
Angelic Verification: Precise
Verification Modulo Unknowns

Ankush Das, Shuvendu Lahiri, Akash Lal,

(Microsoft Research)

Yi Li

(University of Toronto)

Automatic whole-program verifiers

• Automatic whole program verifiers
• SLAM, BLAST, IMPACT, JPF, FSOFT,

CORRAL, ...

• Several success stories
• Numerous bugs found and fixed

ModuleProperty

Automatic Program
Verifier

Verified/
Coverage

Interprocedural
counterexamples

Open programs and program verifiers

• Most verification tasks require analyzing open programs interacting
with their environment
• Under-constrained inputs (parameters, globals)

• Under-constrained library calls (no definition)

• Results in numerous “dumb alarms” when applied directly to a
problem
• “Stupid false positives” [Coverity paper, CACM’10]

Dumb alarms

void foo(int *x, int *y) {
free(x);
*y = 2;
free(x);

}

Often due to demonic assumptions about environment by the
verifier

• Ignoring imprecision in analysis in this work

Check use-after-free

 Possible double-free

 Possible double-free

 Possible use-after-free
Overly pessimistic

Open programs and program verifiers

• Most verification tasks require analyzing open programs interacting
with its environment
• Under-constrained inputs (parameters, globals)
• Under-constrained library calls (no definition)

• Results in numerous “dumb alarms”

• Prescribed methodology
• Modeling of environment (preconditions, models of external APIs)

• SDV [Ball et al., CACM’11]
• Significant “upfront” overhead, several man years work

• (In practice) Ad-hoc heuristics baked inside static analyzer
• Specific to properties, statistical methods [Kremenek et al. SAS’03],

Problem: Hinders adoption of verifiers

• No “out-of-the-box” experience
• Find a few “interesting” alarms without a lot of effort
• More effort (modeling) more “interesting” alarms

• Hard for a user to control/configure the tool
• Adding manual pre/post conditions too low-level and cumbersome

•Expose more knobs to a user to control
quality of alarms

Angelic verification

• Two knobs
• Vocabulary of

acceptable
environment
specifications

• Angelic assertions

ModuleProperty

Automatic Program
Verifier

Spec
vocab

Angelic
asserts

Verified/
Coverage

+
Environment
specifications

Interprocedural
counterexamples

Acceptable env specifications (example)

requires !freed(x) && !freed(y) && x != y

void foo(int *x, int *y) {
free(x);
*y = 2;
free(x);

}

Check use-after-free

Is there any acceptable
specification over aliasing
and property type-states

Angelic assertion (example)

requires !freed(x) && !freed(y) && x != y

void foo(int *x, int *y) {
free(x);
*y = 2;
free(x);
if (x == y) {

assert false; //angelic assert
g = 1;

}
}

Spec makes code dead
(not permissive)

Spec should not prove
an angelic assertion

Angelic asserts push
back on the spec

inference

Angelic verification: problem statement

• Given a program P and a set of assertions A and
1. A vocabulary of environment specifications S

2. A set of angelic assertions B

P is angelically correct under (S,B), if there exists a specification s in S
such that

1. For each a in A, P |= s a

2. For each b in B, P |= s b only if P |= b

Rest of the talk

• Design of a specific angelic verifier (AV)
• Angelic harness: closing an open program

• Family of specifications provided by a template of predicates

• Angelic assertions model absence of dead code

• Instantiate the AV for two case studies against existing tools
• PREfix for null dereference

• SDV for API usage properties

Architecture
Angelic harness

Verifier (Corral)

Spec. inference

Permissive?

Closed Program

Warning

Module
(Open program)

• Programs compiled to Boogie

• Heap modeled using arrays

• Corral [Lal, Qadeer, Lahiri CAV’12]

• SMT-Based (bounded) Verifier

• Demonic (for unconstrained values)

• Whole-program

• Optimized for bug-finding

Add

NO

YES

Angelic harness: external calls

• External calls
• Specs (at entry

to Foo) cannot
express
constraints over
callee returns

• Add explicit
“triggers” as
assumes

requires forall u: u != 0 //WP, too strong

requires forall u: {unknown_L(u)} :: unknown_L(u) u != 0

procedure Foo(…) {

while(…) {

L: call x := External(y); //multiple dyn call sites

x := *;

assume unknown_L(x);

assert x != 0;

}

}

Spec inference (ExplainError)

• Given
• A failure trace T

• A family of predicates S

• Boolean structure

• Output
• A (weak) specification s in S that can rule out the

trace

Boolean structure
• [Fast] Clause (c1 || c2 || c3)

• [Slow] CNF (c1 || c2 || c3)(c1’ || c2’ || c3’)…

Compute WP

Mine predicates
in S from WP

Path slicing

Approximate WP
over S

Evaluation

• Research question
• Can we instantiate AV to be comparable with existing mature solvers?

• Two case studies
• PREfix for null dereference

• Static Driver Verifier (SDV) for API usage

PREfix

• Large code bases
• 10 modules: 400 KLOC, 18K procedures, 84K non-null asserts (before pruning)

• Compared against PREfix [Sielaff et al. ‘00]
• PREfix is a production tool, used by Windows

• Bottom up summarization

• Has models for many OS APIs

• Alias analysis for pruning
• Several hundred asserts per module, after pruning

AV configuration

• Predicates
• Aliasing (e1 != e2), non-null (e1 != NULL)

• Boolean combination
• Find single clause, if none then CNF

• Angelic asserts
• Instrument conditionals of the form e <> NULL

x = null;
if(…) { *x = … }
else { *x = … }

Results - PREfix

• PREfix reports 68 warnings
• Unknown time (runs on a dedicated cluster behind a web interface)

• AV reports 104 warnings in 11 hours
• More verbose AV: Two warnings

PREfix: One warning

Results - PREfix

79%

10%

11%

AV Bugs

Matched by PREfix

AV False Positives

PREFix False Negatives
81%

13%

6%

PREfix Bugs

Matched by AV

AV False Negatives

PREFix False Positives

Angelic assertions
• 6 true positives (missed by PREfix)

False positives
• Missing models (5), C->Boogie (6)

False negatives
• Missing models (1), timeouts (4), C->Boogie (5)

Without AV
• Corral reports almost 400 warnings, mostly

false alarms
• Masks true bugs

Comparing against SDV

• Checking API usage properties
• Lock usage, double completion of Interrupt Request (IRP) packets, …

• SDV modeling
• Harness construction

• Models of external APIs

• For AV
• Remove the harness/initialization, models of external APIs

Results on SDV Benchmarks

Tool Time (Ksec) Bugs False Positives False Negatives

SDV (Buggy)

(Correct)

1.7 13 0 0

1.1 0 0 0

SDV, No Models 13 8 0

282 0 12 0

AVN, No Models 3194 9 0 4

9977 0 0 0

AVN, No Models 3.19 9 0 4

9.97 0 0 0

SDV, No Models .47 12 12 0

.28 21 13 5

AVN, Some Modeling 3.5 13 0 0

16.8 0 0 0

Related work

• Almost-correct specs [Blackshear & Lahiri, PLDI’13]
• Expensive, can only be applied to procedure level

• Abductive inference [Dillig et al., PLDI’12]
• Quantifier elimination after minsat, requires user in the loop for each alarm

• Bi-abduction in separation logic [Calcagno et al., POPL’09]
• Similar to most bottom up analysis, no whole program counterexamples, user

cannot control

Summary

• Need more knobs for automatic whole-program verifiers

• Angelic verification
• Spec vocabulary
• Angelic assertions

• Can be configured to match existing checkers without upfront modeling
• More modeling ==> more interesting alarms!

• Current work (http://corral.codeplex.com/)
• More properties (lifetime properties of pointers)
• Completeness of predicate generation
• Quantifier elimination for arithmetic properties
• Automating inferring the right set of acceptable specifications

Questions

