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Abstract

   This document describes ANTP, an authentication protocol designed to

   be built over the Network Time Protocol operating in client/server

   mode.  ANTP's design meets the requirements of NTP and the Security

   Requirements of Time Protocols in Packet-Switched Networks, a TICTOC

   Working Draft.  In particular, the server does not need to keep per-

   client state, and the authentication steps does not degrade timestamp

   accuracy when compared to unauthenticated NTP.  This specification is

   meant to accompany a paper describing ANTP and analyzing its security

   [ANTPpaper].

Conventions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

   document are to be interpreted as described in BCP 14, RFC 2119

   [RFC2119].
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1.  Introduction

   Many systems have increasing dependency on digital certificates and

   public-key infrastructure in order to authenticate and ensure

   confidentiality of communications.  The Transport Layer Security (TLS

   or SSL), Secure Shell (SSH) and Internet Protocol Security (IPSec)

   protocols all utilize certificates to this effect, but many of these

   certificate schemes (in particular, X.509 certificates) utilize

   periods of validity and revocation lists in order to confirm that the

   key-pair is valid at the time of use.  Thus, certificates in turn

   have a dependency of the synchronization of time between the issuer

   and the verifier.  A malicious party that has the ability to offset

   the verifier's system clock from the issuer's can replay previously

   revoked or compromised certificates.

   Secure time-synchronization is therefore desirable, but how does a

   party authenticate another when the public-key infrastructure itself

   is dependent on receiving secure time?  The most widely deployed

   protocol for network time synchronization is the Network Time

   Protocol, which combats this problem by querying multiple parties and

   combining the recieved time-samples using Byzantine Agreement

   mechanisms to find a majority offset to the local clock.  However,

   this assumes that most implementations:

   a.  Query multiple parties, which in typical deployments may not be

       the case (as evidenced by the implementation of the Simple

       Network Time Protocol)

   b.  Assumes the attacker can only affect some minority of the queried

       parties, which is not a realistic assumption for a man-in-the-

       middle attacker in control of the network.

   This document specifies a protocol for the purpose of authenticating

   an NTP server to a client via public-key authentication.  The

   assumption underpinning our construction is that the client has the

   ability to validate certificates in an out-of-band method.  This is

   due to the circular dependency of time-synchronization and public-key

   authentication discussed earlier: without knowledge of the "correct"

   time, a party cannot validate a certificate, which is necessary to

   securely synchronize time.  We discuss mechanisms for solving this

   problem in the Security Considerations section.  Alternatively, the

   client time may be trusted to be sufficiently accurate for the

   purposes of certificate validation.  For instance, if the client time

   is known to be offset by at most a week, this may be acceptable when

   verifying the validity of a certificate with a multi-year validity

   period.

   The Network Time Security protocol [NTS] is an in-progress

   alternative security protocol that uses public-key infrastructure in

   order to secure time-synchronization protocols such as NTP and the

   Precise-Time Protocol (PTP).  However, NTS is more costly in terms of
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   server-side public-key operations, vulnerable to downgrade attacks in

   the negotiation phase, and does not offer the client a mechanism to

   offset time-sample degradation caused by authentication of messages,

   but still achieve message authentication.

   The Network Time Protocol version 4 also standardized a public-key-

   based authentication mechanism, but has multiple security

   vulnerabilities as examined in [Roettger].

   A detailed survey of existing time syncrhonization protocols and

   security mechanisms is provide in a paper describing ANTP [ANTP

   paper].  The paper also provides a formal security analysis of ANTP,

   proving it is secure under standard assumptions about the underlying

   cryptographic primitives.

2.  Overview

   The basic design of this protocol is to construct a secure public-key

   authentication method over NTP.  NTP builds a hierarchy where primary

   servers with direct access to reliable hardware clocks push

   synchronization to secondary servers that continue to push

   synchronization to further secondary servers and clients.  A

   secondary time server may push synchronization to many clients, and

   this causes multiple problems when considering the possibility of

   constructing a secure time-synchronization protocol.  First, creating

   a public-key authentication scheme on top of NTP may degrade the

   accuracy of the time-samples.  NTP works by sending a timestamp as

   close as possible to the message transmission time in use for

   synchronization.  Any kind of authentication operation on the

   timestamp itself creates an additional delay that adds offset between

   the receiver and sender of the timestamp.  If it is a public-key

   operation, then this delay can be significant and variable.  Second,

   requiring precise time-synchronization for a large number of clients

   demands a stateless protocol, precluding the use of a TLS-like

   authentication protocol.  We thus have the following design goals:

   1.  Server-side processing of time-synchronization protocol messages

       requires no per-client state.

   2.  The client is capable of authenticating the server.

   3.  The client is capable of authenticating all messages from the

       server.

   4.  In one configuration, authentication adds no delay to time-

       samples when compared to unauthenticated NTP.

   5.  Authentication is optional, and ANTP clients can interoperate

       with deployed NTP servers (and vice-versa).

   6.  UDP packets are limited in size and the added necessity of

       transporting certificate chains means that messages may require

       fragmentation.
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   7.  Replay attacks are explicitly prevented.

3.  Protocol Flow Diagram

   We begin by presenting a standard message flow for ANTP.  There are

   three seperate phases to ANTP: The Negotiation Phase, the Key-

   Exchange Phase and the Time-Synchronization Phase.  All messages are

   included in the extension field of an NTP packet (Version 4 or

   later).  If an NTP server does support ANTP, the presence of an

   unknown extension will cause the packet to be ignored.  If the client

   recieves an unauthenticated NTP response after any ANTP request, the

   client MUST abort the protocol and restart the protocol flow.  This

   is to prevent an adversary from dropping the extension fields of an

   ANTP message in order to force downgrade attacks.

   SNTP as standardized does not currently support extensions, but ANTP

   assumes SNTP behavior in order to compute and process time-

   synchronization messages and clock updates.  Considering SNTP and NTP

   message structure is identical, we do not believe it would be

   difficult to also offer support for SNTP extensions.

   When a client requires authentication, note that a response from a

   server that doesn't support ANTP is indistinguishable from a network

   attacker that has intercepted the client messages and sent an

   unauthenticated response.  Thus an ANTP client MUST NOT pull

   synchronization from NTP in the event that an ANTP handshake fails:

   doing so would allow downgrade attacks, negating all security

   benefits of ANTP.

   The Negotiation Phase exchanges lists of supported cryptographic

   algorithms, in order to negotiate a single protocol version, key-

   derivation function, hash function, key-exchange algorithm and MAC

   scheme for use in the protocol.  It also allows the client to recieve

   the certificate of the server.

   The Key-Exchange phase allows the two parties to negotiate a fresh

   shared secret key.  It also authenticates the negotiation and key-

   exchange phases with the server providing a MAC of the negotiation

   and key-exchange messages utilizing the shared secret key.

   The Time-Synchronization phase allows the client to recieve

   authenticated NTP messages utilizing the negotiated secret-key, hash

   algorithm and MAC scheme from the negotiation phase.  The client can

   reuse the key in multiple consecutive time-synchronization phases,

   saving the server costly public-key operations.  The time-

   synchronization packets also include a nonce to prevent replay

   attacks.  Note also that the client MUST renegotiate the key

   periodically in order to maintain key-freshness.
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   The client request indicates whether the server should use a high

   accuracy response.  For a high accuracy response, authentication is

   delayed.  The server responds immediately with an unauthenticated

   response, then susequently sends the same response, but with

   authentication information.  Servers MUST support the high accuracy

   option.

   The ANTP protocol requires a setup stage from the server: For each

   key-exchange algorithm supported by the server, the server must

   generate long-term public and private parameters, and MUST obtain a

   X.509 digital certifcate issued by a trusted certificate authority

   over the public parameters.  In addition, the server MUST choose an

   authenticated-encryption scheme, and a randomly generated a secret

   key K_s for use in the protocol.

                           NEGOTATION PHASE

   | ClientNegotiation |   --------------->

                           <---------------      | ServerNegotiation |

                          KEY-EXCHANGE PHASE

   | ClientKEX |           --------------->

                           <--------------                | ServerKEX |

                      TIME-SYNCHRONIZATION PHASE

   |NTP_c| ClientRequest | --------------->

                                                             [|NTP_s|]*

                           <---------------    |NTP_s| ServerResponse |

                     Figure 1.  Protocol Flow for ANTP

   * Indicates an optional message that is only sent if the client has

   requested a high accuracy response.

4.  Processing Sequence

4.1.  Negotiation Phase

   1.  The client begins by sending the ClientNegotiation message to the

   server, in the extension field of a correctly formatted NTP message.

   The client includes the client_kdf_algs, client_hash_algs,

   client_kex_algs, and client_mac_algs fields with the preferenced list

   of algorithms and the client_version with the highest supported
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   version of the client.  The client also includes a 256-bit random

   nonce as a 32-byte array in the nonce field to ensure uniqueness of

   the message and defend against replay attacks.  The client saves the

   ClientNegotiation message to authenticate the negotiation phase later

   in the protocol run.

   2.  Upon reciept of a ClientNegotiation message, the server creates a

   ServerNegotiation message, including the server_kdf_algs,

   server_hash_algs, server_kex_algs, and server_mac_algs (the

   preferenced list of algorithms that the server supports and the

   server_version with the highest supported version of the server).

   The server then computes the negotiated key-derivation function

   (denoted KDF), hash function (H), key-exchange (KEX), and Message

   Authentication Code (MAC) algorithms and the version by:

   a.  In the case of KDF, hash, key-exchange and MAC algorithms, the

       highest preferenced client algorithms that the server also

       supports and;

   b.  In the case of version, the highest-numbered version that both

       parties support.

   The ServerNegotiation message includes the certificate (chain)

   associated with the negotiated key-exchange algorithm.  The server

   uses H to compute a hash of the concatenation of ClientNegotiation

   and ServerNegotiation messages, and encrypts the output concatenated

   with the negotiated algorithms with the long-term secret symmetric-

   key K_s and the preferred authenticated-encryption scheme of the

   server as follows:

      opaque1 = AUTH-ENC(K_s,

      H(ClientNegotiation||ServerNegotiation)||KDF||Hash||KEX||MAC)

   where the opaque1 field of the ServerNegotiation message is set to m

   zero bytes, where m is the length of opaque1 (the rest of the message

   is completed).  The values KDF, Hash, KEX and MAC are the negotiated

   values, a single byte each, as described in Section 7 The value

   opaque1 added to the ServerNegotiation message and sent to the

   client.

   3.  Upon reciept of the ServerNegotiation message, the client

   computes the negotiated key-derivation, hash key-exchange, MAC

   algorithms and version (in the same way as the Server), and confirms

   that the certificate in the ServerNegotiation message supports the

   correct key-exchange algorithm.  If it does not, the client MUST

   abort.  The client saves the ServerNegotiation message in order to

   authenticate the protocol run in the key-exchange phase.

Dowling, et al.                                                 [Page 7]



                                  ANTP                              2015

4.2.  Key-Exchange Phase

   1.  The client generates an NTP message and a ClientKEX extension

   field, using the negotiated algorithm identifiers as input to the

   neg_kdf, neg_hash, neg_kex and neg_mac fields respectively, and the

   negotiated version as the neg_version.  The value opaque1 is part of

   the ClientKeyExchange message.

   Each KEX algorithm has three functions KEX_client, KEX_server and

   KEX, used by the client and server to create inputs for key exchange

   and to compute the shared secret.  Details for allowed key exchange

   algorithms are given in Section 7.3.

   The client extracts the public-key pk_s and key exchange parameters

   kex_params from the server certificate.  Then the public and secret

   parts of the key exchange are computed:

      (public_kex_mat, Z) = KEX_client(kex_params, pk_s)

   Details of KEX_client are given in Section 7.3.  The value

   public_kex_mat is sent to the server in the KeyExchangeMaterial

   field.  The client also saves the shared secret Z.

   2.  Upon reciept of a ClientKEX message, the server verifies the

   integrity of the opaque value, decrypts and parses it as:

      opaque1_d||KDF||Hash||KEX||MAC = AUTH-DEC(secret_s, opaque1)

   If decryption fails, the server MUST abort.  Otherwise, the server

   generates the secret key material Z using secret-key sk_s associated

   with pk_s as follows:

      Z = KEX_server(kex_params, sk_s, public_kex_mat)

   If KEX_server fails, the server MUST abort.  The server uses Z to

   derive the key k:

      k = KDF-H(Z, "time", "ANTP",L)

   where "time" and "ANTP" are the ASCII encodings of the strings ANTP

   (0x414e5450) and time (0x74696d65), and L is the length of the

   desired key.  Note that L will be the MAC key length for H.  The

   inputs to the KDF are explained in further detail in Section 7.4.

   The server then encrypts k using K_s as a second opaque value:

      opaque2 = AUTH-ENC(K_s, k||KDF||Hash||KEX||MAC)
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   The value opaque2 is part of the ServerKEX message.  The values KDF,

   Hash, KEX and MAC are the negotiated values, a single byte each, as

   described in Section 7 Now all previous messages (e.g

   ClientNegotiation, ServerNegotiation, ServerKEX and ClientKEX

   messages) are authenticated:

      mac_tag = MAC-H(k, opaque1_d||ClientKEX||ServerKEX)

   The value mac_tag value is sent to the client in the ServerKEX

   message.  Verifying the tag authenticates both the key-exchange and

   negotiation phases (as opaque1_d is a hash value over

   ClientNegotiation and ServerNegotiation messages).

   3.  Upon reciept of the ServerKEX message, the client derives the

   key:

      k = KDF-H(Z, "time", "ANTP", L)

      and the other values are as in the corresponding server key

      derivation step.

   The client verifies the MAC tag in the ServerKEX message by computing

   Tag = MAC-H(k,H(ClientNegotiation||ServerNegotiation)||ClientKEX||Ser

   verKEX).  If Tag and mac_tag differ, the client MUST abort.

   Otherwise, the client accepts the negotiation and key-exchange phases

   and saves opaque2 and k for the time-synchronization phase.

4.3.  Time-Synchronization Phase

   1.  The client begins the time-synchronization process by generating

   an NTP message according to the NTP specfication.  The client also

   randomly generates a 256-bit nonce, and includes the nonce as a

   32-byte array in the nonce field of the ClientRequest message.  The

   nonce ensures uniqueness of the synchronization and prevents replay

   attacks.  In addition, the negotiated version neg_version, the

   negotiated key-derivation (neg_kdf), hash (neg_hash), key exchange

   (neg_kex) and MAC (neg_mac) algorithms MAC are sent in the

   appropriate fields, and the opaque2 value from the ServerKEX message

   is sent in the opaque1 field.  Finally, if the client requires

   accuracy similar to unauthenticated NTP, the AccuracyFlag field is

   set to 0x01.  Otherwise the flag is set to 0x00 and the ClientRequest

   is sent to the server.
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   2.  Upon reciept of the ClientRequest, the server creates an

   unauthenticated NTP response as specified in the NTP standard.  If

   the ClientRequest's AccuracyFlag = 0x01 the server sends the

   unauthenticated NTP response immediately without a ServerResponse

   extension field.  The server then generates a new secret key by

   decrypting and parsing the opaque2 value in the ClientRequest message

   as follows:

      k||KDF||Hash||KEX||MAC = AUTH-DEC(K_s, opaque2)

   and creating an authentication tag for both client and server NTP

   messages (denoted by NTP_c and NTP_s respectively):

      mac_tag = MAC-H(k, NTP_c||ClientRequest||NTP_s||ServerResponse)

   and inputting the mac_tag into the Tag field, sending the

   NTP_s||ServerResponse message to the client.

   3.  Upon reciept of an NTP response from the server, the client

   immediately processes the NTP packet.  If the client indiciated the

   AccuracyFlag:

      (i) the client MUST NOT pull synchronization from an

      unauthenticated NTP packet unless a ServerResponse attached to an

      identical NTP packet verifies correctly, and

      (ii) if no ServerResponse is recieved, or no unauthenticated

      packet is recieved, the client MUST abort the protocol.

   The client verifies the ServerResponse by:

      Tag = MAC-H(k, NTP_c||ClientRequest||NTP_s||ServerResponse)

   The client uses NTP_s for synchronization only if mac_tag = Tag.

   Otherwise the client MUST abort.

5.  Protocol Messages

   Recall that all messages are designed to be sent in the NTP extension

   fields similarly to the Autokey Protocol [RFC5906].  When the

   msg_type of the extension field equals 0x01, 0x02, 0x03, 0x04, or

   0x05 the client MUST NOT use the information in the NTP message

   fields for synchronization.  If the msg_type of the extension fields

   equal 0x01 or 0x03 the server MAY process the NTP message normally.

   When the namefield reads 0x06 or 0x05, the client and server MUST

   process the respective NTP messages as specified in the NTP

   specification.
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   This protocol follows DTLS [RFC4347] regarding message fragmentation.

   If the message requires fragmentation, the client divides the message

   into a series of N contiguous data ranges, each at least 56 bytes

   shorter than the maximum message size (to account for the NTP Packet

   and the msg_type, Length, Offset and FragmentLength field lengths).

   Each of these N data ranges becomes a new message, each attached to

   an identical NTP packet, and with identical msg_type and length.  The

   Offset field of a message fragment is the number of bytes in previous

   fragments, and FragmentLength is the length of the current message

   fragment.  When any party recieves an NTP message with an extension

   field containing a msg_type with value 0x01 (ClientNegotiation), 0x02

   (ServerNegotiation), 0x03 (ClientKEX), 0x04 (ServerKEX), 0x05

   (ClientRequest), 0x06 (ServerRequest), the party checks if

   length=FragmentLength.  If not, the party MUST buffer until it has

   the entire message, and process as if the message were a single NTP

   packet attached to a extension field with a zeroed Length,

   FragmentLength, and FragmentOffset fields.  This fragmentation

   strategy is applied to each ANTP protocol message, as required.

   Setting the maximum message length depends on the path MTU between

   the client and server.  Clients can use path MTU discovery [RFC1191]

   [RFC1981].  See also Section 4.1.1.1 "PMTU Discovery" from [RFC4347]

   for information on how path MTU is set in DTLS.

   We specify the following structure to describe the FragmentInfo

   structure utilized in all ANTP packets:

      struct {

      uint24 length;

      uint16 offset;

      uint16 FragmentLength;

      } FragmentInfo

   where:

   length:  An unsigned 24-bit integer describing the length of the

         unfragmented message

   fragment_offset:  An unsigned 16-bit integer describing the number of

         bytes contained in previous fragments of the message.  When the

         message requires no fragmentation this value is 0.

   fragment_length:  An unsigned 16-bit integer describing the length of

         this fragment on the message.  When the message requires no

         fragmentation, this value is length.

   Note that since ANTP allows buffering of messages, it is possible

   that multiple ANTP messages that require fragmentation may be

   recieved by another party interleaved.  Since each ANTP message that

   is fragmented is attached to an identical NTP message, it is trivial

   to distinguish fragmented ANTP messages via the NTP packet.  In order
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   to reduce complexity however, the parties MUST NOT send multiple ANTP

   messages with identical NTP packets, but instead generate a new NTP

   message for each message flow.

   In a similar way to TLS all values are stored in big-endian format,

   and the smallest block size is a single byte.  We define variable-

   length vectors by specifying a range of legal lengths and sizes of

   the elements in the vector as follows:

      type Name <floor,...,ceiling>

   where type is the type of each element, floor is the smallest number

   of elements in the vector, and ceiling the largest.  Note that for

   each vector the number of elements in the vector is prepended to the

   vector as an unsigned integer, using as many bytes as necessary to

   express ceiling (the length of the largest possible vector).

   We define the following structure to represent a variable-length

   string of bytes:

      struct {

      uint32 length;

      uint8 data<0, ..., 2^32 -1>

      } ByteString

   where:

   length:  An unsigned 32-bit integer indicating the number of bytes

         that follow.

   data: A sequence of bytes (octets).

   Note that for the ByteString structure, the data field is not

   serialized as a vector (with the length prepended), as the length is

   explicitly given by the first field.

5.1.  Negotiation Phase

   The negotiation phase begins with the exchange of messages to

   negotiate the key-exchange, hash algorithms and versions to be used

   throughout the protocol.  In addition, the server sends the

   certificate necessary to validate the public-key of the server.

5.1.1.  Message: Client Negotiation

   The negotiation phase begins with the client sending the first

   negotiation message, with the following structure.  The description

   of each field can be found below.
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      struct {

      uint8 msg_type = 0x01;

      FragmentInfo f;

      uint8 client_version;

      uint8 client_kdf_algs<1,...,255>;

      uint8 client_hash_algs<1,...,255>;

      uint8 client_kex_algs<1,...,255>;

      uint8 client_mac_algs<1,...,255>;

      uint8 nonce<0,...,31>;

      } ClientNegotiation

   msg_type  A unsigned byte of value 0x01 indicating the

         ClientNegotiation message.

   client_version:  An unsigned 8-bit integer indicating the highest

         supported version of ANTP that the client supports.

   client_kdf_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred key-derivation functions supported

         by the client.

   client_hash_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred hash algorithms supported by the

         client.

   client_kex_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred key-exchange algorithms supported by

         the client.

   client_mac_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred MAC schemes supported by the client.

   nonce:  A random 256-bit value as a 32-byte array.

5.1.2.  Message: Server Negotiation

   The negotiation phase continues with the server processing the

   ClientNegotiation message and sending the ServerNegotiation message,

   with the following structure:

      struct {

      uint8 msg_type = 0x02;

      FragmentInfo f;

      uint8 server_version;

      uint8 server_kdf_algs<1,...,255>;

      uint8 server_hash_algs<1,...,255>;

      uint8 server_kex_algs<1,...,255>;

      uint8 server_mac_algs<1,...,255>;

      ByteString server_cert;

      ByteString opaque1

      } ServerNegotiation

   server_neg:  A unsigned byte of value 0x02 indicating the

         ServerNegotiation message.
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   server_version:  An unsigned 8-bit integer indicating the highest

         supported version of the authentication protocol that the

         server supports.

   server_kdf_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred key-derivation functions supported

         by the server.

   server_hash_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred hash algorithms supported by the

         server.

   server_kex_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred key-exchange algorithms supported by

         the server.

   server_mac_algs:  An ordered list of unsigned 8-bit integers

         representing the preferred MAC schemes supported by the server.

   server_cert:  The certificate containing the server public-key.  Note

         that the public-key corresponds to the key-exchange algorithm

         negotiated with the two ordered lists client_kex_algs and

         server_kex_algs.

   opaque1  An encrypted value created by the server, opaque to the

         client.

5.2.  The Key-Exchange Phase

   The key-exchange phase establishes secret-key material, and

   implicitly authenticates both the key-exchange and negotiation phases

   to the client.

5.2.1.  Message: ClientKEX

   The key-exchange phase begins with the client sending the ClientKEX

   message, with the following structure and description:

      struct {

      uint8 msg_type = 0x03;

      FragmentInfo f;

      uint8 neg_version;

      uint8 neg_kdf;

      uint8 neg_hash;

      uint8 neg_kex;

      uint8 neg_mac;

      ByteString opaque1

      ByteString kex_mat

      } ClientKEX

   msg_type:  A unsigned byte of value 0x03 indicating the ClientKEX

         message.

   neg_version:  unsigned 8-bit integer describing the negotiated

         version of the protocol that the parties will be using.
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   neg_kdf:  An unsigned 8-bit integer describing the negotiated key-

         exchange algorithm that the protocol will be using.

   neg_hash:  An unsigned 8-bit integer describing the negotiated hash

         algorithm that the protocol will be using.

   neg_kex:  An unsigned 8-bit integer describing the negotiated key-

         exchange algorithm that the protocol will be using.

   neg_mac:  An unsigned 8-bit integer describing the negotiated key-

         exchange algorithm that the protocol will be using.

   opaque1:  The opaque value sent in the ServerNegotiation message.

   kex_mat:  The public key exchange material.

5.2.2.  Message: ServerKEX

   The server now processes the ClientKEX message to compute the shared

   secret key.  The server then produces a second opaque encryption,

   this time of the key, and generates a MAC tag authenticating the

   Negotiation and Key-Exchange phases.  The structure and description

   of the ServerKEX message is as follows:

      struct {

      uint8 msg_type = 0x04;

      FragmentInfo f;

      ByteString opaque2

      ByteString mac_tag

      } ServerKEX

   msg_type:  A unsigned byte of value 0x04 indicating the ServerKEX

         message.

   opaque2:  A second encrypted value created by the server, opaque to

         the client.

   mac_tag:  The MAC of the concatenated hash value and KEX messages

         using the agreed key.  The length of the tag is known to both

         parties based on the negotiated hash function, and clients MUST

         check that the recieved mac_tag has the correct length.

5.3.  Time Synchronization Phase

   The Time-Synchronization Phase allows the client to request

   synchronization from a server that has previously been authenticated

   and established a shared secret key.

5.3.1.  Message: ClientRequest

   The Time Synchronization phase begins with the client computing the

   NTP packet as specified in the NTP standards, and additionally

   completing the ClientRequest extension as structured and described

   below:
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      struct {

      uint8 msg_type = 0x05;

      FragmentInfo f;

      uint8 neg_version;

      uint8 neg_kdf;

      uint8 neg_hash;

      uint8 neg_kex;

      uint8 neg_mac;

      uint8 nonce<0,...,31>;

      ByteString opaque2

      uint8 AccuracyFlag flag

      } ClientRequest

   msg_type:  A unsigned byte of value 0x05 indicating the ClientRequest

         message.

   neg_version:  unsigned 8-bit integer describing the negotiated

         version of the protocol that the parties will be using.

   neg_hash:  An unsigned 8-bit integer describing the negotiated key-

         derivation function that the protocol will be using.

   neg_hash:  An unsigned 8-bit integer describing the negotiated hash

         algorithm that the protocol will be using.

   neg_kex:  An unsigned 8-bit integer describing the negotiated key-

         exchange algorithm that the protocol will be using.

   neg_mac:  An unsigned 8-bit integer describing the negotiated MAC

         scheme that the protocol will be using.

   nonce:  An unsigned random 256-bit value as a 32-byte array.

   opaque2:  The opaque value sent in the ServerKEX message.

   flag: An unsigned 8-bit integer describing whether the client

         requires high accuracy.  Legal values are 0x01 (the flag is

         set) or 0x00 (the flag is not set).

5.3.2.  Message: ServerResponse

   The server processes the Client NTP request as standardized, and

   computes the NTP response.  If the AccuracyFlag in the ClientRequest

   is 0x01, the server immediately sends the message without a

   ServerResponse extension.  Afterwards, the server computes the

   ServerResponse fields as described below, and attaches it as an

   extension to the previously computed NTP packet, sending the message

   to the client.

      struct {

      uint8 msg_type = 0x06;

      FragmentInfo f;

      ByteString mac_tag

      } ServerResponse
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   msg_type:  A unsigned byte of value 0x06 indicating the

         ServerResponse message.

   mac_tag:  The MAC of the concatenated ClientRequest and

         ServerResponse messages using the derived secret-key.  The

         length of the tag is known to both parties based on the

         negotiated hash function, and clients MUST check that the

         recieved mac_tag has the correct length.

6.  Security Model

   We consider security of the Authentication Protocol for Network Time

   Protocol in the presence of an attacker that has the ability to

   create, reorder, replay, modify or drop messages at will.  We attempt

   to address the following concerns outlined in the Security

   Requirements TICTOC Working Group Informational:

   1.  Packet Manipulation

   2.  Authentication and Authorization of Sender

   3.  Spoofing Attacks

   4.  Replay Attacks

   5.  Performance, no degradation of accuracy of clock

   6.  Key Freshness

   The packet-manipulation and authentication of sender is fulfilled via

   authentication of packets and public-key authentication respectively.

   Replay protection is addressed by the inclusion of a client-generated

   nonce with each time-synchronization.  Accuracy of timestamps is

   addressed by limiting server-side public-key operations, and the

   ability of the client to choose a high-accuracy variant of time-

   synchronization.  Key freshness is provided by requiring the client

   to renegotiate a new key periodically.  We note that the Security

   Requirements Informational also outlines additional threats outside

   the scope of our protocol:

   1.  Packet Dropping

   2.  Packet Delay Manipulation

   3.  DoS Attacks

   4.  Crypto Performance Attacks

   5.  Time Protocol DoS

   6.  Fraud Time Source

   7.  Rogue Master Attacks

   We define these as outside the scope of our protocol, as a MITM

   attacker can trivially perform DoS, packet-dropping and packet-delay

   manipulation attacks.  Additionally, a MITM attacker can trivially

   overwhelm a server with Key Exchange messages generated with random

   values but a real opaque, forcing the server to perform public-key

   operations processing the key-exchange material.  The Time Protocol
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   DoS and Fraud Time Source attacks are within the bounds of NTP, and

   processing NTP messages is outside the bounds of ANTP as a design

   goal.

   The associated ANTP paper [ANTP paper] provides a formal security

   analysis of ANTP, proving it is secure under standard assumptions

   about the underlying cryptographic primitives.

7.  Cryptographic Algorithms

7.1.  Authenticated Encryption

   This section discusses the functions AUTH-ENC and AUTH-DEC used in

   ANTP.  No interoperability is required from the authenticated

   encryption algorithm, as the value is entirely opaque to the client.

   It is critical for security, as a malicious party who can decrypt

   client Alice's opaque2 value may masquerade as the server and create

   valid ServerResponse messages for Alice.  Therefore, the server MUST

   use one of the following algorithms:

      AES-GCM as specfied in [GCM]

      AES-CCM as specficed in [RFC3610]

      AES-CBC combined with HMAC-SHA, as specifed in [CBC-HMAC]

   Note that AES-GCM requires an explicit counter that is never reused,

   and thus the server MUST generate a nonce for each new opaque value

   to be encrypted, and attach the nonce to the end of the encrypted

   opaque value.

   The security level (determined by the key length and algorithm

   choice) SHOULD meet or exceed the security level of the negotiated

   hash function.

   An additional consideration is key-lifetime.  Each authenticated

   encryption algorithm has a maximum amount of data that can be

   encrypted with a key.  To avoid exceeding this limit, servers SHOULD

   generate a new authenticated encryption key every two months (or

   sooner) and update the key.  This also serves to force clients to

   renegotiate a new key, as the opaque value will no longer decrypt

   correctly.  Additionally, a server SHOULD generate a new key whenever

   a new certificate is used.

   Servers may also choose to graudally "phase in" use of a new key,

   since when the opaque2 value in the ClientRequest message is

   rejected, the client will restart the key negotiation phase.  If a

   large number of clients simultaneously being key exchange the

   computational costs may overwhelm the server.  Servers may include a

   small amount of metadata (like a key identifier) as part of the
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   opaque2 value to allow them to identify which key was used to create

   the opaque value.  This allows the server to continue using the first

   key, while migrating clients over to the new key.  After a fixed

   period of time (such as a day) the server should delete the first

   key.

7.2.  Hash Algorithms

   Following the direction set by [NTS], it is required that all parties

   MUST support SHA-256, MAY support SHA-384, SHOULD support SHA-512 and

   MUST NOT support SHA-1, MD5 or 'weaker' hash algorithms.  Note that

   the length of the mac_tag field is dependent on the size of the

   output of the hash algorithm negotiated.  Each Hash function

   represented in the HashAlgorithm/s fields is assigned an unsigned

   8-bit ID for negotiation:

      0x00: SHA-256

      0x01: SHA-384

      0x02: SHA-512

7.3.  Key-Exchange Algorithms

   We note that in our protocol, the key-exchange algorithms are

   required to provide both authentication and confideniality of the

   secret key material without the server using a signature algorithm.

   The RSA-OAEP option is an encryption-based key transport, i.e., the

   client chooses a random key and encrypts it with the server's public

   key.  The ECDH (elliptic-curve Diffie-Hellman) option has the client

   generate an ephemeral public key, and the server's long term public

   key is used for key agreement.  Note that forward secrecy is not

   required: if a server private key is revealed, previous time

   synchronizations cannot be affected.  Future synchronization phases

   of previously agreed keys are vulnerable until the client re-

   negotiates a new key (and recieves a new server certificate).  For

   both schemes, the parameters (kex_params) are forced by the server

   certificate; in the case of RSA-OAEP kex_params are the modulus size

   and in the case of ECDH kex_params are the curve parameters. The 

   client may abort if the server parameters are deemed too weak.

   For interoperability, implementations MUST support RSA-OAEP with

   modulus size >= 2048 and MUST not support smaller modulus sizes.

   ECDH MUST be supported with the named curve secp256r1 [SEC2].  Other

   curves MAY be supported, but they must provide 128-bits of security

   or above.  Servers MUST implement the point validation steps before

   operating on recieved points (as specified for ECDH in [SEC1]).
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   Each Key-Exchange algorithm represented in the ANTP message fields is

   assigned an unsigned 8-bit ID for negotiation:

      0x00: RSA-OAEP

      0x01: ECDH

   Recall that KEX_client takes as input (kex_params, pk_s), and outputs

   (public_kex_mat, Z).

      For ECDH, kex_params are the curve parameters.  The client

      generates an ephemeral key pair (public_kex_mat, r) with public

      point public_kex_mat and private value r.  The shared secret is

      the x-coordinate of the point Z = ECDH(pk_s, r).

      For RSA-OAEP, Z is a randomly chosen 512-bit value, kex_params are

      the modulus length and the hash function(s) used for OAEP

      encoding.  The value public_kex_mat is the encryption of Z with

      the public key pk_s.

   Recall that KEX_server takes as input (kex_params, sk_s,

   public_kex_mat) and outputs Z.

      For ECDH the server computes the shared secret as the x-coordinate

      of the point Z = ECDH(public_kex_mat, sk_s).  If point validation

      on public_kex_mat fails, the server MUST abort.

      For RSA-OAEP the server decrypts public_kex_mat with the private

      key sk_s and outputs the plaintext Z.  If decryption fails the

      server MUST abort.

7.4.  Key Derivation Function

   We note that in the ANTP protocol, secure Key-Derivation Functions

   are required in order to securely generate a shared secret key from

   public-key materical.  We define the KDF used in the key-exchange

   phase to be the KDF in counter mode defined in NIST SP 800-108

   [SP800-108].  This construction uses HMAC as a PRF, which is HMAC-H,

   where H is the negotiated hash function.  We use the notation:

   KDF-H(Z, context, label, L), where Z is the shared secret, the

   context and labels are additional inputs, and L is the output length.

   We additionally allow mechanisms for negotiation key-derivation

   functions similarly to hash and key-exchange algorithms.  Each KDF

   represented in ANTP message fields is assigned an unsigned 8-bit ID

   for negotiation:

      0x00: SP800-108

7.5.  Message Authentication Code scheme
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   We note that in the ANTP protocol, secure MAC schemes are required in

   in order to authenticate the protocol run and thus the client's time-

   synchronization partner.  HMAC is the default MAC scheme used in

   ANTP, but allow mechanisms for negotiating MAC schemes similarly to

   hash functions and key-exchange algorithms.  When HMAC is negotiated,

   the hash function is the negotiated hash function.  Each MAC scheme

   represented in the ANTP message fields is assigned an unsigned 8-bit

   ID for negotiation:

      0x00: HMAC

8.  Security Considerations

8.1.  Client Key Renegotiation

   Note that the client could reuse the same opaque value from the

   ServerKEX message until the Server generates a new authenticated

   encryption key K_s as described above.  However, one of the goals

   outlined by the TICTOC Working Group Informational is key freshness.

   Following this, in ANTP the client SHOULD renegotiate a key by

   restarting the protocol flow every two days.
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