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Abstract

In this paper, we study the problem of landmark recogni-

tion and propose to leverage 3D visual phrases to improve

the performance. A 3D visual phrase is a triangular facet

on the surface of a reconstructed 3D landmark model. In

contrast to existing 2D visual phrases which are mainly

based on co-occurrence statistics in 2D image planes, such

3D visual phrases explicitly characterize the spatial struc-

ture of a 3D object (landmark), and are highly robust to

projective transformations due to viewpoint changes. We

present an effective solution to discover, describe, and de-

tect 3D visual phrases. The experiments on 10 landmarks

have achieved promising results, which demonstrate that

our approach provides a good balance between precision

and recall of landmark recognition while reducing the de-

pendence on post-verification to reject false positives.

1. Introduction

Landmark recognition has become an active research

topic in the last few years. The problem is, given a query

photo, how to automatically determine where it was taken

based on a massive image database collected from the Web.

Landmark recognition has great potentials in applications

like geo-localization [8, 11, 17] and tourist guide [19, 25].

Most existing work considers landmark recognition as

an image retrieval task, and is mainly based on the well-

known bag-of-words (BoW) framework [18, 13]. That is,

both the query and database images are characterized by

local features like SIFT [12], and the database images are

indexed to quickly identify similar images matched with

the query. Although such a framework is quite efficient in

search, it still has limitations. First, the database index con-

tains considerable features extracted from irrelevant objects

(e.g., faces, trees, and road markings) [9]. These noisy fea-

tures inevitably confuse the matching process and hurt the

recognition performance. Second, the index construction
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Figure 1. 2D visual phrase vs. 3D visual phrase. (a) 2D visual

phrases are basically co-occurrence statistics within some local re-

gions, which are sensitive to viewpoint changes. By contrast, (b)

3D visual phrases are more reliable since they are derived from the

physical structure of a landmark.

usually treats the database images independently and thus

ignores the geometric relationships between them.

Benefiting from the recent progress in large-scale

structure-from-motion (SfM) [19, 20, 21], it is no longer

an obstacle to reconstruct 3D models from unordered im-

ages. Such a 3D model can not only distinguish the target

object (landmark) from noisy background, but also keep the

geometric relationships between database images. Hence,

leveraging 3D models for object recognition has been a no-

ticeable trend. Some approaches adopt 3D models to select

or synthesize images taken from iconic viewpoints for 2D

image matching [8, 14], while some other approaches di-

rectly perform matching between 3D object models and 2D

query images [15, 1, 11, 16].

The matching process, either image-to-image or 3D-

model-to-image, is essentially finding correspondences be-

tween 2D local features. However, the limited discrimi-

native power of individual features usually leads to inac-

curate correspondences. Therefore, geometric verification,

e.g., planar homography estimation (for image-to-image)

or pose estimation (for 3D-model-to-image), is a necessary

post-processing step so as to eliminate false matches. To re-



duce the dependence on geometric verification and relieve

the ambiguity of individual features, people either try to

embed local context into visual words [4, 5], or construct

visual phrases [22, 23, 24] or feature triplets [26] to en-

hance distinctiveness. All these attempts work on image-to-

image matching, and therefore mainly consider contextual

information in 2D image planes. For example, as shown in

Fig. 1 (a), a (2D) visual phrase is basically a combination of

several visual words which frequently co-occur with each

other within some local neighborhood areas.

Although visual phrases and extensions have achieved

success in many applications, it is non-trivial to define an

appropriate local neighborhood area in 2D image planes.

The most common practice is to pre-define a radius based

on heuristic rules, as shown in Fig. 1 (a). Unfortunately,

such a 2D local region inherently lacks robustness to view-

point changes which serve as a common challenge of land-

mark recognition. Therefore, 2D visual phrases are not

guaranteed to be perspective invariant. This observation

motivates us to discover more reliable visual phrases based

on 3D models. Instead of finding groups of local features

(visual words) in 2D images, we work on identifying groups

of 3D points, named as 3D visual phrases, in the real world

space. Such a 3D visual phrase characterizes the intrinsic

physical structure of an object (landmark), and is robust to

viewpoint changes. As shown in Fig. 1 (b), the three 3D

points on Big Ben would co-occur in images taken from

various viewpoints where they are simultaneously visible.

Inspired by existing 3D model-based methods, in this

paper, we propose to discover 3D visual phrases from 3D

landmark models and treat landmark recognition task as the

identification of these visual phrases from unseen images.

To this end, there are several problems to be answered:

– First, how to construct a reasonable set of 3D visual

phrases for a landmark? As the 3D point cloud of a land-

mark model could contain tens of thousands of points,

arbitrary combination is obviously infeasible. Moreover,

the discovered visual phrases should provide a compre-

hensive description to the whole landmark structure.

– Second, how to describe a 3D visual phrase and detect

it in unseen images? Both the visual appearance of 3D

points and their geometric relationships should be prop-

erly characterized. Besides, an efficient scheme is nec-

essary for fast phrase detection from unseen images.

– Third, how to balance precision and recall of recogni-

tion? While the preserved geometric constraints tend to

provide high precision, 3D visual phrases need properly

relaxed detection method to ensure recall on unseen data.

To make the idea of 3D visual phrase-based landmark

recognition practical, in this paper, we propose a series of

solutions to address the aforementioned problems. First, in

Section 2, we define 3D visual phrases based on the trian-

gular facets which approximately cover the surface of a 3D
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Figure 2. An illustration of 3D visual phrase discovery. Given a set

of landmark images in (a), a 3D point cloud (b) is reconstructed

using structure-from-motion. From the point cloud, a subset of

points (c) are carefully selected, based on which space carving is

performed to generate surface facets (d) as 3D visual phrases.

landmark model. Each facet captures a local spatial struc-

ture of the 3D model, and all the facets as a whole provide

a full description to the landmark. Moreover, the number

of facets is with the same order of magnitude as the 3D

points. Second, in Section 3 we introduce a comprehensive

set of descriptions, for both visual appearance and geomet-

ric structure, to characterize a 3D visual phrase. In this part,

we try to preserve as much information as possible to en-

sure the recall of visual phrases on unseen data while keep-

ing sufficient constraints to filter out false detections. Then

in Section 4, we propose an efficient detection algorithm to

identify 3D visual phrases from a query image. The princi-

pal idea is to leverage the spatial correlations between 3D

visual phrases as a constraint to quickly reject false posi-

tives. Finally, we report the evaluation results in Section 5,

and conclude the paper in Section 6.

2. 3D Visual Phrase Discovery

In this section, we introduce the discovery of 3D visual

phrases from landmark images, as shown in Fig. 2. First, a

3D point cloud is reconstructed from an image collection.

Then, the 3D points are sub-sampled while keeping a spa-

tial coverage of the entire model. Finally, a 3D surface is

constructed based on the selected 3D points and triangular

facets on the surface are harvested as 3D visual phrases.

3D Landmark Reconstruction. Given a set I of images

for a landmark, we use structure-from-motion (SfM) [7] to

reconstruct the 3D model 1 . A 3D model here is actually a

point cloud composed of a set P of 3D points, as shown in

Fig. 2 (b). Meanwhile, we also obtain the estimated cam-

1In practice, it is convenient to perform 3D reconstruction using off-

the-shelf tools such as Bundler [19, 20] and VisualSFM [21].



era pose of each image, under the same world coordinate

system where the point cloud is defined. For each 3D point

p ∈ P , denote Ip ⊂ I the set of images in which p is ob-

served and registered to the 3D model. Accordingly, the

popularity of p is defined as the cardinality of Ip.

3D Point Selection. A point cloud reconstructed from ap-

proximately one thousand images typically contains tens of

thousands of 3D points, which are usually redundant for

landmark recognition. Furthermore, the points may vary

a lot in popularity, ranging from two to hundreds of im-

ages, and thus have different repeatability in unseen images.

Therefore, we need to select a subset of points most impor-

tant for identifying landmarks, by considering two criteria

for point selection, namely (1) point popularity and (2) spa-

tial coverage of the landmark model. Note that we explic-

itly require the selected points to cover the 3D model rather

than the empirically observed 2D images [11], in order to

better handle images taken from arbitrary viewpoints.

To sample a point cloud P at a given sampling rate η,

we first construct an octree to represent the 3D bounding

cube of P , and then iteratively partition the most dense (i.e.,

containing the most points) voxel until obtaining η × |P|
non-empty voxels. Finally, the most popular point in each

of these voxels is selected to compose a point subset Pη , as

illustrated in Fig. 2 (c).

3D Visual Phrase Generation. Taking each point in Pη as

a 3D visual word, the most intuitive method for generating

a 3D visual phrase is to combine several points into a group.

However, arbitrary combination has two major drawbacks.

For one thing, it inevitably suffers from the large amount

of points, which result in numerous possible combinations

intractable to select. For another, it lacks principle for gen-

erating a compact and sufficient set of visual phrases for

landmark recognition from new images, due to the difficulty

in fully covering the landmark structure. Therefore, we

propose to derive visual phrases from the facets that com-

pose the surface of a 3D landmark model. The advantages

are three-fold: (1) each facet corresponds to a local spatial

structure of the landmark and consequently has sound visi-

bility and repeatability in unseen images, (2) the facets as a

whole approximate the 3D surface and provide a full cover-

age of the landmark, and (3) the facets construct a compact

set with the same order of magnitude as the 3D points.

For 3D modeling, it is common to approximate an object

surface using a number of Delaunay triangles. Motivated by

this, we first conduct Delaunay Triangulation on the con-

vex hull that envelopes a given 3D point set, and then re-

fine the surface using space carving techniques [3, 10], i.e.,

iteratively removing false facets which occlude any points

visible from empirical images. Finally, each facet on the re-

sulting surface is taken as a 3D visual phrase, as shown in

Fig. 2 (d), which is essentially a triplet of 3D points with a

particular geometric structure.
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Figure 3. An illustration of multi-scale (sparse, moderate, and

dense) 3D visual phrases. Multiple sets of 3D visual phrases are

generated from different subsets of 3D points to handle different

object sizes (long shot, medium shot, and close-up) in 2D images.

Multi-Scale 3D Visual Phrases. A landmark can be

photographed from different distances with different fo-

cal lengths, resulting in various sizes of objects in photos.

Meanwhile, each facet on the landmark is visible only in a

proper scale range. For instance, a small facet may be too

local to be identified in a long shot image; while a large

facet cannot completely appear in a close-up image where

the landmark is only partially observed.

To identify landmarks in different 2D sizes, we need to

generate multi-scale 3D visual phrases (facets). Intuitively,

the fewer number of points selected, the larger the facets

generated. Therefore, we simply select subsets of points

from the raw point cloud at various sampling rates (e.g.,

η = 1%, 2%, 4%) to generate multi-scale visual phrases,

as the sparse, moderate, and dense models shown in Fig. 3,

which are created to handle photos taken from long shot,

medium shot, and close-up, respectively.

The multi-scale visual phrases can be considered as sev-

eral models to describe the same landmark at different gran-

ularity levels. Without loss of generality, in the subsequent

sections, we just introduce how to deal with visual phrases

under the same scale.

3. 3D Visual Phrase Description

The discovered 3D visual phrases are expected to be rec-

ognizable in unseen images. Such a detection procedure

highly relies on recorded characteristics of visual phrases

to distinguish true occurrences from false positives. Since

each 3D visual phrase is a triangular facet with three vertex

points, it is characterized from two perspectives, namely (1)

visual appearance of each vertex point and (2) geometric

structure among the points. During visual phrase detection,

appearance provides relaxed criteria to recall true positives,

while geometric structure serves as constraints to eliminate

false positives and boost the precision.
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Figure 4. An illustrative example of the motivation for enriching

appearance descriptions by 3D-to-2D re-projection. Please refer

to the text for more details.

Visual Appearance. By describing the visual appearance

of a 3D point p, we aim to preserve a comprehensive and

compact representation, for matching with occurrences of p

in unseen images. In this work, we adopt SIFT [12] feature

as the appearance description to keypoints in images; each

SIFT feature f is characterized by a 128-dimensional de-

scriptor des(f) extracted from a local image patch in scale

scl(f). Each 3D point p ∈ P appears in a set Ip of images

and accordingly matches with a set Fp of SIFT features (one

per image).

A straightforward appearance description of p is the

mean descriptor averaged over SIFT features in Fp [11].

However, the raw Fp is usually insufficient to provide a

comprehensive description, because 3D reconstruction re-

lies on very strict point matching which inevitably leads to

two typical kinds of mismatches. On one hand, one physi-

cal object point would be over-split into multiple 3D points

close to each other (e.g., pa and pb in Fig. 4) during SfM,

if the corresponding SIFT features fail to match due to de-

scriptor variation under viewpoint or illumination changes.

Obviously, spatially sub-sampling the point cloud as afore-

mentioned would not preserve all such 3D points, and in-

evitably harm the capability in matching with new images.

On the other hand, a 3D point may be visible in some im-

ages but the corresponding SIFT features are not registered

to the 3D model due to appearance variation.

To compensate for the above loss in the observations of

3D points’ appearance, we propose to expand Fp by re-

projecting each 3D point p to all the 2D images in which

it is visible, based on the camera poses estimated during

SfM. Then, any SIFT feature is appended to Fp if it is suffi-

ciently close (e.g., with a maximum deviation of two pixels)

to such a re-projected 2D position.

To describe the appearance of p compactly, we further

compress the expandedFp by clustering the descriptors and

preserving only a set Ap of mean descriptors calculated

from the L=5 largest clusters. As a byproduct, occasional

noise arising from re-projection (e.g., descriptors extracted

on occluding objects like the bicycle in Fig. 4) could be re-

moved from the compact description.

normal

(a) (b)

Gaussian

Figure 5. Geometric structure descriptions of a 3D visual phrase:

(a) cyclic order and (b) scale-distance cross-ratio.

Geometric Structure. As aforementioned, comprehensive

appearance descriptions to 3D points could enable relaxed

point matching and thus suggest abundant candidates when

detecting visual phrase from new images. To distinguish

true visual phrases from false ones, it is highly desired to

preserve inter-point geometric structures as (1) constraints

for rejecting false candidates which violate particular geo-

metric properties and (2) criteria for ranking candidates by

consistency to stable statistics from the observed data.

Given a 3D visual phrase containing three vertex points,

denoted as v= (p1, p2, p3), a simple and robust geometric

property is the cyclic order of the points. Thus, we define

a direction around the perimeter of v based on its outer-

pointing surface normal and the right-hand rule; along this

direction, a cyclic order of vertex points is defined accord-

ingly. As the example shown in Fig. 5 (a), the point order

is ov = 〈p1→p2→p3〉. Such an order is invariant to projec-

tive transformations as it holds for any 2D projection (i.e., a

triplet of SIFT features). Thus, it provides a rigid criterion

for identifying true occurrences of the visual phrase.

Besides the rigid point orders, we consider a more flexi-

ble geometric property, by assuming a close correlation be-

tween the scales and pairwise distances of 3D points’ 2D

projections from different viewpoints. Specifically, we de-

fine a measure on projections of two 3D points (particularly

on two SIFT features with their scales providing two auxil-

iary points). Let SIFT features f1 and f2 be projections of

3D points p1 and p2 in an image, respectively; their 2D dis-

tance is d1,2=dist(f1, f2) and respective scales are scl(f1)
and scl(f2), based on which a ratio measure is defined as

R(f1, f2) ,
(d1,2 + scl(f1))× (d1,2 + scl(f2))

d1,2 × (d1,2 + scl(f1) + scl(f2))
.

Such a measure is an analogue of the projective-invariant

cross-ratio of four collinear points, and thus is robust to

viewpoint changes. To tolerate errors in SIFT scale estima-

tion under projective transformations, we average the R val-

ues over all images in which both the points are observed,

yielding a Gaussian distribution with mean µR(p1, p2) and

standard deviation σR(p1, p2), as illustrated in Fig. 5 (b).
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Figure 6. An illustration of the detection of 3D visual phrases from

a query image. Please refer to the text for more details.

4. 3D Visual Phrase Detection

Given a set V of 3D visual phrases and a query image Iq ,

the landmark recognition task is essentially the detection of

3D visual phrases appearing in Iq , as illustrated in Fig. 6.

Appearance-based Point Matching. In this step, we aim

to match every 3D point involved in V with the SIFT fea-

tures extracted from Iq based on visual appearance. To en-

sure the recall of truly appearing 3D visual phrases, we seek

for multiple SIFT features as candidates for each 3D point,

because the most visually similar ones are not necessarily

the real projections of 3D points.

Remind that we have characterized the appearance of

each 3D point p as a set Ap of (mean) SIFT descriptors;

thus, the appearance similarity of a SIFT feature f to p can

be defined based on cosine similarity as

simapp(f ; p) = max
a∈Ap

cos (des(f), a).

For each point, we preserve up to top N (empirically

set to 3) candidate SIFT features with appearance similarity

above an empirical threshold α= 0.8, to control the trade-

off between the recall of visual phrases and the scale of so-

lution space. In the implementation, the point matching is

accelerated by approximate nearest neighbor search [2].

Geometry-based Intra-Phrase Ranking. After matching

3D points with SIFT features, we can obtain a set V ′ of vi-

sual phrases that all three vertex points have matched with

at least one feature. Since there are usually multiple candi-

date features per point, each visual phrase in V ′ could have

dozens of candidates (as in Fig. 6 (b)), in which at most only

one is true. To boost the signal-to-noise ratio for subsequent

processing, we resort to the known geometric structure of

each visual phrase to filter its corresponding candidates and

eliminate the false ones with different structures.

Let visual phrase v= (p1, p2, p3) correspond to a set C
of candidates, each being a triplet of SIFT features, denoted

as c = (f1, f2, f3), where fi is a candidate projection of

pi. To filter C, we first compare the cyclic order of features

in each candidate with the standard order ov, and discard

any candidate with a different order. For each remaining

candidate c, a geometric similarity score is then calculated

to rate the degree to which c has a similar scale-distance

correlation with v, as

simgeo(c;v) = exp(−τ
∑

(i,j)∈E

(R(fi, fj)− µR(pi, pj))
2

σ2
R(pi, pj)

),

where τ is a positive coefficient empirically set to 0.1; E=
{(1, 2), (2, 3), (3, 1)} enumerates the point pairs. Finally,

the candidates are ranked by the overall similarity

simoverall(c;v) = simgeo(c;v) ×

3∏

i=1

simapp(fi; pi),

which serves as the confidence that candidate c is a true oc-

currence of v. In the implementation, the candidate ranking

list of each visual phrase is truncated to retain at most top

M=5 candidates with confidence exceeding β=0.2.

Graph-based Inter-Phrase Refinement. A large propor-

tion of false visual phrase candidates can be filtered out by

geometric criteria as above. The remaining spurious candi-

dates could be further rejected by considering relationships

between candidates for different visual phrases. To this end,

we build an undirected graph (as shown in Fig. 6 (c)), in

which each node is a visual phrase candidate, and each edge

exists if and only if the two candidates it connects could be

true simultaneously; such co-occurrence is feasible when

two candidates meet both of the following criteria:

– They must NOT lead to ambiguity in point-to-feature

matching (i.e., one 3D point matching with multiple fea-

tures or vice versa).

– As 2D triangles, they must NOT have overlapping cov-

erage areas. This condition always holds for true projec-

tions of 3D visual phrases since they are components of

a non-overlapping coverage of the landmark surface.

Within such a graph, all the true candidates are ex-

pected to be included in a clique (i.e., a subset of nodes

fully connected by edges), which indicates no conflict be-

tween them and thus justifies their co-occurrence. There-

fore, an intuitive solution for locating true candidates is

to find the maximum clique in the graph and harvest its

member nodes. However, maximum clique finding is NP-

complete and time-consuming even using approximation al-

gorithms [6]. For the sake of efficiency, we design an ap-

proximation solution which relies on the confidence of each

node namely visual phrase candidate. Starting from the

most confident node, we iteratively select the most confi-

dent node that is connected to all the selected ones, until no

more nodes can be added. In such a greedy manner, a set of

most likely visual phrase occurrences are finally identified

(as illustrated in Fig. 6 (d) and (e)), serving as 3D-to-2D

matches for landmark recognition.
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Figure 7. An overview of the landmarks and the reconstructed 3D point clouds. Each landmark is shown with the (abbreviated) name, the

number of images registered to the point cloud, and the number of 3D points in the point cloud.

5. Evaluation

5.1. Experimental Settings

Dataset. To evaluate the effectiveness of the proposed

method, we constructed a dataset consisting of images for

10 popular landmarks 2. For each landmark, we collected

several thousands of images from Flickr by issuing textual

and geographical queries, and randomly sampled a set of

images with known focal lengths (estimated from the EXIF

tags) for 3D reconstruction. An overview of the dataset with

the reconstructed 3D point clouds is shown in Fig. 7.

As the positive test set for each landmark, another collec-

tion of web images was crawled, manually checked, and di-

versified by (global feature based) clustering to form a com-

pact set of 200 test images. To obtain negative test images

for all the landmarks, we adopted the publicly available Ox-

ford Buildings Dataset [13] consisting of 5062 Flickr im-

ages, because it contains both common noisy images and

building images of particular Oxford landmarks, and thus is

proper for evaluation of landmark recognition task.

Performance Metrics. Landmark recognition is essen-

tially a classification problem, where a fundamental task is

to determine whether a query image is relevant to a land-

mark [25]. Without loss of generality, in this paper we

are concerned with such a binary decision task, and natu-

rally adopt precision and recall as the performance mea-

sures. Precision is the proportion of positive images out of

2The entire dataset (including image thumbnails, SIFT features, re-

constructed 3D point clouds, and test cases) is publicly available at

http://landmark3d.codeplex.com/.

all images suggested by a solution, and recall is the pro-

portion of identified ones out of all positive images in the

ground truth. With different thresholds for binary decision,

a precision-recall curve is commonly used to measure the

overall performance. As image retrieval is out of the focus

of this paper, the related performance metrics (e.g., mAP)

are not included in the evaluation.

Methods. To compare with the proposed 3D visual

phrase based landmark recognition solution (abbreviated as

3DVP), we first involved a bag-of-visual-words [18, 13]

based solution BoW as baseline, which classifies each

query image by searching nearest neighbors from landmark

images registered to the corresponding 3D model, based on

a vocabulary of 1M visual words. Then we extended the

BoW implementation to include 2D visual phrases (2DVP),

following the instructions in [23]. We also implemented

a state-of-the-art approach, Point-to-Feature (P2F) Match-

ing [11], which leverages 3D models for landmark recogni-

tion by matching 3D points to 2D features in query images.

According to [11], for each landmark, a compact set of 3D

points is selected from the 3D point cloud to cover each

registered image at least K =100 times; the P2F matching

relies on SIFT ratio test with the threshold ratio λ set to 0.7.

Each of the four methods can be combined with geomet-

ric verification as post-processing. The BoW and 2DVP

methods filter nearest neighbor images via planar homog-

raphy estimation. P2F adopts camera pose estimation (6-

point DLT algorithm [7] with RANSAC) to filter putative

point-to-feature matches. Our solution 3DVP can also be

combined with pose estimation as post-processing by ob-

taining putative matches from the detected visual phrases.
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Figure 8. The precision-recall curves of different methods for recognizing 10 landmarks, without geometric verification.

5.2. Results

We compared both the effectiveness and efficiency of all

the four methods for landmark recognition.

Effectiveness. For each landmark, we evaluated the recog-

nition performance of all methods by matching test images

with observed landmark images (for BoW and 2DVP) or

the 3D model (for P2F and 3DVP). The resulting precision-

recall curves are shown in Fig. 8, from which some observa-

tions can be drawn. First, BoW has the worst performance

due to the lack of differentiation between landmarks and

irrelevant objects in the same images, while 2DVP gets sig-

nificant improvement by considering spatial co-occurrence

of visual words. Second, P2F is generally superior to 2DVP

because 3D points, compared with 2D descriptions, charac-

terize the landmarks more accurately and ignore irrelevant

objects. Third, 3DVP outperforms other methods by lever-

aging 3D geometric structures of landmarks. The results

also demonstrate that 3D visual phrases, compared with 2D

visual phrases, are more repeatable and robust under projec-

tive transformations for landmarks observed from various

viewpoints (e.g., DFK, TFN).

We further evaluated the performance of all methods

combined with geometric verification, which accepts a

putative image if the estimated pose has sufficient inlier

matches (i.e., at least 8 inliers for a planar homography or

12 for a projection matrix [11]). According to the results

listed in Table 1, geometric verification consistently leads

to improvement in precision and decrease in recall. Par-

ticularly, homography estimation eliminates a large propor-

tion of spurious landmark images suggested by 2D methods

but some false positives still exist; while pose estimation,

which is more strict to estimate a projective transformation,

rejects all the false alarms. Compared with P2F, 3DVP gen-

erally has less recall drops and keeps consistent advantages

in recall after geometric verification, indicating that 3D vi-

sual phrases enable more reliable matching than 3D points

Landmark
BoW 2DVP P2F 3DVP

raw +homo. raw +homo. raw +pose raw +pose

ADT
precision

recall

0.09
0.91

0.24
0.88

0.39
0.89

0.96
0.72

0.59
0.91

1.00
0.80

0.99
0.86

1.00
0.82

BBN
precision

recall

0.10
0.82

0.23
0.79

0.51
0.87

0.93
0.76

0.26
0.98

1.00
0.76

0.80
0.96

1.00
0.81

CLT
precision

recall

0.17
0.90

0.23
0.88

0.35
0.97

0.86
0.95

0.89
0.94

1.00
0.92

0.99
0.94

1.00
0.93

DFK
precision

recall

0.14
0.81

0.18
0.75

0.28
0.86

0.68
0.58

0.48
0.83

1.00
0.48

0.89
0.80

1.00
0.58

IDH
precision

recall

0.08
0.95

0.20
0.87

0.27
0.92

0.66
0.69

0.36
0.93

1.00
0.56

0.97
0.86

1.00
0.64

LTP
precision

recall

0.06
0.99

0.20
0.77

0.50
0.96

0.95
0.64

0.52
0.95

1.00
0.49

0.95
0.96

1.00
0.57

NDP
precision

recall

0.08
0.92

0.26
0.86

0.36
0.92

0.85
0.87

0.98
0.80

1.00
0.66

1.00
0.86

1.00
0.71

SBC
precision

recall

0.14
0.90

0.20
0.69

0.39
0.88

0.82
0.77

0.81
0.81

1.00
0.48

0.98
0.78

1.00
0.58

SLC
precision

recall

0.11
0.86

0.21
0.65

0.52
0.83

0.90
0.73

0.22
0.96

1.00
0.51

0.83
0.90

1.00
0.62

TFN
precision

recall

0.10
0.87

0.27
0.84

0.36
0.84

0.87
0.65

0.77
0.86

1.00
0.68

0.97
0.85

1.00
0.78

Table 1. Performance comparison of different landmark recogni-

tion methods without vs. with geometric verification.

due to the preserved geometric structures. As an interest-

ing phenomenon, the recall drops extremely for landmarks

with abundant repetitive structures (e.g., LTP), which lead

to spatial ambiguity in matching between local descriptions

and therefore make putative matches difficult to agree on a

consistent pose estimate; actually, this is a known challenge

to the 3D reconstruction problem and is one of our future

tasks. Note that as the evaluation is conducted on diversi-

fied test sets including sufficient tough cases, the resulting

recall is lower than that reported in [11, 16], where the test

sets are limited to the images that are empirically able to be

registered to the 3D models.

Efficiency. As high efficiency is desirable in some land-

mark recognition scenarios, we also compared the speed of

different methods. As reported in Table 2, the execution

time consists of two parts, for (1) 2D-to-2D or 3D-to-2D

matching and (2) geometric verification (RANSAC) which

takes a maximum of 5,000 iterations for all methods.



Method
Matching Geometric Verification

avg. time (s) avg. time (s) #verified img. total time (s)

BoW 1.15± 0.27 0.16± 0.07 1839 ± 628 278.9± 118.2

2DVP 1.03± 0.24 0.14± 0.04 481± 111 58.9± 11.0

P2F 0.89± 0.28 0.09± 0.02 398± 232 37.9± 22.1

3DVP 0.86± 0.21 0.08± 0.01 189 ± 23 16.8± 4.3

Table 2. Efficiency comparison of different landmark recognition

methods. All the statistics are averaged over the 10 landmarks.

The overall verification time of the four methods is in

decreasing order, with a decreasing number of images that

need verification. Particularly, the significant time reduction

from 2DVP/3DVP to their counterpart methods demon-

strates the effectiveness of visual phrases for providing

more geometrically reliable matches. To verify each image,

the two 3D methods generally need less time than 2D meth-

ods because they tend to detect fewer putative matches with

higher signal-to-noise ratio. With more confident matches

than P2F, 3DVP further reduces the time cost as well as the

dependence on geometric verification.

As for the matching process, all the methods have com-

parable time cost. However, it should be noted that ex-

haustive 3D-to-2D matching is currently implemented for

both P2F and 3DVP methods because accuracy is our pri-

mary focus in this work. We also notice some acceleration

strategies in the literature, including prioritized 3D-to-2D

matching introduced in [11], and vocabulary-based priori-

tized search proposed in [16]. Such strategies could be nat-

urally integrated with the proposed 3D visual phrases to im-

prove the efficiency, which is in our recent plan.

6. Conclusion and Future Work

In this paper, 3D visual phrases have been proposed for

landmark recognition. The basic idea is to incorporate spa-

tial structure information to improve the discriminative abil-

ity of individual 3D points. In contrast to 2D visual phrases

defined in 2D image planes, 3D visual phrases are derived

from the physical space and explicitly characterize the 3D

spatial structure of a landmark. Hence, they are inherently

associated with descriptions that are highly robust to view-

point changes. A complete solution has been proposed to

discover, describe, and detect 3D visual phrases. Experi-

ments on diverse data have shown promising performance

of landmark recognition.

As a first attempt to leverage 3D visual phrases, the cur-

rent solution still has room for improvement. There are

several future directions. First, more geometric constraints

are desired to afford to more relaxed point matching, as the

missing of good correspondences still limits the recall. Sec-

ond, we will accelerate the algorithms, especially the point

matching step. And at last, we plan to extend 3D visual

phrases to handle repetitive structures of landmarks.
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