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Introduction

� Background
� Huge volumes of spatio-temporal data are available.
� Detection of abnormal traffic patterns is helpful.

� Procedures–how to detect the top anomalous regions
� Statistical Significance Computation: For any given region, the

hypothesis test is applied to calculate the score of a region,
typically LRT(likelihood ratio test statistical)

� Searching: An efficient approach is required to detect
spatial-temporal outliers. Naive approach is very time-consuming.
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Proposed Approach

� Approaches
� A generic framework for spatio-temporal outlier detection based on

existing LRT work is proposed.
� Persistent and emerging outlier detection models are defined in our

work.
� We prove that the pruning strategy of LRT is suitable in persistent

and emerging scenarios
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Model Definitions

� PSTO Model (Persistent Spatio-Temporal Outlier Model):

D(R) =


Πri∈RL(θr|XR)Πri∈R̄

L(θr̄|Xr̄)
Πri∈GL(θG|XG) for θr ≥ θr̄ ,

1 otherwise.

� ESTO Model (Emerging Spatio-Temporal Outlier Model):

D(R) =


Maxθr̄≤θtmin≤...≤θT

Πri∈RL(θtr|Xt
r)Πri∈R̄

L(θtr̄|Xt
r̄)

Πri∈GL(θtG|X
t
G)

for θr̄ ≤ θtmin ≤ ... ≤ θT ,

1 otherwise.
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Upper-bounding and Pruning Mechanism

� Lemma: Let region R = Rt1 ∪Rt2 for non-overlapping time
interval t1 and t2, we have:

L(θR|XR) ≤ L(θ′Rt1
|XRt1

)× L(θ′Rt2
|XRt2

) (1)

, where θR = θRt1
∪ θRt2

and XR = XRt1
∪XRt2

� Lemma: Let region R = R1 ∪R2 for non-overlapping spatial region R1
and R2,we have:

L(θR1, θR2|XR1, XR2) ≤ L(θ′R1t1 , θ
′
R1t2 |XR1t1 , XR1t2)× L(θ′R2t1 , θ

′
R2t2 |XR2t1 , XR2t2)

(2)

,where R, R1, R2 are composed of (t1,t2) time steps respectively. Here
we just use two time steps to illustrate. It is applicable to any t time
steps.
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Upper-bounding and Pruning Mechanism

� Upper-bounding

�

(a) R (b) R (c) R̄

Figure: Precomputation of any given spatial-temporal region R and
tiling of R̄.
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Computational Complexity

� In brute-force approach, there are totally O(n6) regions to be
searched in space-time dimension and the overall cost is O(cn6).

� Our approach reduce the cost by pre-compute two likelihood data
set: O(n4) ,O(n3).
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Experiment Results

� Synthetic Data
� The results are investigate from three aspects: (a) average pruning

rate; (b) accuracy; (c) average running time.
� Scenario I :The null hypothesis holds.
� Scenario II :The null hypothesis holds. The data in a random

selected cuboid area with size of 5× 4× 3 is generated with
different parameter setting.

� Scenario III: The alternative hypothesis holds (subtle outlier).
� Scenario IV: The alternative hypothesis holds (extreme outlier).

The data of a randomly selected cuboid area with size of 5× 4× 3
was generated by different success rate.
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Experiment Results

� Synthetic Data

Test Pruning(%) Accuracy(%)
4× 4× 4 100 no false alarm
8× 8× 8 100 no false alarm

16× 16× 16 99.9 0.1 false alarm

Table: Average Pruning Rate in Scenario I

Test Pruning(%) Accuracy(%)
4× 4× 4 100 no false alarm
8× 8× 8 99.99 0.01 false alarm

16× 16× 16 100 no false alarm

Table: Average Pruning Rate and Accuracy in Scenario II
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Experiment Results

� Synthetic Data

Test 16/16/16 32/16/16 64/16/16 32/32/32 128/16/16
ppsto (%) 95.27 97.35 97.64 97.47 96.74
pesto (%) 98.37 98.46 98.69 99.11 99.23

Table: Average Pruning Rate in Scenario III

Table: Average Pruning Rate in Scenario IV

Test 16/16/16 32/16/16 64/16/16 32/32/32 128/16/16
ppsto (%) 79.27 97.51 97.77 97.22 96.68
pesto (%) 95.57 97.40 96.78 94.70 95.23
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Experiment Results

� Synthetic Data

(a) Scenario III psto (b) Scenario III esto
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Experiment Results

� Synthetic Data

(c) Scenario IV psto (d) Scenario IV esto

Figure: The proportion of running time of pruning vs. brute-force
approach.
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Experiment Results

� Synthetic Data

(a) Split cost of ESTO with
smaller dataset

(b) Split cost of ESTO with larger
dataset
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Experiment Results

� Synthetic Data

(d) Split cost of PSTO with
smaller dataset

(e) Split cost of PSTO with
larger dataset

Figure: The running time of comparable parts of brute-force vs. pruning
approach in scenario III.
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Real Data

� Beijing Map

�

(a) Road Network (b) Grid Map

Figure: An example of the traffic network of Beijing. Based on the
longitude and latitude, the entire city is partitioned into a grid
map. Subfigure(a) is partitioned into subfigure(b).
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Real Data

� Two cases of emerging outliers detected on a real GPS trajectory
dataset generated by 33, 000 taxis in Beijing from 01/03/2009 to
31/05/2009.

� Case I: The data spans 16 days starting from 01/05/2009 to
16/05/2009 within 9:00:00 am to 10:00:00 am every day.

� Case II: The data spans 8 days starting from 14/03/2009 to
21/03/2009 within 3:15:00 pm to 4:30:00 pm every day.
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Experiment Results

� Real Data
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(a) The average taxi counts within
outlier regions vs. non-outlier regions
from 01/05/2009 to 02/05/2009
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(b) The average taxi counts within
outlier regions from 01/05/2009 to
08/05/2009
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Experiment Results

� Real Data

(c) The average taxi counts within
outlier regions vs. non-outlier regions
from 16/03/2009 to 20/03/2009

(d) The average taxi counts within
outlier regions from 14/03/2009 to
21/03/2009

Figure: Comparison of outlying and non-outlying regions in 8× 8× 8
grid.
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Experiment Results

� Real Data

(a) The region highlighted
with blue borders on the map
is the outlier region of Case I.
The icon shows the exact
location of Happy Valley.

(b) The region highlighted
with blue borders is the
outlier of Case II. It is the
city express road of Beijing.
(i.e. Tonghuihe North Road)

Figure: Outlier Locations from our two case studies on Beijing Map
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