
 B. Dowling

 D. Stebila

 Queensland University of Technology

 G. Zaverucha

 Microsoft Research

 Draft, February 2015

 ANTP: Authenticated NTP

 Implementation Specification

Abstract

 This document describes ANTP, an authentication protocol designed to

 be built over the Network Time Protocol operating in client/server

 mode. ANTP's design meets the requirements of NTP and the Security

 Requirements of Time Protocols in Packet-Switched Networks, a TICTOC

 Working Draft. In particular, the server does not need to keep per-

 client state, and the authentication steps does not degrade timestamp

 accuracy when compared to unauthenticated NTP. This specification is

 meant to accompany a paper describing ANTP and analyzing its security

 [ANTPpaper].

Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in BCP 14, RFC 2119

 [RFC2119].

Dowling, et al. [Page 1]

 ANTP 2015

Table of Contents

 1. Introduction . 2

 2. Overview . 4

 3. Protocol Flow Diagram . 5

 4. Processing Sequence . 6

 4.1. Negotiation Phase . 6

 4.2. Key-Exchange Phase 8

 4.3. Time-Synchronization Phase 9

 5. Protocol Messages . 10

 5.1. Negotiation Phase . 12

 5.1.1. Message: Client Negotiation 12

 5.1.2. Message: Server Negotiation 13

 5.2. The Key-Exchange Phase 14

 5.2.1. Message: ClientKEX 14

 5.2.2. Message: ServerKEX 15

 5.3. Time Synchronization Phase 15

 5.3.1. Message: ClientRequest 15

 5.3.2. Message: ServerResponse 16

 6. Security Model . 17

 7. Cryptographic Algorithms 18

 7.1. Authenticated Encryption 18

 7.2. Hash Algorithms . 19

 7.3. Key-Exchange Algorithms 19

 7.4. Key Derivation Function 20

 7.5. Message Authentication Code scheme 20

 8. Security Considerations 21

 8.1. Client Key Renegotiation 21

 9. References . 21

 9.1. Normative References 21

 9.2. Informative References 22

 Authors' Addresses . 22

Dowling, et al. [Page 2]

 ANTP 2015

1. Introduction

 Many systems have increasing dependency on digital certificates and

 public-key infrastructure in order to authenticate and ensure

 confidentiality of communications. The Transport Layer Security (TLS

 or SSL), Secure Shell (SSH) and Internet Protocol Security (IPSec)

 protocols all utilize certificates to this effect, but many of these

 certificate schemes (in particular, X.509 certificates) utilize

 periods of validity and revocation lists in order to confirm that the

 key-pair is valid at the time of use. Thus, certificates in turn

 have a dependency of the synchronization of time between the issuer

 and the verifier. A malicious party that has the ability to offset

 the verifier's system clock from the issuer's can replay previously

 revoked or compromised certificates.

 Secure time-synchronization is therefore desirable, but how does a

 party authenticate another when the public-key infrastructure itself

 is dependent on receiving secure time? The most widely deployed

 protocol for network time synchronization is the Network Time

 Protocol, which combats this problem by querying multiple parties and

 combining the recieved time-samples using Byzantine Agreement

 mechanisms to find a majority offset to the local clock. However,

 this assumes that most implementations:

 a. Query multiple parties, which in typical deployments may not be

 the case (as evidenced by the implementation of the Simple

 Network Time Protocol)

 b. Assumes the attacker can only affect some minority of the queried

 parties, which is not a realistic assumption for a man-in-the-

 middle attacker in control of the network.

 This document specifies a protocol for the purpose of authenticating

 an NTP server to a client via public-key authentication. The

 assumption underpinning our construction is that the client has the

 ability to validate certificates in an out-of-band method. This is

 due to the circular dependency of time-synchronization and public-key

 authentication discussed earlier: without knowledge of the "correct"

 time, a party cannot validate a certificate, which is necessary to

 securely synchronize time. We discuss mechanisms for solving this

 problem in the Security Considerations section. Alternatively, the

 client time may be trusted to be sufficiently accurate for the

 purposes of certificate validation. For instance, if the client time

 is known to be offset by at most a week, this may be acceptable when

 verifying the validity of a certificate with a multi-year validity

 period.

 The Network Time Security protocol [NTS] is an in-progress

 alternative security protocol that uses public-key infrastructure in

 order to secure time-synchronization protocols such as NTP and the

 Precise-Time Protocol (PTP). However, NTS is more costly in terms of

Dowling, et al. [Page 3]

 ANTP 2015

 server-side public-key operations, vulnerable to downgrade attacks in

 the negotiation phase, and does not offer the client a mechanism to

 offset time-sample degradation caused by authentication of messages,

 but still achieve message authentication.

 The Network Time Protocol version 4 also standardized a public-key-

 based authentication mechanism, but has multiple security

 vulnerabilities as examined in [Roettger].

 A detailed survey of existing time syncrhonization protocols and

 security mechanisms is provide in a paper describing ANTP [ANTP

 paper]. The paper also provides a formal security analysis of ANTP,

 proving it is secure under standard assumptions about the underlying

 cryptographic primitives.

2. Overview

 The basic design of this protocol is to construct a secure public-key

 authentication method over NTP. NTP builds a hierarchy where primary

 servers with direct access to reliable hardware clocks push

 synchronization to secondary servers that continue to push

 synchronization to further secondary servers and clients. A

 secondary time server may push synchronization to many clients, and

 this causes multiple problems when considering the possibility of

 constructing a secure time-synchronization protocol. First, creating

 a public-key authentication scheme on top of NTP may degrade the

 accuracy of the time-samples. NTP works by sending a timestamp as

 close as possible to the message transmission time in use for

 synchronization. Any kind of authentication operation on the

 timestamp itself creates an additional delay that adds offset between

 the receiver and sender of the timestamp. If it is a public-key

 operation, then this delay can be significant and variable. Second,

 requiring precise time-synchronization for a large number of clients

 demands a stateless protocol, precluding the use of a TLS-like

 authentication protocol. We thus have the following design goals:

 1. Server-side processing of time-synchronization protocol messages

 requires no per-client state.

 2. The client is capable of authenticating the server.

 3. The client is capable of authenticating all messages from the

 server.

 4. In one configuration, authentication adds no delay to time-

 samples when compared to unauthenticated NTP.

 5. Authentication is optional, and ANTP clients can interoperate

 with deployed NTP servers (and vice-versa).

 6. UDP packets are limited in size and the added necessity of

 transporting certificate chains means that messages may require

 fragmentation.

Dowling, et al. [Page 4]

 ANTP 2015

 7. Replay attacks are explicitly prevented.

3. Protocol Flow Diagram

 We begin by presenting a standard message flow for ANTP. There are

 three seperate phases to ANTP: The Negotiation Phase, the Key-

 Exchange Phase and the Time-Synchronization Phase. All messages are

 included in the extension field of an NTP packet (Version 4 or

 later). If an NTP server does support ANTP, the presence of an

 unknown extension will cause the packet to be ignored. If the client

 recieves an unauthenticated NTP response after any ANTP request, the

 client MUST abort the protocol and restart the protocol flow. This

 is to prevent an adversary from dropping the extension fields of an

 ANTP message in order to force downgrade attacks.

 SNTP as standardized does not currently support extensions, but ANTP

 assumes SNTP behavior in order to compute and process time-

 synchronization messages and clock updates. Considering SNTP and NTP

 message structure is identical, we do not believe it would be

 difficult to also offer support for SNTP extensions.

 When a client requires authentication, note that a response from a

 server that doesn't support ANTP is indistinguishable from a network

 attacker that has intercepted the client messages and sent an

 unauthenticated response. Thus an ANTP client MUST NOT pull

 synchronization from NTP in the event that an ANTP handshake fails:

 doing so would allow downgrade attacks, negating all security

 benefits of ANTP.

 The Negotiation Phase exchanges lists of supported cryptographic

 algorithms, in order to negotiate a single protocol version, key-

 derivation function, hash function, key-exchange algorithm and MAC

 scheme for use in the protocol. It also allows the client to recieve

 the certificate of the server.

 The Key-Exchange phase allows the two parties to negotiate a fresh

 shared secret key. It also authenticates the negotiation and key-

 exchange phases with the server providing a MAC of the negotiation

 and key-exchange messages utilizing the shared secret key.

 The Time-Synchronization phase allows the client to recieve

 authenticated NTP messages utilizing the negotiated secret-key, hash

 algorithm and MAC scheme from the negotiation phase. The client can

 reuse the key in multiple consecutive time-synchronization phases,

 saving the server costly public-key operations. The time-

 synchronization packets also include a nonce to prevent replay

 attacks. Note also that the client MUST renegotiate the key

 periodically in order to maintain key-freshness.

Dowling, et al. [Page 5]

 ANTP 2015

 The client request indicates whether the server should use a high

 accuracy response. For a high accuracy response, authentication is

 delayed. The server responds immediately with an unauthenticated

 response, then susequently sends the same response, but with

 authentication information. Servers MUST support the high accuracy

 option.

 The ANTP protocol requires a setup stage from the server: For each

 key-exchange algorithm supported by the server, the server must

 generate long-term public and private parameters, and MUST obtain a

 X.509 digital certifcate issued by a trusted certificate authority

 over the public parameters. In addition, the server MUST choose an

 authenticated-encryption scheme, and a randomly generated a secret

 key K_s for use in the protocol.

 NEGOTATION PHASE

 | ClientNegotiation | --------------->

 <--------------- | ServerNegotiation |

 KEY-EXCHANGE PHASE

 | ClientKEX | --------------->

 <-------------- | ServerKEX |

 TIME-SYNCHRONIZATION PHASE

 |NTP_c| ClientRequest | --------------->

 [|NTP_s|]*

 <--------------- |NTP_s| ServerResponse |

 Figure 1. Protocol Flow for ANTP

 * Indicates an optional message that is only sent if the client has

 requested a high accuracy response.

4. Processing Sequence

4.1. Negotiation Phase

 1. The client begins by sending the ClientNegotiation message to the

 server, in the extension field of a correctly formatted NTP message.

 The client includes the client_kdf_algs, client_hash_algs,

 client_kex_algs, and client_mac_algs fields with the preferenced list

 of algorithms and the client_version with the highest supported

Dowling, et al. [Page 6]

 ANTP 2015

 version of the client. The client also includes a 256-bit random

 nonce as a 32-byte array in the nonce field to ensure uniqueness of

 the message and defend against replay attacks. The client saves the

 ClientNegotiation message to authenticate the negotiation phase later

 in the protocol run.

 2. Upon reciept of a ClientNegotiation message, the server creates a

 ServerNegotiation message, including the server_kdf_algs,

 server_hash_algs, server_kex_algs, and server_mac_algs (the

 preferenced list of algorithms that the server supports and the

 server_version with the highest supported version of the server).

 The server then computes the negotiated key-derivation function

 (denoted KDF), hash function (H), key-exchange (KEX), and Message

 Authentication Code (MAC) algorithms and the version by:

 a. In the case of KDF, hash, key-exchange and MAC algorithms, the

 highest preferenced client algorithms that the server also

 supports and;

 b. In the case of version, the highest-numbered version that both

 parties support.

 The ServerNegotiation message includes the certificate (chain)

 associated with the negotiated key-exchange algorithm. The server

 uses H to compute a hash of the concatenation of ClientNegotiation

 and ServerNegotiation messages, and encrypts the output concatenated

 with the negotiated algorithms with the long-term secret symmetric-

 key K_s and the preferred authenticated-encryption scheme of the

 server as follows:

 opaque1 = AUTH-ENC(K_s,

 H(ClientNegotiation||ServerNegotiation)||KDF||Hash||KEX||MAC)

 where the opaque1 field of the ServerNegotiation message is set to m

 zero bytes, where m is the length of opaque1 (the rest of the message

 is completed). The values KDF, Hash, KEX and MAC are the negotiated

 values, a single byte each, as described in Section 7 The value

 opaque1 added to the ServerNegotiation message and sent to the

 client.

 3. Upon reciept of the ServerNegotiation message, the client

 computes the negotiated key-derivation, hash key-exchange, MAC

 algorithms and version (in the same way as the Server), and confirms

 that the certificate in the ServerNegotiation message supports the

 correct key-exchange algorithm. If it does not, the client MUST

 abort. The client saves the ServerNegotiation message in order to

 authenticate the protocol run in the key-exchange phase.

Dowling, et al. [Page 7]

 ANTP 2015

4.2. Key-Exchange Phase

 1. The client generates an NTP message and a ClientKEX extension

 field, using the negotiated algorithm identifiers as input to the

 neg_kdf, neg_hash, neg_kex and neg_mac fields respectively, and the

 negotiated version as the neg_version. The value opaque1 is part of

 the ClientKeyExchange message.

 Each KEX algorithm has three functions KEX_client, KEX_server and

 KEX, used by the client and server to create inputs for key exchange

 and to compute the shared secret. Details for allowed key exchange

 algorithms are given in Section 7.3.

 The client extracts the public-key pk_s and key exchange parameters

 kex_params from the server certificate. Then the public and secret

 parts of the key exchange are computed:

 (public_kex_mat, Z) = KEX_client(kex_params, pk_s)

 Details of KEX_client are given in Section 7.3. The value

 public_kex_mat is sent to the server in the KeyExchangeMaterial

 field. The client also saves the shared secret Z.

 2. Upon reciept of a ClientKEX message, the server verifies the

 integrity of the opaque value, decrypts and parses it as:

 opaque1_d||KDF||Hash||KEX||MAC = AUTH-DEC(secret_s, opaque1)

 If decryption fails, the server MUST abort. Otherwise, the server

 generates the secret key material Z using secret-key sk_s associated

 with pk_s as follows:

 Z = KEX_server(kex_params, sk_s, public_kex_mat)

 If KEX_server fails, the server MUST abort. The server uses Z to

 derive the key k:

 k = KDF-H(Z, "time", "ANTP",L)

 where "time" and "ANTP" are the ASCII encodings of the strings ANTP

 (0x414e5450) and time (0x74696d65), and L is the length of the

 desired key. Note that L will be the MAC key length for H. The

 inputs to the KDF are explained in further detail in Section 7.4.

 The server then encrypts k using K_s as a second opaque value:

 opaque2 = AUTH-ENC(K_s, k||KDF||Hash||KEX||MAC)

Dowling, et al. [Page 8]

 ANTP 2015

 The value opaque2 is part of the ServerKEX message. The values KDF,

 Hash, KEX and MAC are the negotiated values, a single byte each, as

 described in Section 7 Now all previous messages (e.g

 ClientNegotiation, ServerNegotiation, ServerKEX and ClientKEX

 messages) are authenticated:

 mac_tag = MAC-H(k, opaque1_d||ClientKEX||ServerKEX)

 The value mac_tag value is sent to the client in the ServerKEX

 message. Verifying the tag authenticates both the key-exchange and

 negotiation phases (as opaque1_d is a hash value over

 ClientNegotiation and ServerNegotiation messages).

 3. Upon reciept of the ServerKEX message, the client derives the

 key:

 k = KDF-H(Z, "time", "ANTP", L)

 and the other values are as in the corresponding server key

 derivation step.

 The client verifies the MAC tag in the ServerKEX message by computing

 Tag = MAC-H(k,H(ClientNegotiation||ServerNegotiation)||ClientKEX||Ser

 verKEX). If Tag and mac_tag differ, the client MUST abort.

 Otherwise, the client accepts the negotiation and key-exchange phases

 and saves opaque2 and k for the time-synchronization phase.

4.3. Time-Synchronization Phase

 1. The client begins the time-synchronization process by generating

 an NTP message according to the NTP specfication. The client also

 randomly generates a 256-bit nonce, and includes the nonce as a

 32-byte array in the nonce field of the ClientRequest message. The

 nonce ensures uniqueness of the synchronization and prevents replay

 attacks. In addition, the negotiated version neg_version, the

 negotiated key-derivation (neg_kdf), hash (neg_hash), key exchange

 (neg_kex) and MAC (neg_mac) algorithms MAC are sent in the

 appropriate fields, and the opaque2 value from the ServerKEX message

 is sent in the opaque1 field. Finally, if the client requires

 accuracy similar to unauthenticated NTP, the AccuracyFlag field is

 set to 0x01. Otherwise the flag is set to 0x00 and the ClientRequest

 is sent to the server.

Dowling, et al. [Page 9]

 ANTP 2015

 2. Upon reciept of the ClientRequest, the server creates an

 unauthenticated NTP response as specified in the NTP standard. If

 the ClientRequest's AccuracyFlag = 0x01 the server sends the

 unauthenticated NTP response immediately without a ServerResponse

 extension field. The server then generates a new secret key by

 decrypting and parsing the opaque2 value in the ClientRequest message

 as follows:

 k||KDF||Hash||KEX||MAC = AUTH-DEC(K_s, opaque2)

 and creating an authentication tag for both client and server NTP

 messages (denoted by NTP_c and NTP_s respectively):

 mac_tag = MAC-H(k, NTP_c||ClientRequest||NTP_s||ServerResponse)

 and inputting the mac_tag into the Tag field, sending the

 NTP_s||ServerResponse message to the client.

 3. Upon reciept of an NTP response from the server, the client

 immediately processes the NTP packet. If the client indiciated the

 AccuracyFlag:

 (i) the client MUST NOT pull synchronization from an

 unauthenticated NTP packet unless a ServerResponse attached to an

 identical NTP packet verifies correctly, and

 (ii) if no ServerResponse is recieved, or no unauthenticated

 packet is recieved, the client MUST abort the protocol.

 The client verifies the ServerResponse by:

 Tag = MAC-H(k, NTP_c||ClientRequest||NTP_s||ServerResponse)

 The client uses NTP_s for synchronization only if mac_tag = Tag.

 Otherwise the client MUST abort.

5. Protocol Messages

 Recall that all messages are designed to be sent in the NTP extension

 fields similarly to the Autokey Protocol [RFC5906]. When the

 msg_type of the extension field equals 0x01, 0x02, 0x03, 0x04, or

 0x05 the client MUST NOT use the information in the NTP message

 fields for synchronization. If the msg_type of the extension fields

 equal 0x01 or 0x03 the server MAY process the NTP message normally.

 When the namefield reads 0x06 or 0x05, the client and server MUST

 process the respective NTP messages as specified in the NTP

 specification.

Dowling, et al. [Page 10]

 ANTP 2015

 This protocol follows DTLS [RFC4347] regarding message fragmentation.

 If the message requires fragmentation, the client divides the message

 into a series of N contiguous data ranges, each at least 56 bytes

 shorter than the maximum message size (to account for the NTP Packet

 and the msg_type, Length, Offset and FragmentLength field lengths).

 Each of these N data ranges becomes a new message, each attached to

 an identical NTP packet, and with identical msg_type and length. The

 Offset field of a message fragment is the number of bytes in previous

 fragments, and FragmentLength is the length of the current message

 fragment. When any party recieves an NTP message with an extension

 field containing a msg_type with value 0x01 (ClientNegotiation), 0x02

 (ServerNegotiation), 0x03 (ClientKEX), 0x04 (ServerKEX), 0x05

 (ClientRequest), 0x06 (ServerRequest), the party checks if

 length=FragmentLength. If not, the party MUST buffer until it has

 the entire message, and process as if the message were a single NTP

 packet attached to a extension field with a zeroed Length,

 FragmentLength, and FragmentOffset fields. This fragmentation

 strategy is applied to each ANTP protocol message, as required.

 Setting the maximum message length depends on the path MTU between

 the client and server. Clients can use path MTU discovery [RFC1191]

 [RFC1981]. See also Section 4.1.1.1 "PMTU Discovery" from [RFC4347]

 for information on how path MTU is set in DTLS.

 We specify the following structure to describe the FragmentInfo

 structure utilized in all ANTP packets:

 struct {

 uint24 length;

 uint16 offset;

 uint16 FragmentLength;

 } FragmentInfo

 where:

 length: An unsigned 24-bit integer describing the length of the

 unfragmented message

 fragment_offset: An unsigned 16-bit integer describing the number of

 bytes contained in previous fragments of the message. When the

 message requires no fragmentation this value is 0.

 fragment_length: An unsigned 16-bit integer describing the length of

 this fragment on the message. When the message requires no

 fragmentation, this value is length.

 Note that since ANTP allows buffering of messages, it is possible

 that multiple ANTP messages that require fragmentation may be

 recieved by another party interleaved. Since each ANTP message that

 is fragmented is attached to an identical NTP message, it is trivial

 to distinguish fragmented ANTP messages via the NTP packet. In order

Dowling, et al. [Page 11]

 ANTP 2015

 to reduce complexity however, the parties MUST NOT send multiple ANTP

 messages with identical NTP packets, but instead generate a new NTP

 message for each message flow.

 In a similar way to TLS all values are stored in big-endian format,

 and the smallest block size is a single byte. We define variable-

 length vectors by specifying a range of legal lengths and sizes of

 the elements in the vector as follows:

 type Name <floor,...,ceiling>

 where type is the type of each element, floor is the smallest number

 of elements in the vector, and ceiling the largest. Note that for

 each vector the number of elements in the vector is prepended to the

 vector as an unsigned integer, using as many bytes as necessary to

 express ceiling (the length of the largest possible vector).

 We define the following structure to represent a variable-length

 string of bytes:

 struct {

 uint32 length;

 uint8 data<0, ..., 2^32 -1>

 } ByteString

 where:

 length: An unsigned 32-bit integer indicating the number of bytes

 that follow.

 data: A sequence of bytes (octets).

 Note that for the ByteString structure, the data field is not

 serialized as a vector (with the length prepended), as the length is

 explicitly given by the first field.

5.1. Negotiation Phase

 The negotiation phase begins with the exchange of messages to

 negotiate the key-exchange, hash algorithms and versions to be used

 throughout the protocol. In addition, the server sends the

 certificate necessary to validate the public-key of the server.

5.1.1. Message: Client Negotiation

 The negotiation phase begins with the client sending the first

 negotiation message, with the following structure. The description

 of each field can be found below.

Dowling, et al. [Page 12]

 ANTP 2015

 struct {

 uint8 msg_type = 0x01;

 FragmentInfo f;

 uint8 client_version;

 uint8 client_kdf_algs<1,...,255>;

 uint8 client_hash_algs<1,...,255>;

 uint8 client_kex_algs<1,...,255>;

 uint8 client_mac_algs<1,...,255>;

 uint8 nonce<0,...,31>;

 } ClientNegotiation

 msg_type A unsigned byte of value 0x01 indicating the

 ClientNegotiation message.

 client_version: An unsigned 8-bit integer indicating the highest

 supported version of ANTP that the client supports.

 client_kdf_algs: An ordered list of unsigned 8-bit integers

 representing the preferred key-derivation functions supported

 by the client.

 client_hash_algs: An ordered list of unsigned 8-bit integers

 representing the preferred hash algorithms supported by the

 client.

 client_kex_algs: An ordered list of unsigned 8-bit integers

 representing the preferred key-exchange algorithms supported by

 the client.

 client_mac_algs: An ordered list of unsigned 8-bit integers

 representing the preferred MAC schemes supported by the client.

 nonce: A random 256-bit value as a 32-byte array.

5.1.2. Message: Server Negotiation

 The negotiation phase continues with the server processing the

 ClientNegotiation message and sending the ServerNegotiation message,

 with the following structure:

 struct {

 uint8 msg_type = 0x02;

 FragmentInfo f;

 uint8 server_version;

 uint8 server_kdf_algs<1,...,255>;

 uint8 server_hash_algs<1,...,255>;

 uint8 server_kex_algs<1,...,255>;

 uint8 server_mac_algs<1,...,255>;

 ByteString server_cert;

 ByteString opaque1

 } ServerNegotiation

 server_neg: A unsigned byte of value 0x02 indicating the

 ServerNegotiation message.

Dowling, et al. [Page 13]

 ANTP 2015

 server_version: An unsigned 8-bit integer indicating the highest

 supported version of the authentication protocol that the

 server supports.

 server_kdf_algs: An ordered list of unsigned 8-bit integers

 representing the preferred key-derivation functions supported

 by the server.

 server_hash_algs: An ordered list of unsigned 8-bit integers

 representing the preferred hash algorithms supported by the

 server.

 server_kex_algs: An ordered list of unsigned 8-bit integers

 representing the preferred key-exchange algorithms supported by

 the server.

 server_mac_algs: An ordered list of unsigned 8-bit integers

 representing the preferred MAC schemes supported by the server.

 server_cert: The certificate containing the server public-key. Note

 that the public-key corresponds to the key-exchange algorithm

 negotiated with the two ordered lists client_kex_algs and

 server_kex_algs.

 opaque1 An encrypted value created by the server, opaque to the

 client.

5.2. The Key-Exchange Phase

 The key-exchange phase establishes secret-key material, and

 implicitly authenticates both the key-exchange and negotiation phases

 to the client.

5.2.1. Message: ClientKEX

 The key-exchange phase begins with the client sending the ClientKEX

 message, with the following structure and description:

 struct {

 uint8 msg_type = 0x03;

 FragmentInfo f;

 uint8 neg_version;

 uint8 neg_kdf;

 uint8 neg_hash;

 uint8 neg_kex;

 uint8 neg_mac;

 ByteString opaque1

 ByteString kex_mat

 } ClientKEX

 msg_type: A unsigned byte of value 0x03 indicating the ClientKEX

 message.

 neg_version: unsigned 8-bit integer describing the negotiated

 version of the protocol that the parties will be using.

Dowling, et al. [Page 14]

 ANTP 2015

 neg_kdf: An unsigned 8-bit integer describing the negotiated key-

 exchange algorithm that the protocol will be using.

 neg_hash: An unsigned 8-bit integer describing the negotiated hash

 algorithm that the protocol will be using.

 neg_kex: An unsigned 8-bit integer describing the negotiated key-

 exchange algorithm that the protocol will be using.

 neg_mac: An unsigned 8-bit integer describing the negotiated key-

 exchange algorithm that the protocol will be using.

 opaque1: The opaque value sent in the ServerNegotiation message.

 kex_mat: The public key exchange material.

5.2.2. Message: ServerKEX

 The server now processes the ClientKEX message to compute the shared

 secret key. The server then produces a second opaque encryption,

 this time of the key, and generates a MAC tag authenticating the

 Negotiation and Key-Exchange phases. The structure and description

 of the ServerKEX message is as follows:

 struct {

 uint8 msg_type = 0x04;

 FragmentInfo f;

 ByteString opaque2

 ByteString mac_tag

 } ServerKEX

 msg_type: A unsigned byte of value 0x04 indicating the ServerKEX

 message.

 opaque2: A second encrypted value created by the server, opaque to

 the client.

 mac_tag: The MAC of the concatenated hash value and KEX messages

 using the agreed key. The length of the tag is known to both

 parties based on the negotiated hash function, and clients MUST

 check that the recieved mac_tag has the correct length.

5.3. Time Synchronization Phase

 The Time-Synchronization Phase allows the client to request

 synchronization from a server that has previously been authenticated

 and established a shared secret key.

5.3.1. Message: ClientRequest

 The Time Synchronization phase begins with the client computing the

 NTP packet as specified in the NTP standards, and additionally

 completing the ClientRequest extension as structured and described

 below:

Dowling, et al. [Page 15]

 ANTP 2015

 struct {

 uint8 msg_type = 0x05;

 FragmentInfo f;

 uint8 neg_version;

 uint8 neg_kdf;

 uint8 neg_hash;

 uint8 neg_kex;

 uint8 neg_mac;

 uint8 nonce<0,...,31>;

 ByteString opaque2

 uint8 AccuracyFlag flag

 } ClientRequest

 msg_type: A unsigned byte of value 0x05 indicating the ClientRequest

 message.

 neg_version: unsigned 8-bit integer describing the negotiated

 version of the protocol that the parties will be using.

 neg_hash: An unsigned 8-bit integer describing the negotiated key-

 derivation function that the protocol will be using.

 neg_hash: An unsigned 8-bit integer describing the negotiated hash

 algorithm that the protocol will be using.

 neg_kex: An unsigned 8-bit integer describing the negotiated key-

 exchange algorithm that the protocol will be using.

 neg_mac: An unsigned 8-bit integer describing the negotiated MAC

 scheme that the protocol will be using.

 nonce: An unsigned random 256-bit value as a 32-byte array.

 opaque2: The opaque value sent in the ServerKEX message.

 flag: An unsigned 8-bit integer describing whether the client

 requires high accuracy. Legal values are 0x01 (the flag is

 set) or 0x00 (the flag is not set).

5.3.2. Message: ServerResponse

 The server processes the Client NTP request as standardized, and

 computes the NTP response. If the AccuracyFlag in the ClientRequest

 is 0x01, the server immediately sends the message without a

 ServerResponse extension. Afterwards, the server computes the

 ServerResponse fields as described below, and attaches it as an

 extension to the previously computed NTP packet, sending the message

 to the client.

 struct {

 uint8 msg_type = 0x06;

 FragmentInfo f;

 ByteString mac_tag

 } ServerResponse

Dowling, et al. [Page 16]

 ANTP 2015

 msg_type: A unsigned byte of value 0x06 indicating the

 ServerResponse message.

 mac_tag: The MAC of the concatenated ClientRequest and

 ServerResponse messages using the derived secret-key. The

 length of the tag is known to both parties based on the

 negotiated hash function, and clients MUST check that the

 recieved mac_tag has the correct length.

6. Security Model

 We consider security of the Authentication Protocol for Network Time

 Protocol in the presence of an attacker that has the ability to

 create, reorder, replay, modify or drop messages at will. We attempt

 to address the following concerns outlined in the Security

 Requirements TICTOC Working Group Informational:

 1. Packet Manipulation

 2. Authentication and Authorization of Sender

 3. Spoofing Attacks

 4. Replay Attacks

 5. Performance, no degradation of accuracy of clock

 6. Key Freshness

 The packet-manipulation and authentication of sender is fulfilled via

 authentication of packets and public-key authentication respectively.

 Replay protection is addressed by the inclusion of a client-generated

 nonce with each time-synchronization. Accuracy of timestamps is

 addressed by limiting server-side public-key operations, and the

 ability of the client to choose a high-accuracy variant of time-

 synchronization. Key freshness is provided by requiring the client

 to renegotiate a new key periodically. We note that the Security

 Requirements Informational also outlines additional threats outside

 the scope of our protocol:

 1. Packet Dropping

 2. Packet Delay Manipulation

 3. DoS Attacks

 4. Crypto Performance Attacks

 5. Time Protocol DoS

 6. Fraud Time Source

 7. Rogue Master Attacks

 We define these as outside the scope of our protocol, as a MITM

 attacker can trivially perform DoS, packet-dropping and packet-delay

 manipulation attacks. Additionally, a MITM attacker can trivially

 overwhelm a server with Key Exchange messages generated with random

 values but a real opaque, forcing the server to perform public-key

 operations processing the key-exchange material. The Time Protocol

Dowling, et al. [Page 17]

 ANTP 2015

 DoS and Fraud Time Source attacks are within the bounds of NTP, and

 processing NTP messages is outside the bounds of ANTP as a design

 goal.

 The associated ANTP paper [ANTP paper] provides a formal security

 analysis of ANTP, proving it is secure under standard assumptions

 about the underlying cryptographic primitives.

7. Cryptographic Algorithms

7.1. Authenticated Encryption

 This section discusses the functions AUTH-ENC and AUTH-DEC used in

 ANTP. No interoperability is required from the authenticated

 encryption algorithm, as the value is entirely opaque to the client.

 It is critical for security, as a malicious party who can decrypt

 client Alice's opaque2 value may masquerade as the server and create

 valid ServerResponse messages for Alice. Therefore, the server MUST

 use one of the following algorithms:

 AES-GCM as specfied in [GCM]

 AES-CCM as specficed in [RFC3610]

 AES-CBC combined with HMAC-SHA, as specifed in [CBC-HMAC]

 Note that AES-GCM requires an explicit counter that is never reused,

 and thus the server MUST generate a nonce for each new opaque value

 to be encrypted, and attach the nonce to the end of the encrypted

 opaque value.

 The security level (determined by the key length and algorithm

 choice) SHOULD meet or exceed the security level of the negotiated

 hash function.

 An additional consideration is key-lifetime. Each authenticated

 encryption algorithm has a maximum amount of data that can be

 encrypted with a key. To avoid exceeding this limit, servers SHOULD

 generate a new authenticated encryption key every two months (or

 sooner) and update the key. This also serves to force clients to

 renegotiate a new key, as the opaque value will no longer decrypt

 correctly. Additionally, a server SHOULD generate a new key whenever

 a new certificate is used.

 Servers may also choose to graudally "phase in" use of a new key,

 since when the opaque2 value in the ClientRequest message is

 rejected, the client will restart the key negotiation phase. If a

 large number of clients simultaneously being key exchange the

 computational costs may overwhelm the server. Servers may include a

 small amount of metadata (like a key identifier) as part of the

Dowling, et al. [Page 18]

 ANTP 2015

 opaque2 value to allow them to identify which key was used to create

 the opaque value. This allows the server to continue using the first

 key, while migrating clients over to the new key. After a fixed

 period of time (such as a day) the server should delete the first

 key.

7.2. Hash Algorithms

 Following the direction set by [NTS], it is required that all parties

 MUST support SHA-256, MAY support SHA-384, SHOULD support SHA-512 and

 MUST NOT support SHA-1, MD5 or 'weaker' hash algorithms. Note that

 the length of the mac_tag field is dependent on the size of the

 output of the hash algorithm negotiated. Each Hash function

 represented in the HashAlgorithm/s fields is assigned an unsigned

 8-bit ID for negotiation:

 0x00: SHA-256

 0x01: SHA-384

 0x02: SHA-512

7.3. Key-Exchange Algorithms

 We note that in our protocol, the key-exchange algorithms are

 required to provide both authentication and confideniality of the

 secret key material without the server using a signature algorithm.

 The RSA-OAEP option is an encryption-based key transport, i.e., the

 client chooses a random key and encrypts it with the server's public

 key. The ECDH (elliptic-curve Diffie-Hellman) option has the client

 generate an ephemeral public key, and the server's long term public

 key is used for key agreement. Note that forward secrecy is not

 required: if a server private key is revealed, previous time

 synchronizations cannot be affected. Future synchronization phases

 of previously agreed keys are vulnerable until the client re-

 negotiates a new key (and recieves a new server certificate). For

 both schemes, the parameters (kex_params) are forced by the server

 certificate; in the case of RSA-OAEP kex_params are the modulus size

 and in the case of ECDH kex_params are the curve parameters. The

 client may abort if the server parameters are deemed too weak.

 For interoperability, implementations MUST support RSA-OAEP with

 modulus size >= 2048 and MUST not support smaller modulus sizes.

 ECDH MUST be supported with the named curve secp256r1 [SEC2]. Other

 curves MAY be supported, but they must provide 128-bits of security

 or above. Servers MUST implement the point validation steps before

 operating on recieved points (as specified for ECDH in [SEC1]).

Dowling, et al. [Page 19]

 ANTP 2015

 Each Key-Exchange algorithm represented in the ANTP message fields is

 assigned an unsigned 8-bit ID for negotiation:

 0x00: RSA-OAEP

 0x01: ECDH

 Recall that KEX_client takes as input (kex_params, pk_s), and outputs

 (public_kex_mat, Z).

 For ECDH, kex_params are the curve parameters. The client

 generates an ephemeral key pair (public_kex_mat, r) with public

 point public_kex_mat and private value r. The shared secret is

 the x-coordinate of the point Z = ECDH(pk_s, r).

 For RSA-OAEP, Z is a randomly chosen 512-bit value, kex_params are

 the modulus length and the hash function(s) used for OAEP

 encoding. The value public_kex_mat is the encryption of Z with

 the public key pk_s.

 Recall that KEX_server takes as input (kex_params, sk_s,

 public_kex_mat) and outputs Z.

 For ECDH the server computes the shared secret as the x-coordinate

 of the point Z = ECDH(public_kex_mat, sk_s). If point validation

 on public_kex_mat fails, the server MUST abort.

 For RSA-OAEP the server decrypts public_kex_mat with the private

 key sk_s and outputs the plaintext Z. If decryption fails the

 server MUST abort.

7.4. Key Derivation Function

 We note that in the ANTP protocol, secure Key-Derivation Functions

 are required in order to securely generate a shared secret key from

 public-key materical. We define the KDF used in the key-exchange

 phase to be the KDF in counter mode defined in NIST SP 800-108

 [SP800-108]. This construction uses HMAC as a PRF, which is HMAC-H,

 where H is the negotiated hash function. We use the notation:

 KDF-H(Z, context, label, L), where Z is the shared secret, the

 context and labels are additional inputs, and L is the output length.

 We additionally allow mechanisms for negotiation key-derivation

 functions similarly to hash and key-exchange algorithms. Each KDF

 represented in ANTP message fields is assigned an unsigned 8-bit ID

 for negotiation:

 0x00: SP800-108

7.5. Message Authentication Code scheme

Dowling, et al. [Page 20]

 ANTP 2015

 We note that in the ANTP protocol, secure MAC schemes are required in

 in order to authenticate the protocol run and thus the client's time-

 synchronization partner. HMAC is the default MAC scheme used in

 ANTP, but allow mechanisms for negotiating MAC schemes similarly to

 hash functions and key-exchange algorithms. When HMAC is negotiated,

 the hash function is the negotiated hash function. Each MAC scheme

 represented in the ANTP message fields is assigned an unsigned 8-bit

 ID for negotiation:

 0x00: HMAC

8. Security Considerations

8.1. Client Key Renegotiation

 Note that the client could reuse the same opaque value from the

 ServerKEX message until the Server generates a new authenticated

 encryption key K_s as described above. However, one of the goals

 outlined by the TICTOC Working Group Informational is key freshness.

 Following this, in ANTP the client SHOULD renegotiate a key by

 restarting the protocol flow every two days.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

 Hashing for Message Authentication", RFC 2104, February

 1997.

 [RFC3610] Whiting, D., Housley, R., and N. Ferguson, "Counter with

 CBC-MAC (CCM)", RFC 3610, September 2003.

 [RFC5906] Haberman, B. and D. Mills, "Network Time Protocol Version

 4: Autokey Specification", RFC 5906, June 2010.

 [ANTPpaper]

 Dowling, B., Stebila, D., and G. Zaverucha, "Authenticated

 Network Time Synchronization", IACR ePrint Technical

 Report 2015/TBD, February 2015.

 [GCM] Dworkin, M., "Recommendation for Block Cipher Modes of

 Operation: Galois/Counter Mode (GCM) and GMAC", NIST SP

 800-38D, November 2007.

Dowling, et al. [Page 21]

 ANTP 2015

 [SP800-108]

 Chen, L., "Recommendation for Key Derivation Using

 Pseudorandom Functions", NIST SP 800-108, October 2009.

 [CBC-HMAC]

 McGrew, D., Foley, J., and K. Patterson, "Authenticated

 Encryption with AES-CBC and HMAC-SHA", Internet Draft

 http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-

 sha2-05, July 2014.

 [SEC1] Standards for Efficient Cryptography, (SECG)., "SEC 1:

 Elliptic Curve Cryptography", Version 2.0, May 2009.

 [SEC2] Standards for Efficient Cryptography, (SECG)., "SEC 2:

 Recommended Elliptic Curve Domain Parameters", Version

 2.0, January 2007.

9.2. Informative References

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer

 Security", RFC 4347, April 2006.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,

 November 1990.

 [RFC1981] McCann, J., Deering, S., and J. Mogul, "Path MTU Discovery

 for IP version 6", RFC 1981, August 1996.

 [NTS] Sibold, D., Roettger, S., and K. Teichel, "Network Time

 Security ", Internet Draft https://tools.ietf.org/html/

 draft-ietf-ntp-network-time-security-04, July 2014.

 [Roettger]

 Roettger, S., "Analysis of the NTP Autokey Protocol", ,

 February 2012.

Authors' Addresses

 Benjamin Dowling

 Queensland University of Technology

 b1.dowling@qut.edu.au

 Douglas Stebila

 Queensland University of Technology

 stebila@qut.edu.au

 Greg Zaverucha

 Microsoft Research

 gregz@microsoft.com

