DKAL 2 — A Simplified and Improved
Authorization Language

Yuri Gurevich
Microsoft Research Redmond
gurevich@microsoft.com

Itay Neeman
Department of Mathematics, UCLA
ineeman@math.ucla.edu

February 2009

Abstract

Knowledge and information are central notions in DKAL, a logic based
authorization language for decentralized systems, the most expressive
among such languages in the literature. Pieces of information are called
infons. Here we present DKAL 2, a surprisingly simpler version of the
language that expresses new important scenarios (in addition to the old
ones) and that is built around a natural logic of infons. Trust became
definable, and its properties, postulated earlier as DKAL house rules, are
now proved. In fact, none of the house rules postulated earlier is now
needed. We identify also a most practical fragment of DKAL where the
query derivation problem is solved in linear time.

Note (added on May 11, 2009) In the meantime, we made the following
notational changes.

1. Function put of type Info—Speech is renamed to implied.
The new notation makes it obvious that
(p implied z) is weaker than (p said x).

2. The conjunction of infons z,y is denoted as x Ay rather than x +y. While
the latter notation made sense in the original algebraic approach, it is not
natural in the logic approach.

Contents
1 Introduction
2 Syntax

3 Knowledge

3.1 Knowledge knowledge assertions
3.2 Knowledge from communication.

3.3 Derived knowledge

4 Infon logic: a Hilbert-type calculus

5 Infon logic: a sequent calculus
5.1 Axioms and rules of inference
5.2 Model theory
5.3 The two calculi are equivalent

6 Trust and delegation
7 Example

8 Primal infon logic
8.1 Axioms and rules of inference
8.2 Model theory
8.3 Linear-time algorithms

9 SecPAL and primal infon logic
9.1 Embedding theorem
9.2 Linear time algorithm

10 Related work

14

15

19
19
19
20

20
20
22

24

1 Introduction

In the real world, access control is still handled primarily by ACLs, access control
lists. ACLs are outdated. The question is what should 21st century access
control be. We speak primarily about the authorization aspect of access control.
One approach is exemplified by XACML [19], an XML implementation of a
limited access control language. A more ambitious approach is logic based, and
that is where Distributed Knowledge Authorization Language (DKAL) belongs.

Access control is about knowledge and information, and these two concepts
are central in DKAL. Pieces of information are called infons and are treated as
elements of sort Info. Knowledge is formalized by means of a binary relation
knows of type Principal x Info.

The DKAL story starts with a logic-based authorization language SecPAL
that attracted our attention. We wanted to strengthen and improve SecPAL.
In DKAL 1 [9], a security hole in SecPAL was plugged by making commu-
nication directed. The straightjacket of Constraint Datalog was loosened to
Liberal Datalog where one can freely use functions in the heads and bodies of
rules. These and other advances have been achieved within the same bounds of
computational complexity.

In the meantime DKAL 1 has been successfully tried out at Microsoft which
deepened our understanding of the issues involved and led to further improve-
ments, notably to the following separation of concerns: static — and often small
— core policies on the one side, and dynamic — and often complex — workflow
on the other side [10]. It turns out that some important safety properties can
be proved from the core policies alone, independently from the workflow.

And yet there was an important need that DKAL 1, or for that matter any
other authorization language that deals with communication, could not meet. It
is the need to communicate information conditioned on a proviso to be checked
by the receiver rather than by the sender. For example, parents may will their
money to their son provided he gets a college degree; the executors of the will
would have to verify that the son has a degree before giving him the money.
Here is a less grievous example. An author may stipulate that her book may
be sold by a bookshop provided they have a positive rating from the Better
Business Bureau.

The desire to meet that need was the major (but not the only) stimulus to
revise DKAL. The result is DKAL 2 that we present here, a substantially more
expressive and surprisingly simpler version of the language.

One of the novel features of DKAL 1 was an algebra of infons. Infons are
partially ordered and equipped with the operation of addition. The intuition
behind 2 < y is that the information in z is contained in that of y. (Formally
x < y if x is derived from y by certain rules.) The intuition behind x A y is
that the information in x A y is the union of that in x and y. In terms of the
information order, z Ay is the least upper bound of z and y. In order to convey
information conditioned on a proviso, we introduced conditional infons x — y.
The intended meaning of x — y is y given z. In terms of the information order,
r—y=min{z:xAz>y}

Eventually we switched from algebra to logic that treats z Ay and x — y as
conjunction and implication respectively. And something unexpected happened,
a little miracle. The logic of infons happened to be a natural and conservative
extension of disjunction-free intuitionistic logic. Trust became definable. For
example, “p trusted on saying £” means (p said z) — x. The natural proper-
ties of trust, postulated as house rules of DKAL 1, are now proved. In fact, none
of the house rules of DKAL 1 is now needed. Also, even though DKAL 2 is much
more expressive than DKAL 1, the termination problem (for the derivation en-
gine) became easier. Those who read the DKAL 1 paper [9] may remember that
the termination proof was hard. In the case of DKAL 2, termination follows
from general logic considerations; see §5 below.

The communication apparatus of DKAL 2 is also more powerful than that of
DKAL 1. Following [10], we give principals means to filter incoming information.
DKAL 2 is really a platform for authorization logic and communication.

DKAL 2 supersedes DKAL 1 and supports new important scenarios. There
is, however, a caveat. We dropped the constructs can act as and can speak
as that were supposed to be used to express roles. But we have never used them.
Roles can be expressed more adequately by means of attributes which allows
one to parameterize roles. In our experience, roles are always parameterized.

There is a price though for the extra expressivity of DKAL 2, at least in the
terms of worst case complexity. Define the ground multiple derivability problem
for a logic L to be the problem to compute, given ground hypotheses x1, ..., T,
and queries ¥, ..., Yn, which of the queries are derivable from the hypotheses.
In the case n = 1, we speak about the ground derivability problem. The ground
derivability problem for intuitionistic logic is polynomial space complete in the
worst case [17]. For the same reasons, the ground derivability problem for infon
logic is polynomial space complete in the worst case.

On the other hand, in our experience, the derivability problem has been
consistently easy. Are there theoretical reasons for that? One reason is simple
and obvious. While DKAL allows us to nest quotations arbitrarily

p1 said po said ...p; said foo,

in applications quotation depth is typically small. The analysis of typical deriva-
tions led us to a deeper (and orthogonal) reason. We came up with a fragment
of infon logic that we call primal infon logic [11]. Primal infon logic looks sim-
ple, even simplistic. But it is quite expressive for our purposes. Let Ly be
the fragment of primal infon logic with infons of quotation depth < d. In §9,
we translate SecPAL into L. And yet, for any natural number d, the ground
multiple derivability problem for L, is decidable in linear time [11]. This gives
rise to a linear time algorithm for the ground multiple derivability problem for
SecPAL; see §9.

We attempted to make this paper as self-contained as possible but the famil-
iarity with the concepts of knowledge and infons from DKAL 1 is desired. Here
is the annotated context of the paper. The syntax of DKAL 2 is explained in
§2. In §3, we explained how principals acquire knowledge. §4 is an introduction
to and motivation for infon logic. To make room for genuinely access control

issues, we separated results of purely logical and algorithmic nature into a sepa-
rate logic paper [11] but, to make this paper more self-contained, we recall some
of those results here. In §5 we recall a sequent calculus, natural model theory
and the soundness and completeness theorem for infon logic. The calculus has
the subformula property: if a sequent [I' F z] is provable then there is a deriva-
tion of the sequent that uses only the subformulas of the formulas in T'U{z}. It
is because of that property the derivation algorithm runs in polynomial space
and in particular terminates. In §6, we define two versions of trust and prove
various “house rules” of DKAL 1.

In §7, we illustrate DKAL on a scenario where a policy pointer is attached
to an object. The policy must be respected as the object moves, in our case
to a user Alice. Such scenarios are of increasing importance, in particular to
organizations like TSCP [18], as authorization policies are expected to capture
confidentiality, use, and copyright restrictions of documents traversing distant
locations. Our example, despite its length, is terse relative to the real life sce-
narios. Because of space limitation it is substantially simplified. It concentrates
on several features of DKAL2: using conditional infons and tagged variables,
functions to communicate a proviso to be evaluated by the receiver; the use of
casting of truth values into infons in order to express constraints; the distributed
nature of DKAL and the interaction of logic and communication; and finally
the use of filter assertions in guarding against information leakage.

§8 is devoted to primal infon logic. In §9 we translate SecPAL to a frag-
ment of primal infon logic and construct a linear time algorithm for the ground
multiple derivability problem for SecPAL. The final §10 is devoted to related
literature.

2 Syntax

Basic syntax DKAL universe has elements of two types, Regular, and Syn-
thetic. Both are divided into subtypes. The regular subtypes include the types
Boolean (which consists of two elements, true and false), Principal, and pos-
sibly other subtypes depending on the application. The synthetic subtypes are
Attribute, Speech, and Info. Elements of Info are called infons. There are four
subtypes of Info: Attributelnfo, SpeechInfo, Conditionallnfo, and SumInfo.

We presume that each regular element is the value of a ground regular term.
We often identify the term and the element it names.

Functions are either synthetic, meaning that they take synthetic values, or
regular, meaning that they take regular values. The synthetic functions are
free constructors; every synthetic element is uniquely constructed from regular
elements by means of synthetic functions.

The following built-in synthetic functions are always present:

e Function A of type InfoxInfo—SumlInfo.

e Function — of type InfoxInfo—Conditionallnfo.

e Functions said and implied of type Info—Speech.

e Function Z of type (Regularx Attribute U Principal x Speech) —Info.
e A nullary function exists of type Attribute.

e A nullary function asInfon of type Attribute.

There may be other synthetic functions, depending on the application. They
take Attribute values. We refer to them as attribute names.

Infix notation is used for conjunction z A y and implication x — y. Prefix
notation is used for said and implied. The function Z is usually omitted.
For example, Z(p,said foo) is written simply as p said foo. We often omit
parentheses in writing terms, so long as the intention is clear. Here is a summary
of the syntax where x is an arbitrary term, u is a regular term and p is a principal
term.

attrName ::= exists | asInfon

| can read [-] | can perform [-] on [-] |

attribute ::= attrName(zq,...,,)

speech ::= said infon | implied infon

infon ::= attributeInfo | speechInfo | sumlinfo | condInfo
attributeInfo ::= w attribute

speechInfo ::= p speech
sumlInfo ::= infon; A infong

condInfo ::= infon; — infons

The ensue relation DKAL has a relation z < I', read x ensues I', of type
InfoxSet(Info). The intuitive meaning is that x is less informative than I', or
equally informative. Precise semantics, given in §5 approximates this intuition
using deduction. Instead of x < T' we often write I' - x and say that " entails
x.

Verbatim tags Occurrences of regular variables and functions (including
nullary functions, that is constants) in a term ¢ can be tagged verbatim. We
call the term ¢ itself tagged it at least one verbatim tag occurs in ¢t. If ¢t is a
tagged regular term f(ti,...,t;) we require that the exhibited occurrence of f
is tagged. Thus a regular term f(¢1,...,%;) is tagged if and only if the exhibited
occurrence of f is tagged.

It follows that any synthetic or tagged regular term ¢ is constructed from
tag-free regular subterms and tagged variables by means of synthetic and tagged
regular function. These tag-free regular subterms, the maximal tag-free regular
subterms of ¢, are the tag-free reqular components of t. If ¢ itself is tag-free then
the tag-free regular components of x are reqular components of x. This last

definition is more meaningful when ¢ is synthetic; if a regular term is tag-free
than it is its only regular component.

Verbatim tags are used in communication assertions (see below) to indicate
the variables and functions to be instantiated and evaluated by the receiver.
Precise semantics of this will be given in §3. By default terms are tag-free.

Assertions There are three kinds of DKAL assertions: knowledge, communi-
cation, and filter assertions. Knowledge assertions have the form:

A: =z

where A is a principal constant and x is a tag-free infon term with only regular
variables. Communication assertions have the form

Atogq: [zr—y|l<z

where A is a principal constant, ¢ is a principal constant or variable, and x, ¥,
z are infon terms with only regular variables such that x and y may be tagged
but z is tag-free. y and z are optional. Filter assertions have the form

B from p: [z+—yl <=z

where B is a principal constant, p is a principal constant or variable, and =z, y,
and z are tag-free infon terms. x and y may have synthetic as well as regular
variables. y and z are optional.

3 Knowledge

Each principal A computes his (her, its) own knowledge. The knowledge asser-
tions of A form an internal source of knowledge; this issue is addressed in §3.1.
There may be also communications to A from other principals. Using his filter
assertions A may extract knowledge from those communications; this issue is
addressed in §3.2. Infon logic allows A to derive more knowledge; this issue is
addressed in §3.3. And of course A may use his communication assertion to send
communications to other principals; those communications may allow them to
acquire knowledge.

Fix a state X of a principal A, and let Rx(A) be the least set of regular
terms such that the following conditions are satisfied.

e Rx(A) contains constant A. For every assertion « (of any kind) of A and
every infon term s in a, Rx(A) contains the ground regular components
of s.

o If, at state X, A knows an infon (B said z) or (y — B implied) as a
direct result of a previous communication then Rx (A) contains the ground
regular components of the infon.

e If at state X, A has a communication from B then — whether the com-
munication will or will not be accepted — Rx (A) contains B.

It will be convenient to identify ground terms to be evaluated at a fixed
state with their values at the state. In particular we may see Rx(A) as a set of
regular elements. Furthermore, equalities s = ¢, of terms to be evaluated at a
fixed state, will be by default interpreted as the equalities of the values of the
terms.

3.1 Knowledge knowledge assertions

A knowledge assertion of A has the form A : s where s is a tag-free infon term
with regular variables only. The assertion gives rise to A’s knowledge of various
instances of the infon term s:

A:s

(KA) A knows s6

Here 0 is an arbitrary substitution subject to the following constraints.

e Dom(60) contains all variables of s,

e Range(f) C Rx(A),

e uf € Rx(A) for every non-ground
maximal regular component u of s.

(T1)

3.2 Knowledge from communication

A communication assertion of a principal B has the form
BtOpI [t1<—t2]<:t3

where t1,to,t3 are infon terms with regular variables only and t3 is tag-free.
Principal B operates in a state Y of his. The communication assertion gives
rise to communications from B to A by means of substitutions 7 such that
B knows t3n and pn = A. Also, this is required:

e Dom(n) contains all variables with

untagged occurrences in [t] «— to] < t3,
(T2) o Range(n) C Ry (B),

e un € Ry (B) for every non-ground maximal

regular component u of any ¢;.

The resulting communication is

(C) BtoA: [u; «— usg)
where u; = t1 7 and us = ton but of course A does not in general know the
substitution 5 or the original communication assertion of B.

The term wusg is the proviso of (C). All variables in uy, us are regular and
tagged. A may extract knowledge from communication (C) by means of a filter

assertions

(F) Afromgq:[s; «— s3] < s3
of his and a substitution 6 such that

e Dom(#) contains all variables

in [s1 «— $9] < s3 and in uy, ug;

0 treats the tagged and untagged versions
(T3) of a variable as two distinct variables;

e Range(6) C Rx(A),

e uf € Rx(A) for every non-ground maximal

regular component u of any s;;

and the following conditions are satisfied.
o If communication (C) does not have the optional proviso us then the filter
assertion (F') does not have the optional premise sg.
e A knows s30, and ¢ = B.
e 5160 = Untag(uy 0) and in the proviso-present case, s3 8 = Untag(us 6).

And what is the resulting knowledge? The answer depends on the presence
of a proviso. In the absence of proviso, it is

A knows B said s 0.
In the presence of proviso, it is
A knows (s20 — B implied s 6).

We summarize the two scenarios (ignoring conditions (T2) and (T3)) from
the point of view of an outside observer, say an auditor:

Proviso-free scenario:
B to p: [tl] < 13,
B knows tsn, pn=A,
(Coml) A from q: [s1] < s3,
A knows s36, q0=DB,
s160 = Untag(t1n0)
A knows B said s; 0

Proviso-present scenario:
B to p: [t1<—t2]<:t3,
B knows t3n, pn=A4A,
A from q: [s1 < $2] < s3,
A knows s36, q0 =B,
s160 = Untag(t1n0)
s00 = Untag(tan)

A knows (s — B implied s;10)

(Com?2)

Remark 3.1. A public function, e.g. an addition of numbers, can be tagged
verbatim in u; because B may not know the values of all the arguments. It is
possible also that a function is tagged verbatim because A and B have different
interpretations of it. B may not know A’s interpretation in which case he might
be unable to apply the function even if he knows the values of all the parameters.

Remark 3.2. One may be tempted to unify (C) and (F). Take into account,
however, that regular functions are not necessarily free constructors.

3.3 Derived knowledge

The knowledge that A gets from his knowledge assertions and the communica-
tions from the other principals gives rise to more knowledge.

A knows T
(Ensue) 'z
A knows =

The derived knowledge is infinite but of course A does not compute it all.
Typically he just checks whether some queries of interest follow from the knowl-
edge obtained directly from knowledge assertions and communications.

Remark 3.3. As the receiver principal A gets a communication (C) from another
principal B, A does not have to immediately apply all his filter assertions (F') and
all possible substitutions 6 to (C). He applies different filters and substitutions
as the need arises. But what about the sender B? Does he have to use all
his communication assertions with all possible substitutions 1?7 No, not at all.
Much depends on the workflow. One very common scenario is where the sender
only replies to requests.

4 Infon logic: a Hilbert-type calculus

Intentionally x Ay is the union of x and y, and © — y is y given x. We discovered
that, as far as these two operations are concerned, the logic of infons is precisely
intuitionistic logic, with sum playing the role of conjunction. Accordingly we
fashion the logic of infons as an extension of intuitionistic logic.

The traditional Hilbert-type calculus for intuitionistic logic without disjunc-
tion and negation is given by the following five axioms and one inference rule
called modus ponens [12].

la. x— (y —x)
b, (z—y) = (@—=(y—2)—(@@—2)
2a. z—(y— (zAy))
2b. (zAy) —x 2c. (xNhy)—y
r (x—y)
Y

3.

10

Think of the variables as infon variables. Uninformative infons play the role
of true propostions. It is easy to see that axioms la—2c are uninformative and
that the inference rule 3 preserves the property of being uninformative.

A set T' of hypotheses entails an infon x if there is a chain z1,...,z, with
T, = x where every member is an axiom, a hypothesis or the result of an
inference rule application to earlier members. It is this definition of entailment
that characterizes Hilbert-type calculi.

Our Hilbert-type infon calculus is the extension of the intuitionistic calculus
above by means of the following axioms 4a—7.

da. (p said (x — y)) A (p said z)
— (p said y)

4b. (p implied (z — y)) A (p implied x)
— (p implied y)

5. (p said z) — (p implied z)

6. true asInfon

7. p1 said ... p, said x where
p1,...,Pr is any finite sequence of principles

and x is any of the axiom 1a—6

To understand the intuition behind axioms 4a and 4b, think of a principal
q listening to principal p. Things said by p are closed under deduction, and so
are things implied by p. The same intuition lies behind axiom 7. By axiom 5,
said is stronger than implied. We'll speak more about this later. Axiom 5
explains why axiom 7 is restricted to said. If you replace some of the k said’s
with implied’s, the result is derivable. Concerning axiom 6, we think of the
operation true — true asInfon as a casting operation, converting Boolean
true into the uninformative infon true asInfon.

Note that the built-in function exists is not constrained by axioms. It
allows one to mention a regular element and thus make it count; no axioms are
needed for that. Let ¢ said A = {¢g said z: z € A}.

Lemma 4.1. If Ay then q said AF q said y.

Proof. If A = (), use axiom 7. Suppose that A # (), and let x1,...,x, be the
given derivation of y from A. Then the chain ¢ said z1,...,q said z, can
be filled in to a derivation of ¢ said y from ¢ said A. Indeed, it suffices to
show this: if zj is obtained, by an application of modus ponens, from previous
members z; and x; = x; — T, then

q said z;, ¢ said (x; — xx) F ¢ said xy.
But this easily provable by means in particular of axiom 4a. O

Let told, with or without indices, range over {said, implied}. If A =
{#1,...,2m}, let ¢ told A = {q told; z; : 1 <i < m}.

Lemma 4.2. If Ay then q told At q implied y.

11

Proof. Assume A F y. Use axiom 5 to derive A implied y from ¢ told A. The
rest of the proof is similar to the proof of the previous lemma, with implied
playing the role of said. U

5 Infon logic: a sequent calculus

It is advantageous to treat the relation I' - z as primitive and define it by means
of axioms and rules of inference. That approach is common in the study of
intuitionistic logic. Pairs (I, x) are called sequents, and the calculi of sequents
are called sequent calculi. In this section, we present a sequent calculus S
equivalent to the Hilbert-type calculus of the previous section.

In Section 2, we mentioned the ensue relation z < I'. Relation I - z is the
same relation written in a different way: x < T if and only if I' I x.

5.1 Axioms and rules of inference

Our sequent calculus S is essentially an extension of the intuitionistic proposi-
tional system NJp [16, §2.2].

Axioms
(True) F true asInfon
(x2x) r F x

Inference rules

(Premise Inflation) _Try
Txky

(AE) F;igy F;i‘;y

(AT) F;i—xl;\gy

(—E) 'z Fizx_’y

) q said 2tg said y

(P) A Fy

q told A Fq implied y

From the Liberal Datalog point of view [9, 3], the axioms and inference rules
form a program that computes a binary relation F of type Set (Info) x Info.

12

5.2 Model theory

A Kripke structure for infon logic, given by the sequent calculus, is a non-
empty quasi-order (W, <) of worlds with two binary relations P, and S, for
every principal ¢ such that the following requirements are satisfied.

K1l. P, C S,.
K2. If u < w and wP,v then uFP,v, and the same for S,.

By induction, any formula x is assigned a cone (that is an upward closed
set) C(x) of worlds. If w € C(z), we say that = holds in w or that w models z,
and we write u |= x. If is primitive then C'(z) is an arbitrary cone. Further:

K3. CzAy)=C(z)NC(y).
Ki. Clza —»y)={u:Cx)Nn{v:v>u} CC(y)}.
K5. C

C(
(
(¢ implied) = {u: {v: uPuw} C C(x) }.
K6. C(q said 2) = {u: {v: uS,v} C C(x) }.

C(

K7.

True) =

Clauses K3, K4 and K7 are standard in the Kripke semantics for intuitionistic
logic and go back to [13].

It is easy to check, by induction on formula z, that every C(z) is indeed a
cone. We consider here only the case when z = (¢ implied z). It suffices to
show that {v: wPv} C {v: uP,v} given that v < w. But this follows from K2.

Further let C(I") = (), C(2); in particular C(0) = W. A Kripke structure
K models a sequent (' z) if C(T') C C(z) in K. A sequent s is valid if every
Kripke structure models s.

Theorem 5.1 ([11]). The following claims are equivalent for any sequent s.
1. s is provable in the sequent calculus.
2. s is valid.
3. Fvery finite Kripke structure models s.
4. There is a proof of s in the sequent calculus that uses only subformulas of

S.

5.3 The two calculi are equivalent

Theorem 5.2. T entails x in the Hilbert-type calculus of Section 4 if and only
if sequent (T x) is derivable in the sequent calculus.

13

Proof. Let H be the Hilbert-type calculus. First we establish the only-if direc-
tion. In virtue of Theorem 5.1, it suffices to show that every model M of T is
a model for every x entailed by I' in H. It is easy to see that the axioms of H
are valid and thus hold in M. It remains to notice that the set of infons true in
M is closed under modus ponens.

Next we establish the if direction. It suffices to show that every inference
rule of the sequent calculus can be proved as a derived rule in H. This is obvious
for the premise inflation rule and for rules (AE), (AI), (—E). The rule (—I) is
the deduction theorem [12]. The rules (S) and (P) are proved in Lemmas 4.1
and 4.2. O

6 Trust and delegation

DKAL2 has two trust functions: tdonS and tdonI. Both are of type Principal
x Info. Read infons p tdonS x and p tdonI x as p is trusted on saying x and
p is trusted on implying x respectively. But the two trust functions are not
primitive notions of DKALZ2; they are defined:

p tdonS x abbreviates (p said z) — =z,

p tdonl x abbreviates (p implied z) — =z.

Proposition 6.1.
p tdonS z, p tdonS yF p tdonS (zAy).
p tdonl z, p tdonl y bk p tdonI (zAvy).

Proof. We prove the case of saying; the case of implying is similar. By rule (—1I),
it suffices to derive z Ay from the set I" of hypotheses p tdonS z, p tdonS y and
p said (z Ay). By (AD), it suffices to show that I' F z and T' - y. We show that
I' F x; the case of y is similar.

By (AE), z Ay z. By (S), p said (z Ay) - p said z. Hence I' F p said x.
Use this sequent as the minor premise of (—E) to obtain I' - z. O

Let (p seconds) abbreviate infon (x — (p implied z)).

Proposition 6.2 (Delegation of trust on implying).
p tdonI x, p seconds ¢ implied z F p tdonI ¢ tdonI x.

Proof. Expand the premises and the conclusion. The latter becomes
(p implied ((¢ implied z) — x)) — ((¢ implied z) — x).
By (—I), it suffices to derive x from the original premises
(p implied z) — z,

a.
b. (¢ implied x) — p implied ¢ implied x

and the successive premises of the expanded conclusion

14

c. p implied ((q implied z) — z),
d. ¢ implied =x.

By b and d, get p implied ¢ implied z. From this and c, get p implied z.
From this and a, get x. O

Proposition 6.3 (Del™).

p tdonS p tdonS xF p tdonS =z,
p tdonI p tdonI xt+ p tdonl =x.

Proof. We prove the first claim; the other is similar. It suffices to derive x from
the given premise, whose expanded form is

a. (p said((p said z) — x)) —
((p said z) — z),

and the premise
b. p said z.

of the (expanded) conclusion.

Since z, p said z b x, use (—I) to obtain = F (p said z) — z. By (9),
p said = b p said ((p said) — x), that is b. entails the premise of a. Use
this and b. to get the premise of a. Use a. and the premise of a. to get the
conclusion of a. Use b. and the conclusion of a. to obtain . O

7 Example

Dramatis personae:

Alice, a buyer

Publishers, an organization of publishers
Best, a publisher

Bob, a hacker

Bureau, a service rating organization
Chux (an allusion to Chuck’s), a seller
Integral, a certification company

Public substrate functions:
object isGovernedBy policy_-name of authority
returns a truth value
time; < times
returns a truth value
curTime ()
returns time and date

15

Attributes:

mayDo action on object
is a licensed seller
accedes to purchase object
(accepting the associated rights and obligations)
has good standing

Now we are ready to proceed to the story. Alice wishes to play a rare Song and
is willing to pay for that, but she wants to make sure that the deal is proper
and in accordance with the law. She has a knowledge assertion:

Alice: s isGovernedBy pol of auth —
auth tdonI Alice mayDo a on s

We abbreviate the awkward “mayDo PLAY on s” to “may play s”. Alice learns
that

Song is governed by Policy A of Publishers

and so she knows

(A1) Publishers tdonI Alice may play Song

which, by the definition of tdonI, is equivalent to

(Publishers implied Alice may play Song) —
(Alice may play Song).

Alice gets a communication from Publishers:

Publishers to Alice: [Alice may play Song «—
c’ is a licensed seller A c" said Alice may play Song].

Here ¢ is a verbatim variable to be substituted by the receiver. Alice uses seller
Chux and accepts any proviso-free communication from Publishers. The latter
means that she has a filter assertion

Alice from Publishers: [x]

where x is an infon variable. Accordingly she learns

Chux is a licensed seller A
(A2) Chux said Alice may play Song —
Publishers implied Alice may play Song.

In full infon logic, implications (A1) and (A2) give

Chux is a licensed seller A Chux said Alice may play Song —
Alice may play Song

which is equivalent to

16

Chux is a licensed seller — Chux tdonS Alice may play Song

but let us stick to primal logic. Alice has a knowledge assertion

(A3) Bureau tdonl c¢ is a licensed seller.

And indeed, licenses are regulated by Bureau that maintains a database of
licensed sellers and license expiration dates using substrate functions

isLicensed : sellers to Bool
LicExp : sellers to Time/Date.

They have a communication assertion

Bureau to Alice:
[c is a licensed seller «— CurTime"() < LicExp(c)] <«
c isLicensed.

Notice the verbatim nullary function CurTime?() to be evaluated by receivers.
Notice also that constraint CurTime”() < LicExp(c) has been implicitly con-
verted to infon [CurTime¥() < LicExp(c)] asInfon. Chux happens to be
licensed with expiration date of 1/1/2012. Accordingly Alice gets communica-
tion
Bureau to Alice:
CurTime? () < 1/1/2012 —
Bureau implied Chux is a licensed seller.

The premise is satisfied as it evaluates to (true asInfon) which is an axiom.
Alice does not filter Bureau’s communications and and so she learns

Bureau implied Chux is a licensed seller.

Taking into account (A3) she learns

(A4) Chux is a licensed seller.

Chux uses a communication assertion
Chux to p: [p may play s] <
(Co) p implied p accedes to purchase s A
Integral said p has good standing.

Being in constant contact with Integral, Chux easily checks the second condi-
tion. Alice happens to have a good standing according to Integral. But Chux
requires that clients agree to purchase items before they can use them. Alice
communicates:

Alice to Chux:
[Alice accedes to purchase Song].

This is filtered through

(C1) Chux from p: p accedes to purchase s

17

giving rise to Chux knowing

Alice said Alice accedes to purchase Song.

Chux issues communication

Chux to Alice: [Alice may play Song],

and so Alice learns

(A5) Chux said (Alice may play Song).

Now, (A2), (A4) and (A5) give
Publishers implied (Alice may play Song).

Taking (A1) into account, Alice gets
Alice may play Song.

A cautionary note on divulging information
Concerning (C1), Chux can be more general. They can even assert

(C2) Chux from p: [x]

which means only that they are willing to learn p said x regardless of what x
is. This implies no trust in p on saying = and thus does not lead, all by itself,
to the knowledge of x. But a blanket assertion:

(C3) Chux from p: [x «— y]

amounts to divulging information (though they may have a narrow version of
(C3) where p is bound e.g. to the departments of Chux). To illustrate the
problem with (C3), suppose that Chux knows already that Integral said that
Bob has good standing. If Bob wishes to find out whether Alice also has good
standing with Integral, he can try this:
Bob to Chux:
(B1) [Bob accedes to purchase Song «—
Integral said Alice has good standing].

By checking whether Chux allows him to play Song, Bob could indirectly check
whether Chux knows that Integral said Alice has good standing. Indeed suppose
that Chux knows the proviso of (B1). Then, by (B1),

Chux knows Bob implied Bob accedes to purchase Song
and, by (C0), Bob gets a communication
Bob may play Song.

The communication is not issued by Chux if they do not know the proviso of
(B1).

18

8 Primal infon logic

Primal infon logic [11] is a fragment of infon logic that is useful in practice. In
contrast the infon logic of §4 and 5 will be called full infon logic. To make this
paper more self-contained, we recall some some basic facts about primal logic.
To avoid confusion, one may want to use a different entailment sign, e.g. FP, for
primal infon logic. But we will be dealing only with primal infon logic in the
rest of the paper and so we will use the usual entailment sign .

8.1 Axioms and rules of inference

We recall the Hilbert-type calculus for primal infon logic. (There is also an
equivalent sequent calculus in the logic paper [11]). Let pref with or without a
subscript range over strings of the form

g1 told; go tolds ...qx toldy

where told ranges over {said, implied} and k may be zero. We write pref; <
pref, if pref, is the result of replacing some (possibly none) occurrences of
said in pref, with implied.

Axioms
pref True
Inference rules
£
(Pref Deflation) P T Shere pref, < pref,
pref, x
(PrefAE) pref (z Ay) pref (z A y)
prefx prefy
(PrefAl) prefx prefy
pref (z A y)
(Pref—E) pref x pref (v — y)
prefy
£
(Pref—I) _ prety
pref (z — y)

8.2 Model theory

Kripke structures for primal infon logic are defined the same way as those for
full infon logic except that the requirement K4 is replaced with a weaker — and
nondeterministic — requirement

19

K4P. C(z — y) is an arbitrary cone such that
Cly) CCx—y) <
{u: Clx)n{v:v>u} CCy)}.

Theorem 8.1 (Soundness and completeness; [11]). The following claims are
equivalent.

1. T'F ¢ in primal infon logic.

2. For any Kripke structure K for primal infon logic, if I’ holds in K then ¢
does.

8. For any finite Kripke structure K for primal infon logic, if T' holds in K
then ¢ does.

8.3 Linear-time algorithms

The ground multiple derivability problem GMD(L) for a logic L is to compute,
given ground hypotheses x4, ..., x,, and queries y1,...,yn, which of the queries
are derivable from the hypotheses.

We define the quotation depth of infons and set of infons. Note the unusual
clause CDA4.

CD1. QD(x) = 0 if z is primitive.

CD2. QD(p told z) = 1 A QD(x).

CDs. QD(z A y) = max{QD(x), QD(y)}.
CDA4. QD(z — y) = QD(y)

CDs. QD) = max{QD(z) : x € T'}.

Theorem 8.2. Let Ly be the fragment of primal infon logic with infons of
quotation depth < d. Every GMD(Ly) is solvable in linear time.

9 SecPAL and primal infon logic

We consider SecPAL without the construct can act as. We could have easily
incorporated the construct into DKAL 2 (and indeed it was incorporated into
DKAL 1) which would allow us to deal with full SecPAL. But, as we explained
in §1, we abandoned the construct because attributes with parameters are a
finer tool to deal with roles. In the rest of this section, SecPAL means SecPAL
without the can act as construct.

9.1 Embedding theorem

In the DKAL 1 paper, we translated SecPAL into a coarser version of DKAL 1
[9, §11] where principals broadcast whatever they know. In retrospect SecPAL is
really about logic. Recall the bounded-quotation-depth fragments L4 of primal

20

infon logic introduced in Theorem 8.2. We translate SecPAL into a courser
version L3 of Ly where every principal p seconds whatever is said or implied by
any other principal q. More exactly, L is an extension of Ly with additional
axioms
e p seconds q said x, thatis

q said x — p implied q said x

e p seconds q implied x, thatis
q implied x — p implied q implied x

Note that neither said nor implied can appear in x.

Any constraint domain of SecPAL is turned into a DKAL substrate in the
obvious way, as in [9], except that now we treat relations as Boolean-valued
functions and we presume that the substrate has the usual Boolean connectives,
so that — over the substrate — SecPAL constraints are Boolean terms.

Translation

Variable, constantfe) =
Constraint) T(con) = con asInfon
Predicate) 7(pred) = pred
Fact) 7(e pred ej,...,e,) =
Z(e, pred(e,...,ey)) =
e pred(e,...,ep,)
7(e can sayg fact) =
e tdonS 7(fact) =
(e said 7(fact))— 7(fact)
7(e can say, fact) =
e tdonI 7(fact) =
(e implied 7(fact))— 7(fact)

e

(
(
(
(

(Assertion)

7(A says fact if facty,...,fact,,con) =

A said ((r(fact;) A ... A 7(fact,) A 7(con))
— 71 (fact))

Thus SecPAL variables and constants become DKAL variables and constants
respectively. Constraints become infon terms. Predicates become attribute
names. Flat facts become attribute infon terms, and can-say facts become
conditional infon terms. Finally SecPAL assertions become speech infon terms.

Theorem 9.1 (Embedding Theorem).

1. If AC,0F+ A says f in SecPAL, then
I A said 7(f) in LY.

2. If AC,o+ A says f in SecPAL, then
'+ A implied 7(f) in LY.

21

Here AC is a safe SecPAL assertion context, A is a principal constant, f is
a ground fact expression, and I is the set of instantiations of speech terms in
T(AC) with constants that occur in AC or in A says f.

Proof. The proof is a routine induction on the given SecPAL derivation. Since
AC is safe, we may — according to [4] — consider a derivation of A says f from
ground instantiations of AC assertions with constants in AC or in A says f.
We describe how to turn that derivation into a derivation of A said 7(f) from
[in LY.

SecPAL rule (cond) is simulated by the rule (Pref—E) of primal infon logic.
SecPAL rule (can say) has two versions depending on whether D is 0 or co. We
consider here only the case D = 0; the other case is similar. Suppose AC, 00 - A
says B can sayq f, and AC,0 - B says f. By the induction hypothesis, we
have
(a) TH A implied B tdonS 7(f),

() T'+ B said 7(f).

Claim (b) and the first additional axiom of L3 give
(¢) TH A implied B said 7(f).

By rule (Pref—E), the desired A implied 7(f) follows from (a) and (c). O

As in the case of the translation of SecPAL to DKAL 1, the converse of the
embedding theorem fails. The counterexample to this effect, given in [9, §11],
also applies in this case. Thus L9 and therefore primal infon logic produce more
true consequences than SecPAL.

9.2 Linear time algorithm

In §8.3 we defined the ground multiple derivability problem GMD(L) for an ar-
bitrary logic L and we defined bounded-quotation-depth fragments L, of primal
infon logic.

Theorem 9.2. GMD(SecPAL) is solvable in linear time.
We can use Theorems 8.2 and 9.1 to solve GMD(SecPAL). The approach

has a drawback, however. According to the translation table

7(e can sayg fact) = e tdonS fact =
(e said 7(fact))— 7(fact),

7(e can say, fact) = e tdonI fact
(e implied 7(fact))— 7(fact).

Notice that the implication mentions fact twice. As a result the given hypothe-
ses may be lengthened in the translation. It would be better not to expand
abbreviations tdonS, tdonI and treat them as primitives. We will do that.

22

Proof sketch The fragment L; of primal infon logic allows one to quote (that
is to use said and implied) but does not allow one to nest quotations. We
proved that GMD(L,) is solvable in linear time [11]. Here we prove Theorems 9.2
by modifying that proof, called the original proof below. We have to assume
the familiarity with the original proof.

The (cond) rule of SecPAL is taken care of automatically by logic Li. It is
the rule (can say) than needs special care. The rule exists in two forms that can
be expressed in our terms as follows:

(s1) (A implied B tdonS x) A (B said x) — A implied x.
(A implied B tdonI x) A (B implied x) — A implied x.

We treat tdonS and tdonI as synthetic functions subject to conditions (SI).

Expressions p tdonS x and p tdonI z are not abbreviations. Let, as in §5,

told range over {said, implied}, and let p tdonT x mean that p is trusted on

telling . In other words, tdonT is tdonS if told = said, and tdonT is tdonI if

told = implied.

Parsing There is a problem that needs to be taken care at this stage. It is
possible that eventually we will derive the left part (A implied B tdonT x) A
(B told z) of one of (S1) rules but A implied z is not present in the input.
We remedy the problem by means of one depth-first traversal.

For every node u with label A implied do the following. For every node v
with label B tdonT under u, attach an extra parent with label A implied to
the child of v. The new node has no ancestors.

Cai-Paige algorithm As in the original proof, the Cai-Paige algorithm com-
putes homonymy pointers H(u). Adjust the algorithm to produce additional
pointers as follows. Call homonymy originals u, v mates if their locutions form
a pair B tdonT z and B told x. The mates are on the same height level. For
every pair of mates, put pointers from one mate to the other. If only one of the
two exists, the new pointer is null.

Table The table acquires another static field. If the label of u is B tdonT and
the parent of u has label A implied then insert the parent into the new field of
H(u).

Processing Enrich the processing of pending formulas L(u) taking into ac-
count rules (S1).

If L(u) is B told x and the new pointer at u is not null, retrieve the mate
v of u with locution B tdonT z. Go through the nodes w in new field of v
such that, according to the status of w, the locution L(w) has been proved. By
construction L(w) has the form A implied B tdonT z, and the grandchild of
w has an extra parent w’ with locution A implied z. If the status of H(w') is
raw, set the status of H(w’) to pending.

23

Suppose that L(u) is A implied B tdonT z and let uy be the child of u.
Then L(ug) = B tdonT « and so the child of ug has an extra parent «’ with
locution A implied z. If the new pointer at ug is not null, retrieve the mate
v of ug with locution B told z. If the status of v shows that L(v) has been
proved but the status of H(u') is raw, set the status field of H(u') to pending.
That completes the description of the algorithm. O

10 Related work

It was the Speaks-For calculus [1] that pioneered the logic based approach to
access control, introducing among other things the says modality that has been
used ever since. Our more recent genealogy consists primarily of Datalog based
languages Binder [8], Delegation Logic [14], and especially SecPAL [4]. The
DKAL 1 paper [9] summarizes the influence of these languages on our work.
An additional language, SeNDlog [2] was developed independently from and
roughly at the same time as DKAL 1. Like DKAL, it deals with both logic
and communication, one of very few languages to address both issues. Logic in
SeNDlog is handled directly by use of Datalog, and communication is handled by
means of import and export predicates. The infon logic of DKAL 2 goes much
beyond Datalog because of the use of functions and because of conditionals.
Communication is also much enhanced in DKAL 2 by means of verbatim tags,
by enabling the communication of conditional infons, and by the use of filter
assertions to prevent information leakage that may result from communication
of conditional infons.

Becker and Nanz addressed recently [5] an important issue of abduction: in
the case of access denial, which authorization facts or credentials were missing
that would have led to an access grant? We intend to extend the existing
implementation of DKAL with abduction heuristics.

Work in the Trust Management framework [15] addresses policy analysis, in-
cluding reachability and invariance checking. A similar analysis was done in the
DKAL application paper [10]. The richness of DKAL makes these issues more
challenging. The application paper [10] also achieved the true distributivity of
DKAL. In SecPAL (the language rather than the implementation) principals are
distributed but their sayings are collected and processed together. In DKAL
1 principals compute their own knowledge, yet some vestiges of a centralized
approach remain, e.g. the global state. In [10] different principals live in dif-
ferent worlds exchanging information by means of communication and filtering
assertions.

24

References

[1]

[9]

[10]

[11]

[12]

[13]

Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin, “A
Calculus for Access Control in Distributed Systems,” ACM Transactions
on Programming Languages and Systems, 15:4, 706-734, 1993.

Martin Abadi and Boon Thau Loo, “Towards a Declarative Language and

System for Secure Networking”, in International Workshop on Networking
Meets Databases (NetDB ’07), 2007.

Andreas Blass and Yuri Gurevich, “Two Forms of One Useful Logic: Ex-
istential Fixed Point Logic and Liberal Datalog,” Bulletin of the European
Association for Theoretical Computer Science 95 (June 2008), 164-182.

Moritz Y. Becker, Cédric Fournet and Andrew D. Gordon, “SecPAL: De-
sign and Semantics of a Decetralized Authorization Language”, 20th IEEE
Computer Security Foundations Symposium (CSF), 3-15, 2007.

Moritz Y. Becker and Sebastian Nanz, “The Role of Abduction in Declara-
tive Authorization Policies, “ in 10th International Symposium on Practical
Aspects of Declarative Languages (PADL), 2008.

Jiazhen Cai and Robert Paige, “Using multiset discrimination to solve lan-
guage processing problems without hashing,” Theoretical Computer Science
145:(1-2), 189228, July 1995.

Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, Algo-
rithms, MIT Press, 1990.

John DeTreville, “Binder, a Logic-Based Security Language”, in IEEE
Symposium on Security and Privacy, 105-113, 2002.

Yuri Gurevich and Itay Neeman, “DKAL: Distributed-Knowledge Autho-
rization Language,” 21st IEEE Computer Security Foundations Symposium
(CSF 2008), 149-162.

Yuri Gurevich and Arnab Roy, “Operational Semantics for DKAL: Appli-
cation and Analysis,” Microsoft Research Tech Report MSR-TR-2008-184,
December 2008.

Yuri Gurevich and Itay Neeman, “The Infon Logic,” Microsoft Research
Tech Report MSR-TR-2009-10, January 2009.

Stephen Cole Kleene, “Introduction to Metamathematics*“ D. Van Nostrand
Company, inc. 1952.

Saul Kripke, “Semantical Analysis of Intuitionistic Logic I,” in Formal Sys-
tems and Recursive Functions, eds. J. W. Addison, L. Henkin and A. Tarski,
North-Holland 1965, 92—130.

25

[14]

[15]

[16]

[17]

[18]
[19]

Ninghui Li, Benjamin N. Grosof and Joan Feigenbaum, “Delegation Logic:
A Logic-Based Approach to Distributed Authorization”, ACM Trans. on
Information and System Security (TISSEC) 6:1 (February 2003), 128-171.

Ninghui Li, John C. Mitchell, and William H. Winsborough “Beyond Proof-
of-Compliance: Safety and Availability Analysis in Trust Management”, in
Proceedings of 2003 IEEE Symposium on Security and Privacy, 123-139,
May 2003.

Grigori Mints, A Short Introduction to Intuitionistic Logic, Kluwer Aca-
demic / Plenum Publishers 2000.

Richard Statman, “Intuitionistic Propositional Logic is Polynomial-Space
Complete,” Theoretical Computer Science 9:1 (July 1979), 67-72.

TSCP, http://tscp.org/, viewed Feb. 06, 2009.

XACML, Extensible Access Control Markup Language, http://xml.
coverpages.org/xacml.html, viewed Feb. 02, 2009.

26

