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ABSTRACT 

Music and songs usually have repeating patterns and prominent 
structure.  The automatic extraction of such repeating patterns and 
structure is useful for further music summarization, indexing and 
retrieval.  In this paper, an effective approach of repeating pattern 
discovery and structure analysis of acoustic music data is 
proposed.  In order to represent the melody similarity more 
accurately, in our approach, Constant Q transform is utilized in 
feature extraction and a novel similarity measure between musical 
features is proposed.  From the self-similarity matrix of the music, 
an adaptive method is then presented to extract all significant 
repeating patterns.  Based on the obtained repetitions, musical 
structure is further analyzed using a few heuristic rules. Finally, 
an optimization-based approach is proposed to determine the 
accurate boundary of each musical section. Evaluations on various 
music pieces indicate our approach is promising.  

Categories and Subject Descriptors 
H.5.5 [Information Interfaces and Presentation]: Sound and 
Music Computing - signal analysis, synthesis and processing; 
systems; H.3.1 [Information Storage and Retrieval]: Content 
Analysis and Indexing - indexing methods. 

General Terms 
Algorithms, Management, Design, Experimentation 

Keywords 
Music structure, repeating pattern, CQT, structure-based distance 
measure  

1. INTRODUCTION 
Music generally shows strong self-similarity, and thus has some 
repeating patterns and prominently repetitive structure.  These 
repeating patterns and structure are very helpful for further music 
analysis such as music snippet [1] or music thumbnail [6], music 
summarization [2][5], and music retrieval. However, few 

literatures have fully addressed this issue from acoustic musical 
data. Several published works on repeating pattern discovery are 
all for MIDI data [3][4], which are not practical in real acoustic 
music processing.  Some works relevant to repeating pattern 
analysis from acoustic data can be found in works on music 
summarization and music thumbnail, as one step towards the 
objective.  In works [1] and [2], a clustering method or Hidden 
Markov Model (HMM) is utilized to group the segments with 
similar characteristics.  Cooper [5] also presents a method to find 
given-length repetitions, by employing a 2D similarity matrix. In 
[6], Bartsch proposes an approach to catch chorus, by using a new 
feature set, quantized chromagram, to represent the spectral 
energy at each twelve pitch classes.  Goto [7] also uses chroma 
features to detect chorus sections for musical audio signal and 
further developed a way to detect the modulated repetitions. 

However, most of the above algorithms are designed to extract 
one segment of chorus or thumbnail, they did not fully investigate 
all the repeating patterns in a music piece.  In this paper, a new 
approach is proposed to extract all the significant repetitions that 
have similar melody.  In order to represent the melody similarity 
more accurately, Constant Q transform (CQT) [9] is utilized for 
feature extraction and a novel distance measure is proposed.  CQT 
features represent the spectral energy at each exact note, so that it 
contains more information than chroma-based features and MFCC 
and thus is more suitable in our application. The proposed 
distance measure emphasizes more on melody similarity and sup-
presses timbre similarity.  Thus it facilitates to find the repetition 
between two similar melodies played with different instruments.   

Based on the results of repeating pattern analysis [14], we further 
design an algorithm to discover the structural information of a 
music piece, such as AABABB, which indicates the first music 
section is repeated at the second and fourth section while the third 
one is repeated at the fifth and sixth section.  Chai [8] presents a 
preliminary approach to structural analysis.  In this paper, a more 
complete investigation is presented.  Besides repetitive structures, 
we also propose an optimization-based approach to determine the 
boundary of each section of the music structure.  

The proposed approach to repeating pattern and music structure 
analysis is illustrated in the Fig. 1.  First, each feature set is 
extracted from the acoustic data, including temporal feature, 
spectral feature and CQT feature.  Temporal features are used to 
estimate tempo period and the length of a musical phrase, which is 
used as the minimum length of a significant repetition in repeating 
patterns discovery and boundary determination.  Spectral features 
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are used for vocal and instrumental sounds discrimination in order 
to identify the intro, interlude and coda [15] of a popular song in 
final music structure analysis.  CQT features are used to represent 
the note and melody information, based on which a self-similarity 
matrix of the music is obtained, using our novel distance measure.  
The significant repeating patterns are then detected from the 
similarity matrix with an adaptive threshold setting method.  
Finally, the boundaries of repeating patterns are roughly aligned 
to facilitate music structure inference; and the obtained structure 
is utilized correspondingly to refine the boundary of each musical 
section, with an optimization-based approach.  
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Fig. 1 A system framework of repeating pattern discovery and 
structure analysis from acoustic music data 

The rest of the paper is organized as follows. Section 2 discusses 
the CQT features used in the algorithm.  Section 3 presents our 
novel distance measure which emphasizes more on melody 
similarity and suppresses timbre similarity.  Section 4 describes 
the approach to musical repeating pattern discovery, and Section 5 
addresses the problem of musical structure analysis.  Evaluations 
and discussions are presented in the Section 6.   

2. CQT FEATURES 
Human perception of repetitions in popular song is generally 
based on melody similarity but not timbre similarity.  That is, we 
are going to discover melody repetition more than timbre 
repetition. Therefore, the extracted features and corresponding 
similarity measure should focus on melody similarity which is 
related to a sequence of note similarity, rather than timbre 
similarity.  Ideally, music is converted into note sequence by 
multi-pitch analysis, and then melody similarity can be easily 
measured based on the explicit note sequence. However, music 
transcription is not feasible currently and most of the conventional 
features, such as Mel-Frequency Cepstral Coefficient (MFCC) 
[13], indicate more on timbre properties and could not represent 
note accurately.  In order to extract acoustic features representing 
the music notes more accurately, constant Q transform (CQT) [9] 
is used in our approach.  CQT has the ability to represent musical 
signal as a spectral sequence of exact musical notes, with a bank 

of filters whose center frequencies are geometrically spaced.  In 
our approach, the musical notes in 3 octaves, i. e. 36 semi-tones 
are extracted, as  
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where X(k) represents the spectral energy of the k-th note with the 
center frequency fk , 
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and f0 stands for the minimal frequency that we are interested in 
computing. It is chosen to be 130.8Hz as the pitch of C3, since 
most pitches in pop music are larger than it.  b is set as 12 in order 
to obtain 12 semitones in an octave.  Q is a constant ratio of 
frequency to resolution, 

)12(1)/( 12/1
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and accordingly, for the k-th filter, the window width Nk is set as:  

� �ksk fQfN /=     (4) 

where fs denotes the sampling rate.  

Compared to Discrete Fourier Transform (DFT), CQT uses 
geometrically spaced center frequencies, which are related to 
exact musical notes.  Moreover, CQT has a finer resolution, and 
thus gives a better representation of music signals.  The chroma 
algorithm [6][7] also has a similar idea as CQT and gives the 
spectral energy of 12 pitch classes.  However, it is derived from 
DFT directly and ignores the difference between octaves.  Thus, it 
does not have finer resolution and is not as accurate as the features 
obtained by CQT.  Experiments also indicate that the CQT 
features perform better than MFCC and chroma features which 
are based on DFT.  

Based on CQT, a feature vector of 36-dimension is extracted. In 
our approach, the feature vector is further normalized to be unit- 
norm in order to compensate for the effect of the amplitude 
variations. 

3. DISTANCE MEASURE 
As mentioned above, we are trying to measure the melody 
similarity rather than timbre similarity.  Although the extracted 
features are more related to musical note and melody, we would 
also design a distance measure algorithm to focus more on note 
difference than timbre difference, in case that the same melody is 
played by different instruments in two different sections.  

The timbre feature of a note is generally represented by the 
spectral energy at each of its harmonic partials which are the 
components of CQT feature vector.  Consider two sounds with the 
same note but played by different instruments, they will have the 
same fundamental frequency but different timbre.  However, 
conventional Euclidean distance or cosine distance considers the 
absolute value of the partial difference, and makes the distance 
between the same notes relatively large and thus cannot represent 
accurately the actual similarity between them.    

Fig. 2(a) illustrates a self-similarity matrix based on the Euclidean 
distance among three notes, which includes D3 played by cello, 



D3 by altotrombone, and D#3 by cello.  The similarity scores are 
normalized to [0, 1], and brighter points represent more similar 
musical frames.  From the matrix, it is noted that the similarity 
between two D3s played by different instruments is not 
prominently higher than that between D3 and D#3 played by cello, 
since the timbre difference is over-considered. Thus, it may 
introduce some noise in further repetition discovery. 
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Fig. 2 Self-similarity matrixes of three notes, which includes 
D3 played by cello(D3_c), D3 by altotrombone(D3_a), and D#3 
by cello(D#3_c), using difference distance measure (a) 
Euclidean distance (b) Structure-based distance measure 

In order to discriminate the note property from timbre property, 
the difference vector �V between two notes is examined, which is 
defined as follows, 

|]|,|,[| 21211121 NN vvvvVVV −−=−=∆ �  (5) 

where V1 and V2 are the feature vectors of two notes, and N is the 
dimension of the feature vector.  

It is noted that the difference vectors have different structure 
properties in the case of timbre variation and note variation.  For a 
difference vector between the same notes with different timbres, 
its spectral components are mostly placed at the positions of f0, 2f0, 
3f0, etc, assuming f0 is the fundamental frequency.  Thus, the 
spectral peaks are mostly spaced with some prominent regular 
intervals, such as 12 semitones (octave), 7 semitones (perfect fifth) 
or 4 semitones (major third).  For example, 2f0 is 12 semitones 
apart from f0, and the 3f0 is about 7 semitones apart from 2f0.  
These prominent regular intervals appearing in the difference 
vector of the same notes are called harmonic interval in the later 
of this paper for simplicity.  However, the difference vector 
between two different notes has not such characteristic, as Fig. 3 
illustrates.   
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Fig. 3 Different structures of the difference vectors, which are 
between (a) D3 played by cello and by altotrombone; (b) D3 
and D#3 played by cello 

In Fig. 3, the left is the difference vector between the same note 
D3 played by cello and by altotrombone, and the right is that of 
different notes D3 and D#3 played by cello.  It is noted that the 
peaks are mostly spaced by 12, 7 or 4 semitones in the left figure, 
while they are not in the right.   However, the norms of these two 
vectors, which are the corresponding Euclidean distances, are 
almost the same, although the structures of these two vectors are 
completely different.  

Although the above descriptions are for single notes, the 
difference vector between two chords also has similar property 
more or less, especially when the notes of a chord are perfect-fifth 
or major-third spaced.  

3.1 Structure-based Distance Definition 
From above section, it is clear that, in order to focus more on note 
difference than timbre difference, the distance measure had better 
be dependent on the structure of the difference vector but not just 
the norm of it.  That is, if the spectral peaks in the difference 
vector are mostly apart with harmonic intervals, the two sounds 
are more likely from the same note, and the distance should be 
relatively small; otherwise, the distance should be large.   

In order to describe the structure, i.e. the peak intervals in the 
difference vector, the autocorrelation is used as follows, 
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where �vi is the i-th component of �V, and m is the interval index. 
r(m) is the autocorrelation coefficient and can roughly represent 
the likelihood that the peaks in difference vector has a period of m.  
For example, the magnitude of r(12) reflects the degree that the 
peaks are octave-spaced.  Thus the structure is described as a 
vector containing all the coefficients, 
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However, different coefficient should have different contribution 
in distance computation.  For example, the coefficients with 
harmonic intervals, such as r(12) or r(7), represent the possibility 
that the two sounds are the same note, so they should be 
suppressed in the distance measure, in order to make timbre 
difference less important.  Therefore, to reflect the contribution of 
various intervals, different weightings are given to different auto-
correlation coefficients.  Thus, the distance between the i-th and j-
th musical frame can be estimated as,  
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T

ij RWd =     (8) 

where Rij is the corresponding structure between two frames, and 
TNwwwW )]1(,),1(),0([ −= � is a weighting vector, which is 

chosen in the next sub-section. 

Actually, the above measure only considers the isolated two 
frames.  In order to give a more comprehensive representation of 
the distance, it is desirable that their neighboring temporal frames 
in a window are taken into considerations, as the following, , 

�=
−

−=
++

1

,
'

2
1 w

w

N

Nk
kjki

w
ij d

N
d     (9) 

where 2Nw neighboring frames are also considered. 



3.2 Weighting Determination 
The basic rule in choosing the weightings is that, if the interval 
index of a coefficient is more possible to be a harmonic interval, 
the corresponding weighting should be smaller.  For example, the 
weighting of r(12) or r(7) should be relatively small.  

Although various weightings can be chosen, in our application, 
the spiral array model [10] established on music perception is 
utilized in weighting determination.  The model maps each 
musical note onto a 3D helix, where adjacent notes are perfect-
fifth (7 semitones) apart.  Thus the order of notes on the spiral is: 
C, G, D, A, E, B, F#, C#, G#, D#, A#, F.   It is noted that if the 
music interval between two notes is more possible to be harmonic 
interval, the distance between these two notes is smaller on the 
helix.  Thus, the distance between notes with interval m can be 
utilized as the weighting of r(m).  However, on the helix, the 
adjacent notes are 7 semitones apart instead of 1 semitone, so we 
should re-order them to give an appropriate weighting, as  
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where P(m) is the position of m-th note and set as [10] suggested, 

]
2

,
2

cos,
2

[sin)(
mmm

mP
ππ=   (11) 

and A is a normalization coefficient to satisfy � =1)(mw . It is 
noted that the weighting for octave interval is set as 0, in order to 
further de-emphasize the effect of timbre difference.  

Integrating these weightings into Eq(8) and Eq(9) obtains 
structure-based distance measure.  Corresponding to Fig. 2(a), the 
similarity matrix based on new distance is shown in Fig. 2(b).  It 
can be seen that the similarity between the same notes are more 
distinguish-able from those between different notes now.  

4. REPEATING PATTERN DISCOVERY IN 
SIMILARITY MATRIX 
Once the distance measure is given, a self-similarity matrix S={Sij} 
can be computed from the whole music, with each Sij is simply set 
as 1/dij in our approach  The repeating patterns are represented as 
the highlighted lines parallel to the diagonal, as Fig. 4 (a) shows.  
The brighter the line, the more similar two segments are; and the 
longer the line, the more significant the repeating pattern is.  

In order not to trivialize the repetition detection, we assume that a 
significant repeating pattern at least has the length of a musical 
phrase.  It is reasonable since most of the songs satisfy such an 
assumption.  Based on some music theories, a musical phrase 
usually contains four or eight bars.  Thus, tempo, which measures 
the duration of two contiguous beats, can be used to estimate the 
length of a musical phrase.  In our approach, a similar algorithm 
as the work presented in [1] is employed for tempo estimation and 
musical phrase length estimation.  

After the minimum length is given, the significant repetitions are 
enhanced and then all repeating patterns are explored with an 
adaptive threshold.  

4.1 Erosion and Dilation 
For the convenience of processing, we map the similarity matrix 
into a time-lag matrix T [7], as 

liili ST += ,,    (12) 

where Ti,l represents the similarity between frame i and the frame 
i+l which has lag l.  Thus, the repeating patterns are converted to 
be parallel to the horizontal lines in the lower triangular time-lag 
matrix, as Fig. 4 (b) shows. 

However, in the time-lag matrix, an actual repetition lines may be 
broken into several lines; and meanwhile, some short horizontal 
lines may also be introduced due to the noise, as illustrated in Fig. 
4 (b).  In order to further enhance the significant repetition lines, 
and remove the short lines which may be caused by noises, 
erosion and dilation [11] which are common operations in 
grayscale image processing, are applied in our approach. 

The erosion operation is used to replace a point with the minimum 
value in a range around it, as  

]}2/,2/[|min{ ,
'
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where L is the minimal length of repetition we want to target, 
which is adaptively set as the length of a musical phrase. 

Correspondingly, the dilation operation is used to replace a point 
with the maximum value in the range of L as  

]}2/,2/[|max{ ,
'
, LLkTT kjiji −∈= +   (14) 

Generally, erosion and dilation is used sequentially to remove the 
short lines whose length is shorter than L.  After these operations, 
the significant repetitions are enhanced and the short lines are 
weakened.  Fig. 4 (c) illustrates the time-lag matrix after these 
operations. 
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Fig. 4 Repeating pattern discovery of an example music clip. 
(a) The self-similarity matrix; (b) Corresponding time-lag 
matrix (c)  Time-lag matrix after erosion and dilation; (d) 
Optimal final results 



4.2 Adaptive Threshold Setting  
To this end, a threshold should be determined to discriminate the 
repetitions from non-repetitions. However, experiments indicate 
that the threshold is strongly dependent on the samples.  It is not 
appropriate to use a constant threshold for all music pieces.  
Instead, we should determine it adaptively.  In [7], a threshold is 
chosen by maximizing intra-class distance while minimizing 
inner-class distance. However, we found this method causes many 
false repetitions when dealing with our time-lag matrix, if the 
threshold is allowed to be chosen from the whole value domain of 
similarity levels.  This is because, in our cases, the two classes are 
extremely unbalanced.  The repetitions lines generally occupy less 
than 1% points of the whole matrix.  Thus, the threshold should be 
chosen in a constrained range. 

To solve this issue, we firstly estimate the probability distribution 
of similarity levels in the time-lag matrix.  Considering the repeti-
tions almost have the largest value but with a small number, a 
range of [P�, P�] in which a reasonable threshold may exist is 
estimated, where P� and P� stands for the percentile of probability 
distribution.  For instance, P0.99 represents a threshold classify 1% 
of points as repetitions.  In our implementation, the range is 
experimentally chosen as [P0.99, P0.998]. Then, the optimal thresh-
old is chosen in this range, based on the criterion that maximizes 
intra-class distance while minimizes inner-class distance. 

After the threshold is determined, the time-lag matrix can be 
easily quantized to binary value (0, 1).  Since the quantization will 
also cause some breaks in the repetition line, dilation and then 
erosion are used sequentially to remove the short breaks.  The 
final time-lag matrix is shown in Fig. 4 (d), from which the 
repetitions can be easily detected.  

Moreover, in our approach, if segment A is a repetition of 
segment B, while B is a repetition of C, it is assumed that A is 
also a repetition of C.  Such assumption is utilized in case that not 
all of repetition pairs are completely detected. 

5. MUSIC STRUCTURE ANALYSIS 
After repeating patterns are obtained, musical structure can be 
correspondingly inferred from them.  However, in previous 
processing, the boundary of obtained repetitions may be not 
aligned with each other, due to the errors introduced by 
erosion/dilation processing and binarization.  Two examples are 
illustrated in Fig. 5, where each line shows a pair of repeating 
segments with a same color.  Fig. 5(a) shows an example of start 
time shift between two segments, while in Fig. 5(b), the end time 
of two segments and the start time of another segment are 
overlapped.  It is intuitively obvious that the segments in these 
two cases share the same boundary, if the shift or overlapping 
between the boundaries is short enough, for example, less than 
half of a musical phrase in our implementation.  It should be noted 
that if the shift or overlapping is long enough, it will be identified 
as an individual section of a subtle structure (in Section5.1) but 
not the one introduced by boundary misalignment.   

In general, the optimal boundary of those misaligned segments 
can be selected from uncertain area determined by the boundary 
shift or boundary overlapping between them, as the Fig. 5 
illustrates, where the uncertain area is marked with slash lines, 
such as [T1, T2] in case (a) and [T3, T4] in case (b).  

T1 T2 T3 T4

(a) (b)

 
Fig. 5 An illustration on boundary misalignment.  The region 
with slash lines is the uncertain area, from which the optimal 
boundary can be selected  

It is better to align the boundary of the extracted repeating 
segments to facilitate further processing.  However, in boundary 
alignment, the adjustment of one segment’s boundary also affects 
the boundaries of its repetitions.  It is difficult to find a global 
boundary optimization method without any overall structure 
information. In our approach, we firstly identify the uncertain area 
which includes the potential boundary, and roughly align the 
boundary of each segment with the boundary of corresponding 
uncertain area in order to facilitate further structure analysis, 
without considering the effects among one another.  Then, the 
music structure is analyzed with some heuristic rules.  After the 
music structure is obtained, the boundary of each repetition or 
section is refined with an optimization-based algorithm.  And 
finally, the instrumental sections, including intro, interlude and 
coda, are identified to obtain a more comprehensive structure. 

5.1 Structure Inference with Heuristic Rules  
After the repeating patterns are detected and the boundary is 
preliminary aligned, we can label each repeating segments to 
obtain the musical structure.  The basic rule is to give a same label 
to the segments which are repetitions of each other, from the 
beginning to the end of a song.  This process is iteratively 
processed until all the repeating segments are labeled.  If the all 
repeating segments are not overlapped with each other, the above 
process can be smoothly finished.  However, some obtained 
segments are usually overlapped, due to the repetitive property of 
the music structure or the effect of a subtle structure.  Fig. 6 
shows two fundamental cases on segments overlapping, where 
case (a) shows two overlapped segments which are not repetitive 
with each other, while case (b) shows two overlapped repetitions.  
It indicates that the segments may be not an individual section in 
the structure but contain a more subtle structure.  In these cases, 
some heuristic rules are utilized in our approach to label the 
structure.  
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Fig. 6  Structure inference with segments overlapping (a) 
overlapped between two segments which are not repetitive (b) 
overlapped between two repetitions 



5.1.1 Overlapped Non-Repetitions  
Fig. 6 (a) shows two segments [T1, T3] and [T2, T4] overlaps, 
while these two segments are not repetitions of each other.  It 
indicates that each segment is not an individual section in the 
structure, but may contain a more subtle structure and thus be 
composed of two sections.  In this case, we will split the segments 
at point T2 and T3 and take segment [T2, T3] as an individual 
section.  Thus the first segment is labeled as AB while the second 
segment is labeled as BC. 

It is noted that the same rule is also feasible in more complex 
cases, such as more than two segments are overlapped or one 
segment is included in another segment (e.g., when T4 = T3).  

5.1.2 Overlapped Repetitions  
Fig. 6 (b) illustrates another case that two repeating segments are 
overlapped, where segment [T1, T3] is a repetition of [T2, T4] 
while they are overlapped at [T2, T3].  It indicates there is an 
internal repetition in each segment.  For example, if the length of 
[T2, T3] is roughly equal to [T1, T2], each segment is actually 
composed of two repetitions of a subtle section such as AA.  

To be more general, if the length of the repeating segment is 
multiples of the overlapped length, the segment is generally 
composed of multiple repetitions of a subtle section.  The 
repetition number can be roughly estimated as,  
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5.2 Boundary Refinement  
After the music structure is obtained, the accurate boundary of 
each section can be determined.  Fig. 7 (a) illustrates an example 
result of structure analysis and the uncertain areas of boundary, 
where A and B represent the marked label of repeating sections, 
@ represents a section that only appears once and does not have 
any repetition, and the gray area with slash lines is the uncertain 
area from which the candidate boundary of each section can be 
selected.   Suppose there are N sections in the music, there will be 
N+1 boundaries to be determined.  Fig. 7 (a) also illustrates a 
candidate boundary sequence, which could be represented as, 

>=< +121 ,...,, Nbbb�  

where B indicates a candidate boundary set, and bi is the 
boundary between the (i-1)-th and i-th section.  

� � $ . � $ $

�* �- �+�, ���*

�� ���* ��� ���*

����

���

���

 
Fig. 7. Optimal boundary determination (a) an example result 
of structure and the uncertain boundary areas (b) similarity 
measure between two segments 

Intuitively, an optimal boundary set should satisfy the following 
two conditions, 

1) The optimal boundary set maximizes the similarity between 
every two sections with the same label. 

2) The length of each section with the same label is roughly 
equal to each other.   

To measure the similarity of two sections, the similarities between 
the corresponding points in these two sections are considered, as 
the Fig. 7 (b) shows.  The similarity can be denoted as, 
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where L=min{Lm, Ln}, Lm and Ln is the length of the m-th and n-th 
section, with Lm= bm+1 –bm and Ln= bn+1 –bn, and usually Lm = Ln. 

Thus, given the candidate boundary set, the objective function for 
selecting the optimal boundary set could be obtained, as 
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subject to the constrains )(1,,, GNiGnmLL inm ≤≤∈= , 
where Gi is the section group with the i-th label, NGi is the total 
number of section pairs in this group, and N(G) is the number of 
the groups or corresponding different labels.  

The constraints can also be integrated into the objective function, 
by considering the cost C introduced by length difference, as  
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Thus the optimal boundary set can be chosen to maximize the 
objective function, as  

)('maxarg �� F=���   (19) 

Many optimization methods can be used to solve such problem.  
However, for implementation simplicity, in our approach, the 
length of section with the same label is imperatively set to be 
equal to each other, thus, the section boundary is correlated with 
each other and the search space is dramatically decreased.  An 
exhaustive search is used to find the optimal boundary set. 

5.3 Identifying Intro, Interlude and Coda 
In the structure analysis, we still have some blank sections left to 
be labeled, such as the one marked as ‘@’ in Fig. 7 (a).  Such 
sections may be from the vocal section which only appears once, 
or from the instrumental section such as intro, interlude and coda, 
especially in popular music. Identifying these sections makes the 
structure analysis more comprehensive, especially for pop songs.  

To identify the instrumental sections, the first step is to 
discriminate the instrumental sounds from the vocals.  Following 
previous researches on speech ad audio processing, Mel-
Frequency Cepstral Coefficient (MFCC) [13] is extracted as frame 
features in our approach, and delta MFCC is also used to represent 
the temporal variation.  However, MFCC averages the spectral 
distribution in each sub-band, thus loses the relative spectral 
information.  To complement this feature, octave-based spectral 
contrast described in [1][12] is also utilized. It can also roughly 
reflect the relative distribution of the harmonic and non-harmonic 
components in the spectrum.   



These two feature sets are then concatenated into a combined 
feature vector for each frame.   Their statistics (mean and standard 
variation) are used to represent the characteristics of half-second 
sliding window.  Boosting algorithm (with native Bayes as weak 
classifier) is then used to classify each window into two classes.  

In our approach, it is assumed that each blank section belongs to 
either vocal section or instrumental section. If it happens to be a 
mixture of above two, the dominant one is detected.  Thus, the 
identification of each section is simply achieved by voting, based 
on the results of each sliding window. If the section is a vocal 
section, it is given a new label and integrated into the music 
structure.  If it is an instrumental section, it can be further 
identified as intro, interlude (bridge) or coda based on its position, 
since intro and coda are always at the beginning and ending of the 
music while the interludes are in the middle. 

6. EVALUATION AND DISCUSSION 
The evaluation of the proposed algorithm has been performed on a 
test database composed of 100 general popular songs, performed 
by both male and female singers. Most of the songs are with 
44.1KHz or 48KHz, stereo and 16 bits per sample. 

Two subjects with music experiences are asked to annotate the 
ground truth of the repetitions and the music structure.  In the 
repeating pattern annotation, they are asked to consider only the 
perceptually similar melodies, with a length longer than a 
minimum.  The music structure annotation is based on the labeled 
repeating patterns; and the boundary of each section is usually set 
at the time with a local energy valley.  When the subjects are 
confused on a song or cannot have a compromise on the 
annotation, the music is discarded and a substitute song is used.    

In our implementation, the audio data is firstly divided into frames 
of 100ms long.  Each frame is normalized and hamming 
windowed, and then feature vectors are extracted from it.  In the 
similarity matrix calculation, the basic unit is a 1 second segment 
with 0.5s overlapping.  It means that the resolution of the matrix is 
0.5s.  It is easy to improve the resolution in the cost of memory 
and computations.  From the similarity matrix, the repetitions are 
detected and the structure is analyzed accordingly. 

6.1 Repeating Pattern Discovery   
To evaluate the extracted repetitions against the ground truth, 
recall, precision and F1 measure are used in our experiments.  The 
recall and precision of each repeating pattern are calculated based 
on frame numbers, and then average recall and precision are used 
to measure the whole song.  F1 measure is defined as the 
harmonic mean of the average recall and precision, and represents 
the overall performance, as, 
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The first experiment compares the performance of different 
features, including CQT feature, chroma feature and MFCC, using 
the conventional Cosine distance.  Since the conventional chroma 
feature is 12-deminsion, while CQT has 36 dimensions, to explore 
more information and make the dimension same, in experiments, 
we also introduce another feature set by unpacking the 12D 
chroma to 36D, without integrating the components which are in 
the same pitch class but in different octave, just as CQT does.  
Correspondingly, 18D MFCC with 18D delta MFCC are used for 
dimension balance.  Table I lists the comparison results among 

CQT, chroma_36, chroma_12 and MFCC.  In the experiments, we 
find that MFCC always finds few repetitions for most of the songs.  
It also indicates that remarkable improvements are obtained using 
CQT. Comparing with chroma_12, the recall is improved by 
10.7% and precision is improved by 13.2%.  CQT also has about 
3% improvement from chroma_36. 

Table I Performance comparisons among CQT, chroma and 
MFCC, using the same Cosine distance 

 Recall Precision F1-measure 
CQT 79.48% 75.14% 77.25% 
Chroma_36 75.67% 73.93% 74.79% 
Chroma_12 71.76% 66.35% 68.95% 
MFCC 57.41% 43.61% 49.37% 

In order to evaluate the proposed structure-based distance measure, 
we compare the performance of our distance measure with Cosine 
distance and Euclidean distance measure, when using the same 
CQT features.  The detail results are shown in Table II.  It can be 
seen that the performance of cosine distance is similar to that of 
Euclidean distance, while our distance measure can further 
improve the performance. The recall is improved 2.7%-3.5%, 
precision is improved 4.3-9.0% and F1 is improved 3.5-6.3%.  
This is because our method emphasizes more on notes and thus is 
more robust to the timbre disturbance.  

Table II Performance comparisons among our distance, cosine 
distance and Euclidean distance using same CQT features  

 Recall Precision F1 
Our Method 82.92% 84.17% 83.54% 
Cosine 79.48% 75.14% 77.25% 
Euclidean 80.20% 79.86% 80.03% 

Above evaluations are focused on pop music. Another small 
dataset composed of Jazz, Rock and light music is also tried in 
order to investigate the performance of the proposed algorithm on 
different music genres. 

From the preliminary results, we find that our algorithm can 
greatly work on pop and light music. However, the performance 
on jazz and rock is not as good.  This is because pop and light 
music in the test database usually have clear structure and 
relatively strict repetition, while most of the rocks have much 
percussion which disturbs the repetition detection, and sometimes 
rock and jazz songs even don’t have distinct melody repetitions.  
In general, our algorithms work well for the songs with explicit 
structure and distinct melody repetitions.  

In our experiments, we also find our method usually is not able to 
catch the modulated melody [7], although the modulated melody 
usually appears less frequency in our database.  This is because 
our distance measure is based on the exact note, but not the 
melody contour.     

6.2 Structure Analysis 
Actually, the above evaluations on repeating patterns can roughly 
represent the performance of the obtained structure.  In order to 
evaluate the structure analysis more comprehensively, the 
evaluations on symbol musical section and boundary bias are both 
investigated in the experiments. 



A method similar to edit distance [8] is used to measure the 
difference between the actual structure and the obtained structure. 
It indicates how many detected sections are wrong, missed or 
inserted, compared with ground truth sections.  

Table III Average Edit Distance on the obtained structure 

 Error Miss Insert 

Average Section 0.35 0.41 1.77 

Table III lists the average section errors, misses and inserts of the 
detected structure of each song.  It can be seen that only 0.35 
sections are wrong and 0.41 sections are missed in each song.  
The most cases are inserts, where one section is usually divided 
into two sections. This is because our approach usually detects 
some subtle structures which are not labeled in ground truth. 
Although the obtained structure has some inserts, it actually is 
also an acceptable representation of actual structure, based on our 
informal subjective surveys.  

In order to represent the detail boundary information of each 
musical section, another experiment is performed to show the 
boundary bias between the obtained section boundary and the 
actual boundary.   The detail results are shown in the Fig. 8. 
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Fig. 8 Histogram of the shift between the obtained section 
boundary and the actual boundary 

From the Fig. 8, it can be seen that the nearly 55% of the obtained 
boundaries are in less than 2 seconds away from the actual ones, 
and 75% in less than 4 seconds.  It indicates our optimization-
based boundary refinement algorithm performs very well. In 
general application, such boundary is sufficiently accurate, since 
there are usually some instrumental sounds between two musical 
sections, and it is both reasonable to classify it into either section. 
Moreover, it is also difficult for humans to determine the accurate 
section boundaries.  

The final experiment is implemented to evaluate the performance 
of instrumental sections identification.  The detailed result is listed 
in Table IV, comparing the performance of vocal and instrumental 
sounds discrimination on half-second window and music section. 

Table IV. Vocal and instrumental discrimination on half-
second sliding window and musical section 

 On Window On Section 

Accuracy 75.6% 87.3% 

Discriminating vocal from instrumental sounds is a difficult task, 
since the vocal sounds are usually accompanied with instrument 
sounds in the music. Although experiment shows that the 
accuracy is only about 75% in classifying each half-second 
window, however, it can correctly discriminate 87% of the 
sections. This is reasonable since sections contain more 
information so that the identification accuracy is improved. 

7. CONCLUSIONS 
This paper presents an effective approach to discover repeating 
patterns and musical structure from acoustic signals.  Constant Q 
transform is used to extract notes information, and a novel 
distance measurement is proposed to measure the melody/note 
similarity more accurately.  An adaptive threshold setting method 
is utilized to extract all the significant repeating patterns.  Based 
on the obtained repetitions, the musical structure is further 
analyzed with some heuristic rules, and the optimal boundary of 
each music section is determined from the uncertain area with an 
optimization-based approach. Experiments indicate our approach 
is better than the conventional approaches which are based on 
DFT/chroma and cosine/Euclidean distance. Most of the music 
can get correct repetitions and structure; and most of the detected 
boundaries have little bias. 

There are still rooms to improve the proposed approach.  For 
example, more effective distance measure is expected in the case 
of the chord or concurrent multi-notes.  How to suppress the 
effects of percussions, and how to detect the repetitions of 
modulated melody, are also left difficult issues in future works.   
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