a UDA appends a symbolic count
variable in the vector, say x+ 5, then later on a composition
that resolves x to a concrete value, the vector concretizes all
elements that depend on x.

Symbolic Struct Programmers can create symbolic structs
that contain fields of other symbolic data types. These structs
can themselves be used as symbolic data types. The one
implementation complexity here is that with lack of reflection
support in C++, it is not possible to cleanly enumerate all
fields, say for serialization, without programmer support. In
SYMPLE, the programmer provides a list_fields function
that returns a tuple of all fields with symbolic data types.

Other data types In addition to these data types, SYMPLE
exposes a C++ interface for specifying new data types. This
provides a modular way to increase the expressivity of
SYMPLE. Of course, these user-provided data types should
(i) have a canonical form, (ii) implement efficient decision
procedures, (iii) implement a merge function so as to enable
efficient representation of symbolic summaries, and (iv)
serialization functions to enable network transfers.

5. Implementation
This section describes how SYMPLE implements the ideas
discussed above.

5.1 Systematically exploring paths
Given an aggregation state specified as a symbolic data type,
the current concrete input, an update function for updating
this state on each input, and a result function for extracting
the return value of the UDA, SYMPLE repeatedly executes
the update function per input record with the intention that
each execution takes a different feasible path.

SYMPLE implements this systematic exploration as fol-
lows. In each run, SYMPLE maintains a choice vector of
branch outcomes that represents a feasible path through the
program. Considering the running example of Max from Sec-
tion 3.1, and assuming that the update function is unrolled
three times, then Figure 3 shows the three feasible paths pos-
sible for a single invocation of the update function. We can
encode the three paths as a sequence of binary outcomes:
0, 10, 11, where each bit represents a branch at which both
outcomes are feasible, a 0 represents the execution on a then
branch, 1 represents the execution on a else branch.

The goal of the symbolic execution is to explore this space
lexicographically. Starting from the first run with an empty
choice vector, each symbolic data type that incurs a choice at
a branch uses the next bit in the choice vector to determine the
path to follow. After exhausting all bits in the vector, the data
types append a 0 to the vector and take the then branch. At
the end of the run, SYMPLE “increments” the choice vector

159

by popping 1s at the end of the vector and converting the last
0 to a 1. This is lexicographically the next path to explore.
This process repeats till the choice vector has no 0s.

SYMPLE does this exploration by judicious use of operator
overloading and copy constructors. In particular, SYMPLE
requires all symbolic data types overload comparison opera-
tors (i.e., those which can incur a choice) such that they are
able to lexicographically explore all paths through a UDA.
As a consequence, SYMPLE’s symbolic exploration is just a
library and does not require any compiler support.

5.2 Dealing with path explosion
Controlling the number of paths explored during symbolic
execution is crucial to the efficacy of SYMPLE. As discussed
above, each symbolic data type alleviates path explosion by
pruning out paths that are provably infeasible and by merg-
ing paths that have the same transfer function. In addition,
SymEnums and windowed SymPreds bound the explosion
possible on variables of those types. Nevertheless, path ex-
plosion is possible with SymInts.

SYMPLE attempts to perform merging as soon as the
number of paths exceeds a previously reached maximum
for the number of paths. For example, in the max function
as in our example in Figure 3, every time the number of
paths reaches three, SYMPLE looks for merge candidates and
reduces the paths down to two.

SYMPLE contains two other mechanisms for handling path
explosion. First, if the number of paths explored on a single
input exceeds a maximum bound, then SYMPLE halts with
a warning that the UDA potentially has a loop that depends
on the aggregation state. Second, as the UDA is processing
inputs, if the total number of symbolic paths exceeds a bound
(currently set to 8), then SYMPLE uses this to trade paral-
lelism for sequential efficiency. Rather than proceed with
the current symbolic execution, SYMPLE stores the current
summary and restarts the symbolic execution from a fresh
“unknown” symbolic variable. This way, each mapper, rather
than producing a single summary, produces multiple sum-
maries that have to composed at the reducer. This behavior
serves two purposes. First, SYMPLE dynamically identifies
chunks of the input where achieving symbolic parallelism is
easy. Second, it provides a fallback to no parallelization in
the worst case when the UDA has no symbolic parallelism.

5.3 SYMPLE C++ library and verification of user code
The current version of SYMPLE relies on the C++ type
checker to detect a large number of possible errors, however
it relies on the user to provide code in the following pattern:

struct State {
// SymTypes
...
tuple<...> list_fields() ...

} state;

int main(int argc, char** argv) {
MapReduceMain(

... // input, output, groupby and
, // configuration parameters
[](const GroupByKey& key,

const InputRecord& record,
State* state) {
... // code for UDA:

});
}

The user-provided lambda function is passed to a function
pointer and thus cannot capture local variables. Instead, SYM-
PLE assumes that all the state is stored in the State struc-
ture and the user does not modify any global variables in
the lambda function. Additionally, SYMPLE relies on a user-
provided list_fields method for the State structure that
produces a tuple of references to all the fields in the structure.
This enables SYMPLE to serialize the State structure with-
out compiler support. If a future versions of C++ supports
static reflection, this function would no longer be necessary.

Then, using the C++ type system and the list_fields
method, SYMPLE statically checks that only Sym types are
used in the State structure and that all used operations on
symbolic types are valid methods.

5.4 Mapping SYMPLE to MapReduce
SYMPLE does not include its own framework for distributed
processing, but relies on an existing MapReduce implemen-
tation such as Apache Hadoop. The MapReduce framework
takes care of groupby parallelism and SYMPLE parallelizes
within one group using symbolic parallelism. SYMPLE treats
the records within a group as one single sequence coming in
the order as in the input data.

Since MapReduce treats groupby records as a set instead
of a sequence, SYMPLE alters every input record R to be a
triple (mapper_id, record_id, R) to keep track of the order
of the input records. Here mapper_id ∈ N is a sequential
index of the map task, record_id ∈ N is a sequential index
of the record within the file processed by a map task. Then,
for each group in the groupby, a SYMPLE map task sends
a set of records of the type (mapper_id, record_id, S) to
the MapReduce shuffle phase. Here mapper_id is the map
task id, record_id is the index of the last record processed
by the mapper for the group and S is the symbolic summary.
In the shuffle phase, the records of each group are sorted
lexicographically by mapper_id and record_id which
orders the symbolic summaries according to their order in
the input data. Finally, SYMPLE uses the reduce phase to
combine the symbolic summaries for each group.

6. Evaluation
This section evaluates the efficacy of SYMPLE on three
scenarios: (a) on a multi-core machine to study the CPU
overheads of symbolic execution and ensuring that SYMPLE
can scale on multiple cores without being constrained by the
memory bandwidth, (b) on a 5-to-10-node-instance private
Hadoop cluster on Amazon Elastic MapReduce (EMR) to

160

study the reduction in data shuffled across machines and the
reduction in end-to-end job latency, and (c) on a 380-node
shared Hadoop cluster to study the scalability of SYMPLE on
a large cluster.

6.1 Data and queries
We used several datasets for evaluation: github, which
contains repository operations between February 2011 and
September 2014 (419GB) 1, an Amazon Redshift benchmark
data 2 - a 1.2TB dataset representing 4 months of ad im-
pressions, Bing, which contains 1.9 billion queries from
the Bing search engine (300GB), and Twitter, which con-
tains all Tweets in a 24 hour period (1.23TB). The Bing and
Twitter data sets are hosted in the 380-node cluster and are
not allowed to leave this cluster for privacy and legal reasons.
Thus, we only use the github and Redshift data sets for the
multi-core and EMR scenarios.

Table 1 lists 12 queries with UDAs that mine temporal
patterns in the data sets above. These queries are inspired by
real-world scenarios, such as finding partial service outages,
usage patterns, and spam detection. We took best efforts
to replicate the complexity of UDAs that arise in practice.
For instance, we are aware of specialized systems that are
designed to pre-process and index query logs for efficiently
processing queries similar to the Bing queries in Table 1.
By making such queries efficient in Hadoop, our hope is
that SYMPLE would obviate the need for such specialized
solutions in the future. Note for privacy reasons, we do not
show the number of groups for the proprietary Bing and
Twitter queries (beyond B1, which has just 1 group).

The symbolic data types presented in this paper are suffi-
cient to express all the queries in Table 1. This should not be
surprising as the design of these data types coincided with
our evaluation of SYMPLE on these queries. However, we do
believe that current set of symbolic data types are expressive
enough for useful UDAs outside of our evaluation set. Our
queries were relatively easy to write and range anywhere
from 40 to 100 lines of C++ code.

We also made an explicit choice to pick queries and
datasets with different number of groups in the groupBy.
The amount of groupby parallelism affects the efficacy of
symbolic execution. At one extreme, when the query has a
single group (B1), symbolic parallelism is the only source
of parallelism. At the other extreme, for queries with large
number of groups (B3, T1), it is likely that each mapper
processes at most one event per group and SYMPLE has little
opportunity for improvement.

6.2 Multi-core evaluation
The primary motivation for evaluating the multi-core scenario
is to study the performance implications of the SYMPLE
symbolic execution in a setting that excludes the overheads

1 http://githubarchive.org
2 https://github.com/hapyrus/redshift-benchmark

0

500

1000

1500

2000

2500

3000

G1 G2 G3 G4 R1 R2 R3 R4

Lo
ca

l T
h

ro
u

gh
p

u
t

(M
B

p
s)

Sequential

SYMPLE (1 Mapper)

SYMPLE (2 Mappers)

SYMPLE (4 Mappers)

MapReduce (1 Mapper)

MapReduce (2 Mappers)

MapReduce (4 Mappers)

Figure 4. Throughput on a multi-core machine.

of the Hadoop framework. We also used the single-machine
version of SYMPLE to identify and fix performance problems
during development.

Our evaluation seeks the answer to the following ques-
tions.

• How much CPU overhead does symbolic execution add
over concrete execution?

• Can SYMPLE process data at the speeds of a commodity
hard disk?

• Do the memory overheads of symbolic execution cause
SYMPLE to hit the memory-bandwidth bottleneck?

To this end, we study the following single-machine imple-
mentations:

Sequential: Given input data and a query, this baseline
reads data sequentially and executes the UDA concretely.

Local MapReduce: This simulates a single-machine MapRe-
duce with multiple processes and pipes. Each mapper process
reads a part of the input, performs groupby, and pipes the
result to reducer processes. We use Unix sort to sort mapper
results by groupby key and merge (sort -m) to per-key lists.
Each mapper is optimized to only send input record fields
that are used by the UDAs.

Local SYMPLE: implements SYMPLE on the single-machine
simulation of MapReduce discussed above. Each mapper
groups the input as per the groupby key and additionally
executes the UDA symbolically on the output. The resulting
symbolic summaries are sorted, merged (via sort) and sent
to a single reducer process.

For this evaluation, we used a single 4-core Core i7 4770K
processor workstation, with 16GB RAM, 256GB of SSD
disk and running 64-bit Ubuntu 14.04. As a primarily goal of
this experiment is to determine if SYMPLE can symbolically
execute faster than the disk, we restrict queries to 4.45GB of
github’s data and 3.19GB of the RedShift Benchmark data
that fit in memory. Before reporting numbers, we read the
data to keep it in cache and remove the effect of disk I/O.

161

http://githubarchive.org

ID Description # Groups Sym Types Used
Enum Int Pred

419 GB List of GitHub operations on repositories from Feb 2011 to Sep 2014.
G1 Return all repositories with only push commands 12M y
G2 All operations on a repository directly preceding a delete operation 12M y
G3 Number of operations executed on a repository between pull open and close 12M y y
G4 The time between branch deletion and branch creation in a repository 22M y y
300GB of Query Logs from the Bing search engine containing 1.9 billion queries
B1 Outages: more than 2 minutes with no successful query by any user 1 y
B2 Outages per geographic area of the query (local outages) * y
B3 Number of queries in a session per user (≤ 2 minutes between queries) * y y
1.23TB of logs from Twitter that represent all tweets in a 24 hour interval
T1 Spam learning speed — no. queries not marked as spam, followed by at

least 5 queries marked as spam per hashtag
* y y

1.2TB of ad impression logs from RedShift benchmark
R1 Number of impressions per advertiser 10K y
R2 List of advertisers operating only in a single country 10K y y
R3 Cases for advertiser when their ads were not showing for more than 1 hour 10K y
R4 Lengths of runs for which only a single campaign by an advertiser is shown 10K y y

Table 1. A summary of the datasets and queries performed on each dataset

Figure 4 summarizes these in-memory experiments. Each
bar gives the throughput (MB/s) of a particular configuration
on eight queries. The sequential baseline is fast: running at
least 6× faster than a commodity disk (100 MB/s). The SYM-
PLE (1 mapper) bars represent two overheads: the symbolic
execution overhead (as the only mapper computes symbolic
summaries) and the overhead of inter-process communication
through pipes. Both together result in an overhead of 4% to
35% for the eight queries, with an average of 22%. This is
a conservative estimate of the cost of symbolic execution.
Moreover, for all of the queries, Local SYMPLE scales with
the number of mappers, suggesting that the computation is
not memory bound.

Finally, the Local MapReduce implementation demon-
strates poor throughput (3.6× lower throughput than Local
SYMPLE with 4 mappers, on average). The reason is that
Local MapReduce has significant overhead in shuffling large
amounts of data before sending it to reducers, which domi-
nates the runtime; the SYMPLE runtime lifts the UDA into
mappers and thus significantly reduces this overhead. These
numbers suggest that symbolic parallelism could potentially
benefit UDA optimizations for in-memory databases and
streaming engines.

To summarize, Local SYMPLE is significantly faster than
a commodity hard disk implying that the cost of computing
symbolic summaries will not be the bottleneck in a larger
Hadoop cluster. Further, SYMPLE demonstrates good scaling
(i.e., by adding more mappers), which implies the added
cost (both in CPU utilization and memory consumption)
of symbolic execution pays for itself when considering the
significant savings it incurs by lifting the UDA to mappers,
and thus reducing the overheads of shuffling.

6.3 Elastic MapReduce evaluation
When dealing with large amounts of data, computation often
has to go to where the data are. This section evaluates the
efficacy of SYMPLE on Amazon Elastic Mapreduce 3—a
managed Hadoop cluster that runs on top of dynamically
allocated virtual machine instances. We evaluate on data
stored in Amazon S3 4—a scalable storage system that holds
(potentially large) data objects also accessible via Hadoop
file system bindings. Elastic MapReduce lets a user allocate
virtual machines only for the duration of the computation and
thus shorter computation directly reduces the monetary cost
of the job. As a consequence, end-to-end latency is a critical
metric and we show that SYMPLE reduces job latency.

Data We report numbers for two of our datasets that
we could use in the Amazon Elastic MapReduce setting
– github and RedShift Benchmark data. Both datasets con-
sist of a sequence of relatively large (around 1KB) records
with various fields, which means that most queries will read
through the datasets and discard most of their fields.

To also include testing results on data that includes fewer
fields or is stored in a fashion similar to a columnar storage,
we included two variants of the RedShift data. The first
(complete) variant includes all fields of all records, while
the second (condensed) variant only keeps the four columns
we use – advertiser, campaign, timestamp and country. This
condensed variant reduces the dataset size to 50GB and
avoids scanning through columns that are then discarded.
We perform queries R1–R4 on the variant with the complete
RedShift data, and queries R1c–R4c on the condensed variant

3 http://aws.amazon.com/elasticmapreduce/
4 http://aws.amazon.com/s3/

162

0

5

10

15

20

25

30

35

G1 G2 G3 G4 R1 R2 R3 R4 R1c R2c R3c R4c AVG

En
d

-t
o

-e
n

d
 L

at
e

n
cy

 (
m

in
s)

MapReduce SYMPLE

Figure 5. Amazon EMR end-to-end job latency.

of the data. All the input data is stored in Amazon S3 in a
gzipped format.

Configuration For our experiments, we used m3.xlarge in-
stances, each with 4 virtual CPUs, 15GB RAM, and 2x40GB
of SSD storage. A virtual CPU of these instances corresponds
to a thread of a 2.5GHz hyper-threaded Xeon CPU. We used
10 instances for the complete version of the RedShift dataset,
and 5 instances for the condensed version of RedShift dataset
and for the github experiments.

For our experiments, we used Amazon Hadoop 2.4.0 and
we set the number of reducers to the number of machines.
To speed up data processing, we implemented a pipeline that
reads the data directly from Amazon S3 via http, decom-
presses it and streams it to the C++ map and reduce tasks,
thus avoiding double-parsing of the data both by Hadoop
and our pipeline. Apache Hadoop then takes care only of
the data shuffling and sorting and then streams it into our
reducer tasks. Our whole pipeline is very efficient and we
checked that it manages to saturate the inbound network of
the machine instances. These improvements are effective for
our baseline as well as SYMPLE.

Baseline MapReduce: is a hand-optimized Hadoop base-
line. The groupby executes in the mapper while the UDA
executes in the reducer. The groupby only emits fields of the
input record that are used in the UDA.

SYMPLE implements the SYMPLE algorithm wherein both
the groupby and UDA execute in the mapper (the UDA sym-
bolically) and a reducer composes those symbolic summaries
to produce the jobs output.

Results We summarize the results of our experiments in
Figure 5 and Figure 6. A bar in Figure 5 gives the runtime (in
minutes) for our baseline and SYMPLE on the three datasets.
For the G1–G4 and R1–R4 queries, the baseline MapReduce
takes between 15% and 45% longer to execute than the
SYMPLE MapReduce. On the other hand, for the R1c–R4c
queries, the speed-up from using SYMPLE MapReduce is
between 2.5× and 5.9× compared to the baseline.

Note that when running on the RedShift Benchmark
condensed data, the speed of both our baseline and SYMPLE

1

10

100

1000

10000

100000

G1 G2 G3 G4 R1 R2 R3 R4 R1c R2c R3c R4c AVG

Sh
u

ff
le

 D
at

a
Si

ze
 (

M
B

)

MapReduce Seq*SYMPLE

Figure 6. Amazon EMR shuffle data reduction. Note the log
y axis.

are higher that on the complete RedShift data. This is because
each mapper reads significantly less from Amazon S3. As
a consequence, the runtime is dominated by reading data
from S3 (i.e., both the baseline and SYMPLE saturate the
connection between S3 and the compute cluster), which
dampens SYMPLE’s improvement over the baseline. However,
on the condensed variant of the data, SYMPLE provides a
significant runtime savings as the connection to S3 is no
longer a bottleneck: SYMPLE is over 5× faster for the R1c,
R2c and R4c queries and 2.5× for R3c. We profiled R3c and
found its runtime is dominated by C standard lib datetime
parsing, which slows all versions of the query. In other
words, symbolically executing a UDA was not the bottleneck
(parsing the data was).

The overall reason for such large speedups is because
SYMPLE significantly reduces the amount of data shuffled
from our map tasks to the reduce tasks. We summarize these
results in Figure 6. The baseline MapReduce shuffles between
7.7GB and 10.3GB for the github dataset and between
28.5GB and 45.6GB of data for the RedShift Benchmark
dataset. The SYMPLE MapReduce reduces that data transfer
significantly. For the github dataset, where the queries
also have a lot of groupby parallelism, the savings are
between 4 and 8 times. In the RedShift data queries, there
are much fewer groups the bandwidth savings are around two
orders of magnitude. These large communication efficiency
improvements do not necessarily translate to speed-ups due to
other overheads such as data reading, decompressing, parsing,
etc.

6.4 Large cluster evaluation
The prior two sections demonstrate (i) SYMPLE runs faster
than a commodity disk and (ii) SYMPLE significantly reduces
network bandwidth by lifting a UDA into a mapper, and thus
saving on an expensive shuffle. This section demonstrates
SYMPLE generates code which scales on a large and shared
Hadoop cluster which houses interesting commercial data.
We evaluated SYMPLE on a data-center with 380 machines,
each with 16 Intel Xeon CPU E5-2450L cores running at

163

0

20

40

60

80

100

120

140

G1 G2 G3 G4 B1 B2 B3 T1 AVG

C
P

U
 U

sa
ge

 (
x1

0
0

0
 s

e
cs

)

MapReduce SYMPLE

Figure 7. CPU usage for running 8 queries on a 380-node
Apache Hadoop cluster.

0.01

0.1

1

10

100

1000

10000

100000

1000000

G1 G2 G3 G4 B1 B2 B3 T1 AVGSh
u

ff
le

 D
at

a
Si

ze
 (

M
B

)

MapReduce SYMPLE

Figure 8. Amount of shuffled data for executing 8 queries
on a 380-node Apache Hadoop cluster.

1.80GHz and 192GB of RAM, running Windows Server 2012
Data-center and HortonWorks Hadoop 2.4. We determine
the number of mappers by the number of files containing
the input (github uses 405 mappers, Bing uses 199, and
Twitter uses 501). We set the number of reducers to 50 to
ensure jobs are not limited by the latency of any one reducer.

In this setting, we are using a shared, batching, cluster and
the majority of the time is taken in scheduling our job in the
cluster and performing tasks that are uncontrollable by us.
Once the job is scheduled, it often (except for some baselines)
completes in a few minutes. We expect such clusters to be
heavily used by multiple concurrent jobs using the resources
of the machines. Thus we use the overall CPU usage and
the amount of data used in a shuffle as our key metrics, as
reducing both helps maintain the health of the overall cluster.

CPU Resources A bar in Figure 7 (a) provides the CPU
resources used for each of our 8 queries across our two differ-
ent implementations. For the github queries, we observed
around 2× savings in CPU usage by switching from standard
MapReduce to SYMPLE. There is very high variance in the
other queries: B1 and B2 get significant speed-up from using
SYMPLE, T3 gains 30% and there is no improvement from
using SYMPLE for the B3 query.

In our experiments, we also observed latency benefits in
using SYMPLE. For example, in the most extreme case of
query B1, all input sessions are sent to only one reducer
since there is no groupby parallelism for this query. In this
case, the baseline MapReduce computation requires 4.5 hours.
In contrast, SYMPLE completed only in 5 minutes and 30
seconds.

Efficient Hadoop by minimizing data movement Like in
other scenarios, the main savings for SYMPLE over baseline
MapReduce come from reduced traffic. A bar in Figure 8
gives the total bandwidth consumed between the map and
reduce phase for each of the 8 queries. In the corner case
of B1 with no groupby parallelism, the bandwidth savings
are extreme – instead of sending all records parsed by each
mapper, the SYMPLE mappers send to the reducers one single
record. Similarly high savings are observed in the B2 query,
where each mapper sends only one symbolic summary per
geographic area. The least savings are observed for the B3
and T1 queries where the records are grouped by user or
hashtag and the mappers must still send a massive number of
records to the reducers.

6.5 Scalability
For almost all queries we tried, SYMPLE provided speed
and bandwidth saving during data processing. The only
query with no improvement in our evaluation was B3. Upon
deeper inspection, however, we have found that there was
no inefficiency in the symbolic computation of UDA, but
the problem was the groupby function. In the B3 query, we
group the records first by user, which leads to a high number
of groups and leads to little opportunity for the SYMPLE
symbolic summaries to save bandwidth. On the other hand, all
other queries in our evaluation have a groupby function that
contains a sufficiently high number of records per group and
thus parallelizing the UDA computation leads to performance
improvements.

7. Related work
This section discusses works most related to this paper.

Parallel execution frameworks This paper is directly moti-
vated by the success of parallel execution frameworks [1, 2, 8–
10, 12, 14, 16, 22, 26, 38, 39] for processing big data. These
frameworks require the user to specify data-parallel computa-
tion but handle parallelization, locality, fault tolerance, and
load distribution automatically. The goal of this paper is to in-
crease the expressivity of these frameworks by allowing com-
putation, such as groupby-aggregate with UDA queries that
are not efficiently parallelizable. For example, Dremel [26]
and Trill [10] both provide fast execution of SQL like queries
wherein fields are stored in an efficient columnar store. To
enable parallelism, these systems only parallelize a class
of known SQL aggregators. The insights behind SYMPLE,
namely breaking dependencies through symbolic summaries,

164

could enrich both Dremel and Trill’s expressivity by letting
them parallelize across arbitrary SQL aggregators. Likewise,
Pig [14] and Pig Latin [28], Spark [39], FlumeJava [9] all
provide a lifting operation that pushes aggregations into maps,
however, only for associative functions (most often only for
built-in functions). Symbolic parallelism increases the class
of UDAs that can use the lifting optimization.

Analysis of UDAs Yu et al. [38] apply commutativity anal-
ysis to systems like MapReduce which offer grouped aggre-
gation on large data as a primitive and show how and when a
UDA can be lifted to earlier mappers [37]. They demonstrate
how DryadLINQ can lift UDAs composed of multiple built-in
associative and commutative functions (i.e., sum and max).
Liu et al. [20] build on this work and demonstrate how to
synthesize partial aggregations in SCOPE scripts from UDAs
which contain finite-state machines or simple counting. While
their results are promising, their analysis relies on the UDAs
being commutative, a property not satisfied by the UDAs
that mine temporal patterns studied here. In addition, SYM-
PLE can parallelize a much larger class of UDAs than these
prior works, such as UDAs that make conditional checks on
a counter.

On the other hand, some database systems allow users
to specify a richer class of UDAs using SQL extensions for
pattern matching [24, 29], however these systems do not
discuss if they can extract any parallelism from such queries.

Parallelizing compilers and runtimes Compiler techniques
for parallelizing sequential programs is an old but an active
field of study [4, 6, 7, 30, 36]. Most of these techniques focus
on transforming a program while honoring static program
dependences to expose parallelism. Commutativity analy-
sis [35] identifies operations that can be logically reordered
despite dependences.

Reduction and parallel-prefix computations [5, 15, 19]
involving associative operations can be parallelized despite
dependences. Similarly, hyperobjects [13] in Cilk provide
a programmatic way for specifying reduction of associative
operations. In contrast, the focus on this paper is on breaking
dependences that are not readily apparent as associative. One
can consider the symbolic approach of SYMPLE as transform-
ing a computation as a sequence of function compositions
and using the associativity of composition [18] to perform the
computation in parallel. However, automating this approach
requires symbolic data types that are amenable to efficient
symbolic manipulation.

The recent work on Mold [33] is closely related to SYM-
PLE. Mold automatically parallelizes sequential code and
scales it out to a MapReduce backend. It operates by trans-
forming loops into functional programming style fold opera-
tions and then applying transformation rules. While this is a
promising approach, its parallelization rules apply only when
the performed operations are associative.

Parallel runtimes such as Galois [31] exploit the obser-
vation that most static dependences vanish for irregular pro-

grams and dynamically schedule independent computations
in parallel. The techniques discussed in this paper can be used
to break these dynamic dependences as well.

Speculation An alternate approach to break dependences
is to use speculation [25, 32, 34]. Speculation, unfortunately,
does not scale to massively parallel back-ends as the prob-
ability of mis-speculation dramatically increases with the
number of guesses causing a sequential bottleneck. Moreover,
speculation with unbounded data types (such as counters) is
impossible except in the presence of well-behaved distribu-
tions of their values. Finally, speculation based parallelization
does not fit a MapReduce model due to the need to re-execute
failed speculation attempts and iterative calls to MapReduce
are expensive.

Data-parallel FSMs Recent work on parallelizing finite-
state machines (FSM) [23, 27] use an approach that enu-
merates a dependent FSM computation for every FSM state.
This enumeration can be considered as a special instance of
symbolic parallelism advocated in this paper. For instance,
imperative code that uses a SymEnum type can be used to en-
code a FSM. Even here, the canonical form used in SymEnum
types do not eagerly enumerate all states and are, thus, likely
to be compact and more efficient. On the other hand, the static
structure of eager enumeration presents with opportunities
for exploiting SIMD capabilities of modern hardware [27].
The primary focus of this paper is on exploiting large-scale
compute and I/O parallelism available in data centers today.

8. Conclusion and future work
Parallelizing computation has, to date, largely been about
finding independent computation. This paper introduces
symbolic parallelism a new method for breaking dependences
and thus exposing parallelism from seemingly sequential
computation. We believe this is an interesting direction of
research, where ideas from program verification, software
testing, and partial evaluation, along with some help from
the programmer, can mechanize the process of parallelizing
computation.

To demonstrate that symbolic parallelism is useful in
practice, we introduce SYMPLE, a system for automatically
parallelizing MapReduce-style groupby-aggregate queries.
Our experiments on Amazon’s Elastic cloud and our own
private 380 node Hadoop cluster can process terabytes of
data in minutes. Our experiments demonstrate significant
savings in datacenter resources such as CPU and bandwidth,
and end-user latency. With more hardware parallelism, we
believe that SYMPLE provides a platform for interactive ad-
hoc querying of complex patterns in big data.

References
[1] Apache hadoop. http://hadoop.apache.org/.

[2] ALEXANDROV, A., BERGMANN, R., EWEN, S., FREYTAG,
J.-C., HUESKE, F., HEISE, A., KAO, O., LEICH, M., LESER,

165

http://hadoop.apache.org/

U., MARKL, V., NAUMANN, F., PETERS, M., RHEINLÄN-
DER, A., SAX, M. J., SCHELTER, S., HÖGER, M., TZOUMAS,
K., AND WARNEKE, D. The stratosphere platform for big data
analytics. The VLDB Journal 23, 6 (Dec. 2014), 939–964.

[3] Avoid groupbykey. http://databricks.gitbooks.io/
databricks-spark-knowledge-base/content/best_

practices/prefer_reducebykey_over_groupbykey.
html.

[4] BACON, D. F., GRAHAM, S. L., AND SHARP, O. J. Com-
piler transformations for high-performance computing. ACM
Comput. Surv. 26, 4 (Dec. 1994), 345–420.

[5] BLELLOCH, G. E. Prefix sums and their applications. Tech.
rep., Synthesis of Parallel Algorithms, 1990.

[6] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEIS-
ERSON, C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: An
efficient multithreaded runtime system. In Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New York, NY, USA, 1995), PPOPP
’95, ACM, pp. 207–216.

[7] BOCCHINO, JR., R. L., ADVE, V. S., DIG, D., ADVE, S. V.,
HEUMANN, S., KOMURAVELLI, R., OVERBEY, J., SIMMONS,
P., SUNG, H., AND VAKILIAN, M. A type and effect system
for deterministic parallel java. In Proceedings of the 24th
ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (New York, NY, USA,
2009), OOPSLA ’09, ACM, pp. 97–116.

[8] CHAIKEN, R., JENKINS, B., LARSON, P.-A., RAMSEY, B.,
SHAKIB, D., WEAVER, S., AND ZHOU, J. Scope: Easy and
efficient parallel processing of massive data sets. Proc. VLDB
Endow. 1, 2 (Aug. 2008), 1265–1276.

[9] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,
HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.
Flumejava: Easy, efficient data-parallel pipelines. PLDI ’10,
ACM, pp. 363–375.

[10] CHANDRAMOULI, B., GOLDSTEIN, J., BARNETT, M., DE-
LINE, R., FISHER, D., PLATT, J. C., TERWILLIGER, J. F.,
AND WERNSING, J. Trill: A high-performance incremental
query processor for diverse analytics. VLDB 2015.

[11] DE MOURA, L., AND BJØRNER, N. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (Berlin, Heidelberg,
2008), TACAS’08/ETAPS’08, Springer-Verlag, pp. 337–340.

[12] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data
processing on large clusters. Commun. ACM 51, 1 (Jan. 2008),
107–113.

[13] FRIGO, M., HALPERN, P., LEISERSON, C. E., AND LEWIN-
BERLIN, S. Reducers and other cilk++ hyperobjects. In Pro-
ceedings of the Twenty-first Annual Symposium on Parallelism
in Algorithms and Architectures (New York, NY, USA, 2009),
SPAA ’09, ACM, pp. 79–90.

[14] GATES, A. F., NATKOVICH, O., CHOPRA, S., KAMATH,
P., NARAYANAMURTHY, S. M., OLSTON, C., REED, B.,
SRINIVASAN, S., AND SRIVASTAVA, U. Building a high-level
dataflow system on top of map-reduce: The pig experience.
Proc. VLDB Endow. 2, 2 (Aug. 2009), 1414–1425.

[15] HILLIS, W. D., AND STEELE, G. L. Data parallel algorithms.
In Commun. ACM (Dec 1986), vol. 29, pp. 1170–1183.

[16] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: Distributed data-parallel programs from
sequential building blocks. SIGOPS Oper. Syst. Rev. 41, 3 (Mar.
2007), 59–72.

[17] KING, J. C. Symbolic execution and program testing. Com-
mun. of ACM 19, 7 (July 1976), 385–394.

[18] KOGGE, P. M., AND STONE, H. S. A parallel algorithm for
the efficient solution of a general class of recurrence equations.
Computers, IEEE Transactions on C-22, 8 (Aug 1973), 786–
793.

[19] LADNER, R. E., AND FISCHER, M. J. Parallel prefix compu-
tation. Journal of the ACM 27, 4 (1980), 831–838.

[20] LIU, C., ZHANG, J., ZHOU, H., MCDIRMID, S., GUO,
Z., AND MOSCIBRODA, T. Automating distributed partial
aggregation. In Proceedings of the ACM Symposium on Cloud
Computing (New York, NY, USA, 2014), SOCC ’14, ACM,
pp. 1:1–1:12.

[21] LOMBARDI, L. A., AND RAPHAEL, B. Lisp as the
language for an incremental computer. In The Programming
Language Lisp: Its Operation and Applications (1964).

[22] MALEWICZ, G., AUSTERN, M. H., BIK, A. J., DEHNERT,
J. C., HORN, I., LEISER, N., AND CZAJKOWSKI, G. Pregel:
A system for large-scale graph processing. In Proceedings of
the 2010 ACM SIGMOD International Conference on Man-
agement of Data (New York, NY, USA, 2010), SIGMOD ’10,
ACM, pp. 135–146.

[23] MARGUS VEANES, TODD MYTKOWICZ, D. M., AND

LIVSHITS, B. Data-parallel string-manipulating programs.
Symposium on Principles of Programming Languages (POPL)
(2015).

[24] Match clause in HP Vertica. http://my.vertica.
com/docs/7.1.x/HTML/Content/Authoring/
SQLReferenceManual/Statements/SELECT/
MATCHClause.htm.

[25] MEHRARA, M., HAO, J., HSU, P.-C., AND MAHLKE, S.
Parallelizing sequential applications on commodity hardware
using a low-cost software transactional memory. In Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (New York, NY, USA,
2009), PLDI ’09, ACM, pp. 166–176.

[26] MELNIK, S., GUBAREV, A., LONG, J. J., ROMER, G., SHIV-
AKUMAR, S., TOLTON, M., AND VASSILAKIS, T. Dremel:
Interactive analysis of web-scale datasets. In Proc. of the 36th
Int’l Conf on Very Large Data Bases (2010), pp. 330–339.

[27] MYTKOWICZ, T., MUSUVATHI, M., AND SCHULTE, W.
Data-parallel finite-state machines. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (New York,
NY, USA, 2014), ASPLOS ’14, ACM, pp. 529–542.

[28] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R.,
AND TOMKINS, A. Pig latin: A not-so-foreign language for
data processing. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (New York,
NY, USA, 2008), SIGMOD ’08, ACM, pp. 1099–1110.

166

http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/best_practices/prefer_reducebykey_over_groupbykey.html
http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/best_practices/prefer_reducebykey_over_groupbykey.html
http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/best_practices/prefer_reducebykey_over_groupbykey.html
http://databricks.gitbooks.io/databricks-spark-knowledge-base/content/best_practices/prefer_reducebykey_over_groupbykey.html
http://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Statements/SELECT/MATCHClause.htm
http://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Statements/SELECT/MATCHClause.htm
http://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Statements/SELECT/MATCHClause.htm
http://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/SQLReferenceManual/Statements/SELECT/MATCHClause.htm

[29] Sql for pattern matching in oracle 12c. http://docs.
oracle.com/database/121/DWHSG/pattern.htm.

[30] PADUA, D. A., AND WOLFE, M. J. Advanced compiler
optimizations for supercomputers. Commun. ACM 29, 12 (Dec.
1986), 1184–1201.

[31] PINGALI, K., NGUYEN, D., KULKARNI, M., BURTSCHER,
M., HASSAAN, M. A., KALEEM, R., LEE, T.-H.,
LENHARTH, A., MANEVICH, R., MÉNDEZ-LOJO, M.,
PROUNTZOS, D., AND SUI, X. The tao of parallelism in algo-
rithms. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (New
York, NY, USA, 2011), PLDI ’11, ACM, pp. 12–25.

[32] PRABHU, P., RAMALINGAM, G., AND VASWANI, K. Safe
programmable speculative parallelism. In Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2010),
PLDI ’10, ACM, pp. 50–61.

[33] RADOI, C., FINK, S. J., RABBAH, R., AND SRIDHARAN, M.
Translating imperative code to mapreduce. In Proceedings of
the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications (New York,
NY, USA, 2014), OOPSLA ’14, ACM, pp. 909–927.

[34] RAMAN, A., KIM, H., MASON, T. R., JABLIN, T. B., AND

AUGUST, D. I. Speculative parallelization using software
multi-threaded transactions. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA,
2010), ASPLOS XV, ACM, pp. 65–76.

[35] RINARD, M. C., AND DINIZ, P. C. Commutativity analysis:
A new analysis technique for parallelizing compilers. ACM
Trans. Program. Lang. Syst. 19, 6 (Nov. 1997), 942–991.

[36] RINARD, M. C., AND LAM, M. S. The design, implementa-
tion, and evaluation of jade. ACM Trans. Program. Lang. Syst.
20, 3 (May 1998), 483–545.

[37] YU, Y., GUNDA, P. K., AND ISARD, M. Distributed aggre-
gation for data-parallel computing: Interfaces and implemen-
tations. In ACM Symposium on Operating Systems Principles
(SOSP) (October 2009), pp. 247–260.

[38] YU, Y., ISARD, M., FETTERLY, D., BUDIU, M., ERLINGS-
SON, U., GUNDA, P. K., AND CURREY, J. Dryadlinq: A
system for general-purpose distributed data-parallel computing
using a high-level language. OSDI’08, USENIX Association,
pp. 1–14.

[39] ZAHARIA, M., CHOWDHURY, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX Confer-
ence on Hot Topics in Cloud Computing (Berkeley, CA, USA,
2010), HotCloud’10, USENIX Association, pp. 10–10.

[40] ZHANG, J., ZHOU, H., CHEN, R., FAN, X., GUO, Z., LIN,
H., LI, J. Y., LIN, W., ZHOU, J., AND ZHOU, L. Optimizing
data shuffling in data-parallel computation by understanding
user-defined functions. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2012), NSDI’12, USENIX Association,
pp. 22–22.

167

http://docs.oracle.com/database/121/DWHSG/pattern.htm
http://docs.oracle.com/database/121/DWHSG/pattern.htm

	Introduction
	Capabilities
	System

	Symbolic Parallelism
	Symple Programming model
	Breaking dependences
	Challenges

	Efficient symbolic execution
	Running example
	Symbolic Summaries
	Decision Procedures
	Canonical form
	Path merging
	Summary composition

	Symbolic data types
	Symbolic enumerations
	Symbolic Booleans
	Symbolic integers
	Black-box predicates
	Symbolic Aggregates

	Implementation
	Systematically exploring paths
	Dealing with path explosion
	Symple C++ library and verification of user code
	Mapping Symple to MapReduce

	Evaluation
	Data and queries
	Multi-core evaluation
	Elastic MapReduce evaluation
	Large cluster evaluation
	Scalability

	Related work
	Conclusion and future work

