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Abstract

We introduce a new quantum adversary method to prove lower bounds on the query complex-
ity of the quantum state generation problem. This problem encompasses both, the computation
of partial or total functions and the preparation of target quantum states. There has been
hope for quite some time that quantum state generation might be a route to tackle the Graph

Isomorphism problem. We show that for the related problem of Index Erasure our method
leads to a lower bound of Ω(

√
N) which matches an upper bound obtained via reduction to

quantum search on N elements. This closes an open problem first raised by Shi [FOCS’02].
Our approach is based on two ideas: (i) on the one hand we generalize the known additive

and multiplicative adversary methods to the case of quantum state generation, (ii) on the
other hand we show how the symmetries of the underlying problem can be leveraged for the
design of optimal adversary matrices and dramatically simplify the computation of adversary
bounds. Taken together, these two ideas give the new result for Index Erasure by using
the representation theory of the symmetric group. Also, the method can lead to lower bounds
even for small success probability, contrary to the standard adversary method. Furthermore,
we answer an open question due to Špalek [CCC’08] by showing that the multiplicative version
of the adversary method is stronger than the additive one for any problem. Finally, we prove
that the multiplicative bound satisfies a strong direct product theorem, extending a result by
Špalek to quantum state generation problems.
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Introduction

The query model provides a way to analyze quantum algorithms including, but not limited to,
those of Shor [Sho97] and Grover [Gro96] as well as quantum walks, quantum counting, and hidden
subgroup problems. Traditionally, in this model the input is a black-box function which can be
accessed via queries and the output is a classical value. The measure of complexity of an algo-
rithm is then defined as the number of queries made by the algorithm. Studying the quantum
query complexity of functions is quite fruitful since the model is simple enough that one can show
tight bounds for several problems and hence provides some intuition about the power of quantum
computing.

In this paper, we study a generalization of the query model to include problems in which the
input is still a black-box function, however, the output is no longer a classical value but a target
quantum state. An example for the resulting quantum state generation problem is Index Erasure.
Here we are given access to an injective function f : [N ] → [M ] and the task is to prepare the
quantum state 1√

N

∑N
x=1 |f(x)〉 using as few queries to f as possible. The name “index erasure”

stems from the observation that while it is straightforward to prepare the (at first glance perhaps
similar looking) state 1√

N

∑N
x=1 |x〉|f(x)〉, it is quite challenging to forget (“erase”) the contents of

the first register of this state which carries the input (“index”) of the function.
In particular, this approach has been considered in [AT03] to solve statistical zero knowledge

problems, one ultimate goal being to tackle Graph Isomorphism [KST93]. The quantum state
generation problem resulting from the well-known reduction of Graph Isomorphism to Index

Erasure would be to generate the uniform superposition of all the permutations of a graph Γ:

|Γ〉 = 1√
n!

∑

π∈Sn

|Γπ〉.

By coherently generating this state for two given graphs, one could then use the standard SWAP-test
to check whether the two states are equal or orthogonal, and therefore decide whether the graphs are
isomorphic or not. Such a method for solving Graph Isomorphism would be drastically different
from more standard approaches based on the reduction to the hidden subgroup problem, and might
therefore provide a way around serious limitations of the coset state approach [HMR+06]. There
has been hope for quite some time that quantum state generation might be a route to tackle the
Graph Isomorphism problem, however one of the main results of this paper is that any approach
that tries to generate |Γ〉 without exploiting further structure1 of the graph cannot improve on the
simple O(

√
n!) upper bound via search. More generally, we are interested in the query complexity

of the quantum state generation problem, in which the amplitudes of the target quantum state can
depend on the given function in an arbitrary way. Subroutines for quantum state generation might
provide a useful toolbox to design efficient quantum algorithms for a large class of problems.

Adversaries. Lower bounds on the quantum query complexity have been shown for a wide range
of (classical in the above sense) functions. Roughly speaking, currently there are two main ideas for
proving lower bounds on quantum query complexity: the polynomial method [BBBV97, BBC+98,
Aar02, Shi02, Amb03, KŠdW07] and the adversary method [Amb00]. The latter method has

1Indeed, here we assume that the only way to access the graph Γ would be by querying an oracle that, given a

permutation π, returns the permuted graph Γπ . Note that we assume that Γ is rigid which is no loss of generality.
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seen a sequence of variations, generalizations, and improvements over the past decade including
[HNS08, Amb03, BS04, LM08].

The basic idea behind the adversary method and its variations is to define a progress function
that monotonically changes from an initial value (before any query) to a final value (depending on
the success probability of the algorithm) with one main property: the value of the progress function
changes only when the oracle is queried. Then, a lower bound on the quantum query complexity
of the problem can be obtained by bounding the amount of progress done by one query.

Different adversary methods were introduced, but they were later proved to be all equiva-
lent [ŠS06]. They rely on optimizing an adversary matrix assigning weights to different pairs of
inputs to the problem. While originally these methods only considered positive weights, it was
later shown that negative weights also lead to a lower bound, which can actually be stronger in
some cases [HLŠ07]. The relevance of this new adversary method with negative weights, called
additive, was made even clearer when it was very recently shown to be tight for the quantum query
complexity of functions in the bounded-error model [Rei09, LMRŠ10].

Nevertheless, for some problems other methods (such as the polynomial method or other ad-hoc
techniques) might be easier to implement while also leading to strong bounds. The additive adver-
sary method also suffers from one main drawback: it cannot prove lower bounds for very small suc-
cess probability. To circumvent it, Špalek introduced the multiplicative adversary method [Špa08]
that generalizes some previous ad-hoc methods [Amb05, AŠdW07]. Being able to deal with expo-
nentially small success probability also allowed to prove a strong direct product theorem for any
function that admits a multiplicative adversary lower bound [Amb05, AŠdW07, Špa08] (note that
a similar result has recently been proved for the polynomial method [She10]). Roughly speaking, it
means that if we try to compute k independent instances of a function using less than O(k) times
the number of queries required to compute one instance, then the overall success probability is
exponentially small in k. However, Špalek left unanswered the question of how multiplicative and
additive methods relate in the case of high success probability. In particular, it is unknown whether
the strong direct product theorem extends to the additive adversary method, and therefore to the
quantum query complexity of any function since this method is known to be tight in the bounded
error model [LMRŠ10]. The quantum query complexity of functions nevertheless satisfies a weaker
property called direct sum theorem, meaning that computing k instances requires at least Ω(k)
times the number of queries necessary to solve one instance, but it is unknown how the success
probability decreases if less than O(k) queries are used.

Related work. We are not aware of any technique to directly prove lower bounds for quantum
state generation problems, and the only few known lower bounds are based on reductions to com-
puting some functions. One particular example is a lower bound for the already mentioned Index

Erasure problem, which consists in generating the uniform superposition over the image of an
injective function. The best lower bound comes from a Ω( 5

√

N/ logN) lower bound for the Set

Equality problem [Mid04], which consists in deciding whether two sets of size N are equal or
disjoint or, equivalently, whether two injective functions over a domain of size N have equal or dis-
joint images. This problem reduces to Index Erasure since by generating the superposition over
the image of the two functions, we can decide whether they are equal or not using the SWAP-test.
Therefore, this implies the same Ω( 5

√

N/ logN) lower bound for Index Erasure. However, this
lower bound is probably not tight, neither for Set Equality, whose best upper bound is O( 3

√
N)

due to the algorithm for Collision [BHT97], nor for Index Erasure, whose best upper bound
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is O(
√
N) due to an application of Grover’s algorithm fro Search [Gro96]. The question of the

complexity of Index Erasure has first been raised by Shi [Shi02] in 2002 and has remained open
until the present work.

Our results. The chief technical innovation of this paper is an extension of both, the additive and
multiplicative adversary methods, to quantum state generation (Theorems 10 and 14). To do so,
we give a geometric interpretation of the adversary methods which is reminiscent of the approach
of [Amb05, Špa08], where this is done for classical problems. As a by-product we give elementary
and arguably more intuitive proofs of the additive and multiplicative methods, contrasting with
some rather technical proofs e.g. in [HLŠ07, Špa08].

In order to compare the additive and multiplicative adversary bounds, we introduce yet another
flavor of adversary method (Theorem 12), which we will call hybrid adversary method. Indeed,
this method is a hybridization of the additive and multiplicative methods that uses “multiplica-
tive” arguments in an “additive” setup: it is equivalent to the additive method for large success
probability, but is also able to prove non-trivial lower-bounds for small success probability, over-
coming the concern [Špa08] that the additive adversary method might fail in this case. We show
that for any problem, the hybrid adversary bound lies between the additive and multiplicative
adversary bounds (Theorem 16), answering Špalek’s open question about the relative power of
these methods [Špa08]. By considering the Search problem for exponentially small success prob-
ability, we also conclude that the powers of the three methods are strictly increasing, since the
corresponding lower bounds scale differently as a function of the success probability in that regime
(Theorem 28).

We then extend the strong direct product theorem for the multiplicative adversary bound [Špa08]
to quantum state generation problems (Theorem 20). Since we have clarified the relation between
the additive and multiplicative adversary methods, this also brings us closer to a similar theorem
for the additive adversary method. The most important consequence would be for the quantum
query complexity of functions, which would therefore also satisfy a strong direct product theorem
since the additive adversary bound is tight in this case [LMRŠ10]. However, it remains to prove
some technical lemma about the multiplicative bound to be able to conclude.

As it has been previously pointed out many interesting problems have strong symmetries [Amb05,
AŠdW07, Špa08]. We show how studying these symmetries helps to address the two main difficul-
ties of the usage the adversary method, namely, how to choose a good adversary matrix Γ and how
to compute the spectral norm of Γx − Γ (Theorem 26). Following the automorphism principle
of [HLŠ07], we define the automorphism group G of P, and its restrictions Gx, for any input x
to the oracle. We show how computing the norm of Γx − Γ can be simplified to compute the
norm of much smaller matrices that depend only on the irreps of G and Gx. For problems with
strong symmetries, these matrices typically have size at most 3 × 3 [Amb05, AŠdW07, Špa08].
We have therefore reduced the adversary method from an algebraic problem to the study of the
representations of the automorphism group.

Finally, we use our hybrid adversary method to prove a lower bound of O(
√
N) for the quantum

query complexity of Index Erasure (Theorem 29), which is tight due to the matching upper
bound based on Grover’s algorithm, therefore closing the open problem stated by Shi [Shi02]. To
the best of our knowledge, this is the first lower bound directly proved for the query complexity
of a quantum state generation problem. The lower bound is entirely based on the study of the
representations of the symmetric group, a technique that might be fruitful for other problems
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having similar symmetries, such as the Set Equality problem [Mid04], or in turn some stronger
quantum state generation approaches to Graph Isomorphism.

1 Notations

In this paper, we will use different norms. We recall their definitions and some useful facts:

Definition 1. For any matrix A, we use the following norms:

• Operator (or spectral) norm: ‖A‖ = sup|v〉
‖A|v〉‖
‖|v〉‖ ,

• Trace norm: ‖A‖tr = tr
√
A†A,

• Frobenius norm: ‖A‖F =
√

tr(A†A).

Lemma 2 (Hölder’s inequality). For any A,B, we have ‖AB‖tr ≤ ‖A‖F · ‖B‖F.

Lemma 3. For any A,B, we have tr(AB) ≤ ‖A‖ · ‖B‖tr.

In Section 7.2 we will consider irreps of the symmetric group SN , i.e., Young diagrams and
denote them by λN , λ

+
N , . . . . Note that since a diagram λN necessarily contains N boxes, it is fully

determined by its part λ below the first row, as we know that its first row must contain N − |λ|
boxes, where |λ| is the number of boxes below the first row. This will lighten the notations. The
dimension of the space spanned by an irrep of the symmetric group can be easily computed:

Lemma 4 (Hook-length formula [Sag01]). For any Young diagram λ corresponding to an irrep of
SN , the dimension of the space spanned by this irrep is:

dNλ =
N !

∏

(i,j)∈λ hi,j
,

where hi,j = |{(i, j′) ∈ λN : j′ > j} ∪ {(i′, j) ∈ λN : i′ ≥ i}|.

2 Adversary methods: general concepts

2.1 Definition of the problem

In this section, we describe elements which are common to all adversary methods. The goal of
these methods is to study the quantum query complexity of some problems in the bounded-error
model when we have access to an oracle Of computing a function f : ΣI 7→ ΣO. In this article, we
will consider an oracle acting on two registers, the input register I and the output register O, as:

|x〉I |s〉O
Of−→ |x〉I |s⊕ f(x)〉O,

where x ∈ ΣI and s, f(x) ∈ ΣO. Note that it is also possible to consider other types of oracle, for
example computing the value of the function into the phase instead of into another register, but
these different models all lead to equivalent notions of query complexity (up to a constant).

We denote by F the set of all possible functions f that can be encoded into the oracle. We will
consider three types of problems P, a classical one and two quantum ones:
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A U0

Of

U1

Of

Ut

Of

UT

|0〉I

|0〉O

|0〉W

A(f)T

|ψ1
f 〉 |ψt

f 〉

Figure 1: Schematic representation of a quantum algorithm that make use of an oracle Of , an
input register I, an output register O, and a register W for work space.

Function Given an oracle Of , compute the classical output P(f). The success probability of an
algorithm A solving P is minf∈F Pr[A(f) = P(f)], where A(f) is the classical output of the
algorithm on oracle f .

Coherent quantum state generation Given an oracle Of , generate a quantum state |P(f)〉 =
|ψf 〉 in some target register T , and reset all other registers to a default state |0̄〉. The success
probability of an algorithm A solving P is given by minf∈F

∥

∥

∥
Π|P(f)〉 ⊗Π|0̄〉|ψT

f 〉
∥

∥

∥

2
, where |ψT

f 〉
is the final state of the algorithm and Π|P(f)〉 and Π|0̄〉 are the projectors on the corresponding
states.

Non-coherent quantum state generation Given an oracle Of , generate a quantum state |P(f)〉 =
|ψf 〉 in some target register T , while some f -dependent junk state may be generated in other

registers. The success probability of an algorithm A solving P is given by minf∈F
∥

∥

∥
Π|P(f)〉|ψT

f 〉
∥

∥

∥

2
.

Let us note that computing a function is a special case of non-coherent quantum state generation,
where all states |P(f)〉 are computational basis states. Indeed, no coherence is needed since the state
is in this case measured right after its generation. However, when the quantum state generation is
used as a subroutine in a quantum algorithm for another problem, coherence is typically needed to
allow interferences between different states. This is in particular the case for solving Set Equality

via reduction to Index Erasure, and similarly to solve Graph Isomorphism via the quantum
state generation approach, since coherence is required to implement the SWAP-test.

Without loss of generality we can consider the algorithm as being a circuit C consisting of a
sequence of unitaries U0, . . . , UT and oracle calls Of acting on the “algorithm” Hilbert space A.
Decomposing A into three registers, the input register I and output register O for the oracle, as
well as an additional workspace register W, the circuit may be represented as in Fig. 1.

At the end of the circuit, a target register T holds the output of the algorithm. In the classical
case, this register is measured to obtain the classical output A(f). In the quantum case, it holds
the output state A(f).

In both cases, for a fixed algorithm, we note |ψt
f 〉 the state of the algorithm after the t-th query.

The idea behind the adversary methods is to consider that f is in fact an input to the oracle. We
therefore introduce a function register F holding this input, and define a super-oracle O acting on
registers I ⊗O ⊗F as

|x〉I |s〉O|f〉F O−→ |x〉I |s⊕ f(x)〉O|f〉F . (1)
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A U0

O

U1

O

Ut

O

UT

|δ〉F

|0〉I

|0〉O

|0〉W

A(f)T

ρT

|Ψ1〉

ρ1

|Ψt〉

ρt

Figure 2: Schematic representation of a quantum algorithm that makes use of an oracle Of , an
input register I, an output register O, a register W for work space, and a virtual register F holding
the input of the problem.

We see that when the function register F is in state |f〉, O acts on I⊗O just as Of . Suppose, just for
the sake of analyzing the algorithm, that we prepare register F in the state |δ〉 = 1√

|F |
∑

f∈F |f〉, the
uniform superposition over all the elements of F , and that we apply the same circuit as before, by
replacing each call to Of by a call to O. Intuitively, each oracle call introduces more entanglement
between this new register and the algorithm register. The state of this new circuit after the t-th
query is (see Fig. 2)

|Ψt〉 = 1
√

|F |
∑

f∈F
|ψt

f 〉A|f〉F .

Note that only oracle calls can modify the state of the function register F , since all other gates
only affect the algorithm register A = I ⊗O ⊗W. The general idea of all adversary methods is to
study the evolution of the algorithm by looking at the reduced state of the input register,

ρt = trA|Ψt〉〈Ψt| = 1

|F |
∑

f,f ′∈F
〈ψt

f ′ |ψt
f 〉|f〉〈f ′|.

The algorithm starts with the state ρ0 = |δ〉〈δ| and ends in a state ρT .

2.2 Adversary matrices and progress function

The adversary method studies how fast ρt can change from ρ0 to ρT . We introduce a progress
function in order to do so.

Definition 5 (Adversary matrix). An adversary matrix Γ is a Hermitian matrix such that Γ|δ〉 =
|δ〉. An additive adversary matrix also satisfies −I � Γ � I (i.e., ‖Γ‖ = 1), while a multiplicative
adversary matrix satisfies Γ � I. In both cases, the progress function is defined as W t = tr

[

Γρt
]

.

We will also use a matrix Γx derived from the adversary matrix Γ and defined as follows (for
both the additive and the multiplicative case).
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Definition 6 (Γx,Dx). For any adversary matrix Γ, let Γx = Γ◦Dx, where ◦ denotes the Hadamard
(element-wise) product and Dx is the (0-1)-matrix Dx =

∑

f,f ′ δf(x),f ′(x)|f ′〉〈f | where δ denotes the
Kronecker’s delta.

We will show that the Hadamard product is closely related to oracle calls: when the input
register is in the state |x〉, the oracle calls acts on the function register as the Hadamard product
with Dx. It is easy to check that this Hadamard product is a CP-map.

Fact 7. The map γ 7→ γ ◦Dx is a CP-map and γ ◦Dx =
∑

y Π
x
yγΠ

x
y with Πx

y =
∑

f :f(x)=y |f〉〈f |.

The basic idea of all adversary methods is to bound how much the value of the progress function
can change by one oracle call. To study the action of one oracle call, we isolate the registers I
and O holding the input and output of the oracle from the rest of the algorithm register. Without
loss of generality, we may assume that for any oracle call, the output register O is in the state
|0〉O (computing oracle call) or |f(x)〉O (uncomputing oracle call). Indeed, an oracle call for any
other state |s〉O may be simulated by one computing oracle call, O(logN) XOR gates and one
uncomputing oracle call. Therefore, this assumption only increases the query complexity by a
factor at most 2.

Let us consider the action of the (t+1)-th oracle call, which we assume to be of computing type
(uncomputing oracle calls are treated similarly). Just before the (t+1)-th oracle call, the state can
be written as:

|Ψt〉 = 1
√

|F |
∑

x,f

|ψt
f,x〉W |x〉I |0〉O|f〉F ,

with |ψt
f,x〉 being non-normalized states. Let us consider the reduced density matrix

ρ̃t = trW |Ψt〉〈Ψt| = 1

|F |
∑

f,f ′,x,x′

〈ψt
f,x|ψt

f ′,x′〉|x′〉〈x| ⊗ |0〉〈0| ⊗ |f ′〉〈f |, (2)

and note that ρt = trIO
[

ρ̃t
]

.

Lemma 8. Let the t-th oracle call be of computing-type. Then, W t = tr
[

Υρ̃t
]

and W t+1 =
tr
[

Υ′ρ̃t
]

, where

Υ =
∑

x

|x〉〈x| ⊗
∑

y

|y〉〈y| ⊗ Γ =
⊕

x,y

Γ, (3)

Υ′ =
∑

x

|x〉〈x| ⊗
∑

y

|y〉〈y| ⊗ Γx =
⊕

x,y

Γx. (4)

Note that for uncomputing oracle calls, it suffices to swap the roles of ρt and ρt+1.

Proof. From the definition of Υ and the fact that ρt = trIO
[

ρ̃t
]

, we immediately have that W t =
tr
[

Γρt
]

= tr
[

Υρ̃t
]

. Let us now consider what happens after one oracle call. An oracle call acts on
the registers I ⊗ O ⊗ F as the operator

O =
∑

x

|x〉〈x|
∑

f,s

|f(x)⊕ s〉〈s| ⊗ |f〉〈f |.
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Before a computing oracle call, the output register O is in the state |0〉, as in eq. (2). Therefore,
the state ρ̃t+1 = Oρ̃tO† just after the (t+ 1)-th oracle call is

ρ̃t+1 =
1

|F |
∑

f,f ′,x,x′

〈ψt
f,x|ψt

f ′,x′〉|x′〉〈x| ⊗ |f ′(x′)〉〈f(x)| ⊗ |f ′〉〈f |

and

ρt+1 = trIO
[

ρ̃t+1
]

=
∑

x

ρtx ◦Dx, (5)

where

ρtx =
1

|F |
∑

f,f ′

〈ψt
f,x|ψt

f ′,x〉|f ′〉〈f | (6)

Combining eqs. (2) and (4) we have:

tr
[

Υ′ρ̃t
]

=
1

|F |
∑

f,f ′,x,x′

tr
[

〈ψt
f,x|ψt

f ′,x′〉|x′〉〈x| ⊗ |0〉〈0| ⊗ Γx|f ′〉〈f |
]

=
1

|F |
∑

x

tr



Γx

∑

f,f ′

〈ψt
f,x|ψt

f ′,x〉|f ′〉〈f |





=
∑

x

tr
[

Γxρ
t
x

]

by eq. (6)

=
∑

x

tr
[

(Γ ◦Dx)ρ
t
x

]

=
∑

x

tr
[

Γ(ρtx ◦Dx)
]

using Fact 7 and tr(AB) = tr(BA)

= tr
[

Γρt+1
]

by eq. (5).

3 The different adversary methods

3.1 Additive adversary method

Additive adversary should be understood as adversary with negative weights as defined in [HLŠ07].
To differentiate between the different methods, we will from now on denote additive adversary
matrices by Γ̃ and multiplicative adversary matrices by Γ. For the statement of the theorem, we
will also need the following notions.

Definition 9 (ρ⊙, junk matrix). For a quantum state generation problem P such that |P(f)〉 =
|ψf 〉, we denote by ρ⊙ the target state ρ⊙ = 1

|F |
∑

f,f ′∈F 〈ψf |ψf ′〉|f ′〉〈f |. In the non-coherent case, we

call junk matrix any Gram matrix M of size |F |× |F | such that Mij = 〈vi|vj〉, where {vi : i ∈ [|F |]}
is a set of unit vectors (or, equivalently, any semi-definite matrix M such that Mii = 1 for any
i ∈ [|F |]). In the coherent case, we call junk matrix the all-1 matrix of size |F | × |F |.
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Theorem 10 (Additive adversary method [HLŠ07]). Consider a quantum algorithm solving P with

success probability at least 1−ε, and let Γ̃ be an additive adversary matrix such that tr
[

Γ̃(ρ⊙ ◦M)
]

=

0 for any junk matrix M . Then,

Qε(P) ≥ 1− C(ε)

maxx

∥

∥

∥
Γ̃x − Γ̃

∥

∥

∥

where C(ε) = ε+ 2
√

ε(1 − ε)

Proof. By definition of Γ̃, the initial value of the progress function is W̃ 0 = 1. We now bound the
decrease of the the progress function for each query. We have from Lemma 8

∣

∣

∣
W̃ t+1 − W̃ t

∣

∣

∣
=
∣

∣

∣
tr[(Υ̃′ − Υ̃)ρ̃t]

∣

∣

∣
≤
∥

∥

∥
Υ̃′ − Υ̃

∥

∥

∥
= max

x

∥

∥

∥
Γ̃x − Γ̃

∥

∥

∥
.

To conclude, we need to upper-bound the value of the progress function at the end of the
algorythm. Let us prove that W̃ T ≤ C(ε). Let |ψf 〉 be the state to be generated when the input is
f (in particular, for a classical problem this will just be a computational basis state encoding the
output of the classical problem). The final state is:

|ΨT 〉 = 1
√

|F |
∑

f∈F

[√

1− εf |ψf , junkf 〉+
√
εf |errf 〉

]

|f〉,

where |junkf 〉 is the default state |0̄〉 for a coherent quantum state generation problem, and any
state otherwise. Since the algorithm has success probability 1− ε, we have 0 ≤ εf ≤ ε,∀f and the
final state can be rewritten as:

|ΨT 〉 = 1
√

|F |
∑

f∈F

[√
1− ε|ψf , junkf 〉+

√
ε|errorf 〉

]

|f〉,

where |errorf 〉 is the (non-normalized) vector

√
1−εf−

√
1−ε√

ε
|ψf , junkf 〉+

√

εf
ε |errf 〉.

Tracing over everything but the last register, we have

ρT = (1− ε)
(

ρ⊙ ◦Mjunk

)

+ ετ +
√

ε(1− ε)(σ + σ†),

where

Mjunk =
∑

f,f ′∈F
〈junkf |junk′f 〉|f ′〉〈f |,

τ =
1

|F |
∑

f,f ′∈F
〈errorf |error′f 〉|f ′〉〈f |,

σ =
1

|F |
∑

f,f ′∈F
〈ψf , junkf |error′f 〉|f ′〉〈f |.

By assumption on Γ̃, we have tr
[

Γ̃(ρ⊙ ◦Mjunk)
]

= 0 and tr
[

Γ̃A
]

≤ ‖A‖tr for any operator A, so

that

W T = (1− ε)tr
[

Γ̃(ρ⊙ ◦Mjunk)
]

+ εtr
[

Γ̃τ
]

+
√

ε(1− ε)tr
[

Γ̃(σ + σ†)
]

≤ ε ‖τ‖tr +
√

ε(1 − ε)
∥

∥

∥
σ + σ†

∥

∥

∥

tr
.
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It remains to show that ‖τ‖tr ≤ 1 and
∥

∥σ + σ†
∥

∥

tr
≤ 2. Let us define the following matrices.

A =
1

√

|F |
∑

f∈F
|ψf , junkf 〉〈f |, B =

1
√

|F |
∑

f∈F
|errorf 〉〈f |.

Then, we have σ = (A†B)t and therefore
∥

∥σ + σ†
∥

∥

tr
≤ 2 ‖σ‖tr = 2

∥

∥A†B
∥

∥

tr
≤ 2 ‖A‖F · ‖B‖F ≤ 2,

where we have used Hölder’s inequality (Lemma 2) and the fact that ‖A‖F = 1 since |ψf , junkf 〉
is normalized, and ‖B‖F ≤ 1 and 〈errorf |errorf 〉 = 1

ε

(

2− ε− 2
√
1− ε

√

1− εf
)

≤ 1 for εf ≤ ε.

Similarly, we have τ = (B†B)t and therefore ‖τ‖tr ≤ ‖B‖2F ≤ 1.

For classical problems, we now prove that our method generalizes [HLŠ07]. Indeed, our condition
on the adversary matrix is different, which allows us to also deal with quantum problems. However,
for classical problems, the following lemma shows that the usual condition implies our modified
condition. Let P(f) be the function to be computed.

Lemma 11. tr
[

Γ̃(ρ⊙ ◦M)
]

= 0 for any matrix M if and only if Γ̃ff ′ = 0 for any f, f ′ such that

P(f) = P(f ′).

Proof. Let Γ̃ be such that tr
[

Γ̃(ρ⊙ ◦M)
]

= 0 for any matrix M , and f̄ , f̄ ′ be such that P(f̄ ) =

P(f̄ ′). ChoosingM such thatMf̄ f̄ ′ = 1 andMff ′ = 0 for any other element, we have ρ⊙◦M = 1
|F |M

and therefore Γ̃f̄ f̄ ′ = 0.
For the other direction, we obtain for any matrix M

tr
[

Γ̃(ρ⊙ ◦M)
]

=
1

|F |
∑

f,f ′∈F
Γ̃ff ′〈P(f)|P(f ′)〉Mff ′ = 0

since Γ̃ff ′ = 0 whenever P(f) = P(f ′), and 〈P(f)|P(f ′)〉 = 0 whenever P(f) 6= P(f ′).

3.2 Hybrid adversary method

The original adversary method can only prove a lower bound when C(ε) < 1, that is, when the suc-
cess probability 1−ε > 4

5 . For smaller success probability, we need to prove a stronger bound on the

final value of the progress function W̃ T . Inspired by the multiplicative adversary method [Špa08],
we prove the following hybrid adversary bound.

Theorem 12 (Hybrid adversary method). Consider a quantum algorithm solving P with success
at least 1 − ε. Let Γ̃ be any additive adversary matrix, Vbad be the direct sum of eigenspaces of
Γ̃ with eigenvalue strictly larger than λ̃ < 1, and assume that tr [Πbad(ρ

⊙ ◦M)] ≤ η for any junk
matrix M , where Πbad is the projector on Vbad, and 0 ≤ η ≤ 1− ε. We have

Qε(P) ≥ K̃(Γ̃, λ̃, ε)

maxx

∥

∥

∥
Γ̃x − Γ̃

∥

∥

∥

where K̃(Γ̃, λ̃, ε) = (1− λ̃)(
√
1− ε−√

η)2.

Proof. The initial value of the progress function and the bound on the amount of change between
two queries are the same as the additive adversary method, so we only need to prove that W̃ T ≤
1− K̃(Γ̃, λ̃, ε). Recall that by assumption, |ΨT 〉 can be written

|ΨT 〉 = 1
√

|F |
∑

f∈F

[√
1− ε|ψf , junkf 〉+

√
ε|errorf 〉

]

|f〉.

10



The state |Ψ〉 = 1√
|F |
∑

f∈F |ψf , junkf 〉|f〉 satisfies |〈Ψ|ΨT 〉| ≥
√
1− ε, and trA|Ψ〉〈Ψ| = ρ⊙ ◦Mjunk.

Let β =
∥

∥Πgood|ΨT 〉
∥

∥

2
, |Ψgood〉 = Πgood|ΨT 〉/

√
β and |Ψbad〉 = Πbad|ΨT 〉/

√
1− β, so that

√
1− ε ≤ |〈Ψ|ΨT 〉| =

√

β |〈Ψ|Ψgood〉|+
√

1− β |〈Ψ|Ψbad〉|
≤
√

β ‖Πgood|Ψ〉‖+
√

1− β ‖Πbad|Ψ〉‖

≤
√

β +
√

1− β
√

tr [Πbad(ρ⊙ ◦Mjunk)]

≤
√

β +
√
η.

Since η ≤ 1 − ε, we obtain that β ≥ (
√
1− ε−√

η)2. We are now ready to bound W̃ T = tr(Γ̃ρT ),

where ρT = βρgood + (1− β)ρbad +
√

β(1− β) [trA(|Ψgood〉〈Ψbad|) + trA(|Ψbad〉〈Ψgood|)].
Since tr(Γ̃ρgood) ≤ λ̃, tr(Γ̃ρbad) ≤ 1, and the off-diagonal terms are zero, we have

W̃ T = β tr(Γ̃ρgood) + (1− β) tr(Γ̃ρbad) (7)

≤ 1− (1− λ̃)β ≤ 1− (1− λ̃)(
√
1− ε−√

η)2. (8)

For classical problems, we can use the following lemma:

Lemma 13. Let Πbad be the projector on Vbad, Πz =
∑

P(f)=z |f〉〈f |, and assume that ‖ΠzΠbad‖2 ≤
η for any z. Then, tr [Πbad(ρ

⊙ ◦M)] ≤ η for any junk matrix M .

Proof. For any junk matrix M , let us define the following purification of ρ⊙ ◦M ,

|ψ⊙M 〉 = 1
√

|F |
∑

f

|P(f)〉|Mf 〉|f〉,

where |Mf 〉 are normalized states such that 〈Mf |Mf ′〉 = 〈f |M |f ′〉. Let us also consider the operator
P =

∑

z |z〉〈z| ⊗Πz. Then, we have P |ψ⊙M 〉 = |ψ⊙M 〉, so that

tr
[

Πbad(ρ
⊙ ◦M)

]

=
∥

∥Πbad|ψ⊙M 〉
∥

∥

2
=
∥

∥ΠbadP |ψ⊙M 〉
∥

∥

2 ≤ ‖ΠbadP‖2 = max
z

‖ΠbadΠz‖2 ≤ η.

3.3 Multiplicative adversary method

Theorem 14 (Multiplicative adversary method [Špa08]). Consider a quantum algorithm solving
P with success at least 1−ε. Let Γ be any multiplicative adversary matrix, Vbad be the direct sum of
eigenspaces of Γ with eigenvalue strictly smaller than λ > 1, and assume that tr [Πbad(ρ

⊙ ◦M)] ≤ η
for any junk matrix M , where Πbad is the projector on Vbad, and 0 ≤ η ≤ 1− ε. We have

Qε(P) ≥ logK(Γ, λ, ε)

logmax

{

∥

∥

∥
Γ
1/2
x Γ−1/2

∥

∥

∥

2
,
∥

∥

∥
Γ1/2Γ

−1/2
x

∥

∥

∥

2
: ∀x ∈ I

} ,

where K(Γ, λ, ε) = 1 + (λ− 1)(
√
1− ε−√

η)2.
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Proof. As done in the previous proof, the initial value of the progress function is W 0 = 1.
In this case we do not bound the difference of the progress function between two queries, but

its quotient. From Fact 7, we note that Υ and Υ′ are definite-positive. Then, using Lemma 8, we
have

W t+1

W t
=

tr
[

Υ′ρ̃t
]

tr [Υρ̃t]
=

tr
[

Υ′1/2Υ−1/2Υ1/2ρ̃tΥ1/2Υ−1/2Υ′1/2
]

tr
[

Υ1/2ρ̃tΥ1/2
]

≤
∥

∥

∥
Υ′1/2Υ−1/2

∥

∥

∥

2
=

∥

∥

∥

∥

∥

⊕

x,y

Γ1/2
x Γ−1/2

∥

∥

∥

∥

∥

2

= max
x

∥

∥

∥
Γ1/2
x Γ−1/2

∥

∥

∥

2
,

If the (t+1)-th oracle call is of uncomputing type, we similarly obtain W t+1

W t ≤ maxx

∥

∥

∥
Γ1/2Γ

−1/2
x

∥

∥

∥

2
.

The proof of the upper bound of W T is similar to the one in Theorem 12 up to eq. (7), where
we now have W T = βtr(Γρgood) + (1− β)tr(Γρbad) ≥ 1 + (λ− 1)β ≥ 1 + (λ− 1)(

√
1− ε−√

η)2.
The lower-bound on the query complexity is a consequence of

(

max

{

∥

∥

∥
Γ1/2
x Γ−1/2

∥

∥

∥

2
,
∥

∥

∥
Γ1/2Γ−1/2x

∥

∥

∥

2
: ∀x ∈ I

})T

≥ K(Γ, λ, ε).

Note that since the condition on the adversary matrix is very similar as for the hybrid adversary,
we can also use an analogue of Lemma 13 to choose the adversary matrix in the special case of
classical problems. This implies that our method is an extension of Špalek’s original multiplicative
adversary method [Špa08].

4 Comparison of the adversary methods

Definition 15. We define the additive adversary bound and the hybrid adversary bound respec-
tively as

ADV±ε (P) = max
Γ̃

1−C(ε)

maxx

∥

∥

∥
Γ̃− Γ̃x

∥

∥

∥

and ÃDVε(P) = max
Γ̃,λ̃<1

K̃(Γ̃, λ̃, ε)

maxx

∥

∥

∥
Γ̃− Γ̃x

∥

∥

∥

where, for ADV±, the maximum is taken over additive adversary matrices Γ̃ such that tr
[

Γ̃(ρ⊙ ◦M)
]

=

0 for any junk matrix M , while for ÃDV it is taken over all additive adversary matrices. Finally,
we define the multiplicative adversary bound as

MADVε(P) = sup
λ>1

MADV(λ)
ε (P) where MADV(λ)

ε (P) = sup
Γ

logK(Γ,λ,ε)

logmax

{

∥

∥

∥
Γ
1/2
x Γ−1/2

∥

∥

∥

2

,
∥

∥

∥
Γ1/2Γ

−1/2
x

∥

∥

∥

2

:∀x∈I
} ,

and the supremum is taken over all multiplicative adversary matrices Γ.

In this section, we show that the three methods are progressively stronger (the two inequalities
are proved independently in the next two sections).

Theorem 16. MADVε(P) ≥ ÃDVε(P) ≥ ADV±ε (P)/60.
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4.1 Additive versus hybrid

We show that the hybrid adversary method is always at least as strong as the original additive one
(up to a constant factor).

Lemma 17. ÃDVε(P) ≥ ADV±ε (P)/60.

The proof of this lemma relies on the following.

Lemma 18. Let Γ̃ be an additive adversary method such that tr
[

Γ̃(ρ⊙ ◦M)
]

= 0 for any junk

matrix M . Then, for any λ̃, ε such that ε
1−ε ≤ λ̃ ≤ 1, we have

K̃(Γ̃, λ̃, ε) > (1− λ̃)

(

√
1− ε− 1

√

1 + λ̃

)2

.

Proof. Let Vbad be the direct sum of eigenspaces of Γ̃ with eigenvalue strictly larger than λ̃. From
the definition of K̃(Γ̃, λ̃, ε), it suffices to show that tr [Πbad(ρ

⊙ ◦M)] < 1/(1 + λ̃) for any junk

matrix M . Let pbad = tr [Πbad(ρ
⊙ ◦M)] =

∥

∥Πbad|ψ⊙M 〉
∥

∥

2
, where |ψ⊙M 〉 is defined as above. Let

us also define the states |ψbad〉 = Πbad|ψ⊙M 〉/√pbad and |ψgood〉 = Πgood|ψ⊙M 〉/√1− pbad, so that

|ψ⊙M 〉 = √
pbad|ψbad〉 +

√
1− pbad|ψgood〉. From the properties of the additive adversary matrix Γ̃,

we have

0 = tr
[

Γ̃(ρ⊙ ◦M)
]

= tr
[

Γ̃|ψ⊙M 〉〈ψ⊙M |
]

= pbadtr
[

Γ̃|ψbad〉〈ψbad|
]

+ (1− pbad)tr
[

Γ̃|ψgood〉〈ψgood|
]

> pbadλ̃+ (1− pbad)(−1) = (λ̃+ 1)pbad − 1.

This implies that pbad < 1/(1 + λ̃).

Proof of Lemma 18. This is immediate for ε ≥ 1/5 as in this case, we have ADV±ε (P) = 0. There-
fore, it suffices to show that for any additive adversary matrix Γ̃ and any ε < 1/5, we have
maxλ̃ K̃(Γ̃, λ̃, ε) ≥ (1− ε− 2

√

ε(1 − ε))/60. Let

λ̃ =

(

4

1− ε

)1/3

− 1,

and note that ε
1−ε ≤ λ̃ ≤ 1 when 0 ≤ ε ≤ 1/2. By Lemma 18, we then have

max
λ̃

K̃(Γ̃, λ̃, ε) ≥ 1− 2ε− 3(2 − 2ε)2/3 + 3(2− 2ε)1/3 ≥ (1− ε− 2
√

ε(1 − ε))/60,

for any 0 ≤ ε ≤ 1/2.

4.2 Hybrid versus multiplicative

We now show that the multiplicative adversary method is as always at least as strong as the hybrid
one.

Lemma 19. limλ→1MADV
(λ)
ε (P) ≥ ÃDVε(P).
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Proof. Let Γ̃ be the additive adversary matrix achieving ÃDVε(P). Therefore, we have

ÃDVε(P) =
K̃(Γ̃, λ̃, ε)

maxx

∥

∥

∥
Γ̃− Γ̃x

∥

∥

∥

.

Let Γ(γ) = I+ γ(I− Γ̃). Since Γ̃|δ〉 =
∥

∥

∥
Γ̃
∥

∥

∥
= 1, we see that for any γ > 0, Γ(γ) is definite positive

with Γ(γ) � I and Γ(γ)|δ〉 = 1, therefore it is a valid multiplicative adversary matrix. Moreover, Γ
has eigenvalue at least λ = 1 + γ(1 − λ̃) over Vgood. Therefore, K(Γ(γ), λ(γ), ε) = 1 + γK̃(Γ̃, λ̃, ε)
and, by definition of the multiplicative adversary bound,

MADVε(P) ≥ sup
γ>0

ln
[

1 + γK̃(Γ̃, λ̃, ε))
]

lnmax

{

∥

∥

∥
Γ
1/2
x (γ)Γ−1/2(γ)

∥

∥

∥

2
,
∥

∥

∥
Γ1/2(γ)Γ

−1/2
x (γ)

∥

∥

∥

2
: ∀x ∈ I

} .

We show that in the limit γ −→
>

0, the argument of the supremum is just ÃDVε(P), which implies

the lemma. For the numerator, we immediately have

ln
[

1 + γK̃(Γ̃, λ, ε))
]

= γK̃(Γ̃, λ, ε) +O(γ2).

Also, since Γx(γ) = I+ γ(I− Γ̃x), we have

∥

∥

∥
Γ1/2
x (γ)Γ−1/2(γ)

∥

∥

∥

2
=
∥

∥

∥
I+

γ

2
(Γ̃− Γ̃x)

∥

∥

∥

2
+O(γ2),

∥

∥

∥
Γ1/2(γ)Γ−1/2x (γ)

∥

∥

∥

2
=
∥

∥

∥
I− γ

2
(Γ̃− Γ̃x)

∥

∥

∥

2
+O(γ2).

Therefore, we have for the denominator

L(γ, x)
def
= lnmax

{

∥

∥

∥
Γ1/2
x (γ)Γ−1/2(γ)

∥

∥

∥

2
,
∥

∥

∥
Γ1/2(γ)Γ−1/2x (γ)

∥

∥

∥

2
}

= γ
∥

∥

∥
Γ̃− Γ̃x

∥

∥

∥
+O(γ2).

Since limγ→0 L(γ, x) exists for all x and there are only a finite number of possible x, we can swap
lim and max, which finally implies that:

lim
γ→0

ln
[

1 + γK̃(Γ̃, λ, ε))
]

lnmax

{

∥

∥

∥
Γ
1/2
x (γ)Γ−1/2(γ)

∥

∥

∥

2
,
∥

∥

∥
Γ1/2(γ)Γ

−1/2
x (γ)

∥

∥

∥

2
: ∀x ∈ I

} = ÃDVε(P).

5 Strong direct product theorem

In this section we extend Špalek’s strong direct product theorem [Špa08] to quantum state gener-
ation problems. We prove that for any problem which accepts a multiplicative adversary bound

MADV
(λ)
ε (P), if one wants to solve P(k), i.e., k independent instances of P, using less than k/10

times the number of queries necessary to solve one instance with error ε, then the success proba-
bility for P(k) is exponentially small in k. Let us note that a similar theorem was recently proved
for the polynomial method [She10].
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Theorem 20 (Strong direct product). For any problem P and λ > 1, there exist a constant 0 < c <

1 and an integer k0 > 0 such that, for any k > k0, we have MADV
(λ)

1−ck(P
(k)) ≥ k

10 ·MADV
(λ)
ε (P).

Proof. This proof closely follows the footsteps of the one by Špalek in [Špa08, Sec. 5], which dealt
with the special case of computing functions. Let us assume that the multiplicative adversary
bound for P with threshold λ is obtained by the adversary matrix Γ. For P(k), we construct an

adversary matrix Γ′ = Γ⊗k and set the threshold at value λ′ = λ
k
10 .

First of all we observe that maxx∈ΣI ,i∈[k]
∥

∥

∥
Γ
′1/2
x,i Γ′−1/2

∥

∥

∥
= maxx∈ΣI

∥

∥

∥
Γ
1/2
x Γ−1/2

∥

∥

∥
where i is the

index of the queried oracle and Γ′x,i = Γ′ ◦ (Ii−1 ⊗Dx ⊗ Ik−i). The proof follows by noting that for
x ∈ ΣI and for all i ∈ [k] we have

Γ
′1/2
x,i Γ′−1/2 =

(

Γ1/2⊗i−1 ⊗ Γ1/2
x ⊗ Γ1/2⊗k−i

)(

Γ−1/2
⊗i−1 ⊗ Γ−1/2 ⊗ Γ−1/2

⊗k−i)

= I⊗i−1 ⊗ Γ1/2
x Γ−1/2 ⊗ I⊗k−i.

We can do the same calculation for the uncomputing oracle.
Let us now find an upper bound to maxM tr[Π′bad(ρ

⊙ ◦M)]. The “bad” subspace V ′bad for the
problem P(k) is defined by the direct sum of eigenspaces of Γ⊗k with eigenvalue at most λ′ = λk/10.
While, we do not have in general V ′bad ⊂ V ⊗kbad nor V ⊗kbad ⊂ V ′bad, we know that V ′bad is a subspace of

the direct sum of spaces
⊗k

i=1 Vvi where v ∈ {good,bad}k and the number of good subspaces |v|
is at most k

10 . Indeed, any other eigenspace of Γ′ has eigenvalue at least 19k/10λk/10 = λ′ since the
eigenvalues of Γ are greater than 1, and those associated to good subspaces are greater than λ > 1.
Therefore, the projector Π′bad on the bad subspace is such that Π′bad = Π′bad · (

⊕

v

⊗

iΠvi). Let us

consider a junk matrix M ′ for P(k). Such a matrix can be written as M ′ =
∑

j mj
⊗k

i=1Mi,j where
∑

j mj = 1, and each Mi,j is a junk matrix for P.

tr[Π′bad(ρ
⊙⊗k ◦M ′)] ≤

∑

v,j

mjtr

[

k
⊗

i=1

Πvi(ρ
⊙ ◦Mij)

]

=
∑

v,j

mj

∏

i

tr[Πvi(ρ
⊙ ◦Mij)]

≤
∑

v,j

mjη
9k/10

≤ η9k/10
∑

v:|v|<k/10

1

≤ η2k/5 for η ≤ 1/2 and k ≥ 361

We conclude that we can take η′ = η2k/5. Let us also define the constants ζ = (
√
1− ε−√

η)2 and

ζ0 =
(

K(Γ,λ,ε)
λ

)1/10
=
(

1+(λ−1)ζ
λ

)1/10
< 1 since λ > 1. There exists k0 > 361 and 0 < c < 1 such

that for all k > k0, ζ
k/2
0 + ηk/5 ≤ ck/2. For such k’s, we choose ε′ = 1− ck. With these choices, we

have

K(Γ′, λ′, ǫ′) ≥ 1 + (λ′ − 1)ζk0 = 1 + (1− λ−k/10)K(Γ, λ, ε)k/10 ≥ K(Γ, λ, ε)k/10,
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where we used the fact that K(Γ, λ, ε) < λ. Combining everything, we then have

k

10
MADVε(P) =

lnK(Γ, λ, ε)k/10

lnmax

{

∥

∥

∥
Γ
1/2
x Γ−1/2

∥

∥

∥

2
,
∥

∥

∥
Γ1/2Γ

−1/2
x

∥

∥

∥

2
: ∀x ∈ I

}

≤ lnK(Γ′, λ′, ε′)

lnmax

{

∥

∥

∥
Γ
′1/2
x Γ′−1/2

∥

∥

∥

2
,
∥

∥

∥
Γ′1/2Γ′−1/2x

∥

∥

∥

2
: ∀x ∈ I

} ≤ MADVǫ′(P(k)).

Let us note that while we have proved that the multiplicative adversary method is stronger than
the additive one, we cannot directly conclude that this strong direct product theorem also applies
to the additive bound. This is because we can only prove that the multiplicative adversary method
becomes stronger in the limit of λ going to 1, while in the same limit the constant c in the theorem
also goes to 1. Therefore, this only implies a direct sum theorem for the additive adversary bound.

6 Representation theory

6.1 Symmetrization of the circuit

In this section we will study how the symmetries of the problem can help choosing the adversary
matrix and in turn obtain the lower bounds. Recall that the oracle computes a function f ∈ F from
ΣI to ΣO, where the input alphabet has size N = |ΣI | and the output alphabet has size M = |ΣO|.
Let us consider permutations (π, τ) ∈ SN × SM acting on f ∈ F as

fπ,τ = τ ◦ f ◦ π,

that is, fπ,τ : ΣI 7→ ΣO : x 7→ τ(f(π(x))).

Definition 21 (Automorphism group of P). We call a group G ⊆ SN × SM an automorphism
group of a problem P if

• For any (π, τ) ∈ G and f ∈ F , we have fπ,τ ∈ F .
• For any (π, τ) ∈ G, there exists a unitary Vπ,τ such that Vπ,τ |P(f)〉 = |P(fπ,τ )〉 for all f ∈ F .

Note that from an oracle for f , it is easy to simulate an oracle for fπ,τ by prefixing and appending
the necessary permutations on the input and output registers. Consider for example a computing
oracle call. Then, Ofπ,τ acts on |x〉|0〉 just as (π−1 ⊗ τ)Of (π ⊗ I).

Therefore, if (π, τ) is an element of an automorphism G of P, we can solve the problem with
oracle f in the following indirect way:

1. Solve the problem for fπ,τ , which will prepare a state close to |P(fπ,τ )〉.
2. Apply V †π,τ to map this state to a state close to |P(f)〉.

Since we want the algorithm to work just as well for any possible f , we can use this property to
symmetrize the circuit. The idea is to solve the algorithm for f by solving it for fπ,τ for all possible
(π, τ) ∈ G simultaneously in superposition. Just as we considered |f〉 as an additional input to the
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circuit, we can also use the same mathematical trick and consider |π, τ〉 as another input. We then
run the algorithm on the superposition 1√

|G|
∑

(π,τ)∈G |π, τ〉. Note that we can assume without loss

of generality that the best algorithm for P is symmetrized. Indeed, for any algorithm for P with
success probability p and query complexity T , the symmetrized version will have the same query
complexity and a success probability at least p. For the same reason, we can also assume that the
optimal adversary matrix satisfies a similar symmetry, in the following sense:

Lemma 22. For all (π, τ) ∈ G, let Uπ,τ be the unitary that maps |f〉 onto |fπ,τ 〉. Then, we can

assume without loss of generality that the optimal adversary matrix Γ satisfies Uπ,τΓU
†
π,τ = Γ for

any (π, τ) ∈ G.

Proof. Let Γ be an adversary matrix that does not satisfy this property, and let us consider its
symmetrized version Γ̄ = 1

|G|
∑

(π,τ)∈G Uπ,τΓU
†
π,τ .

We first show that this matrix is still a valid adversary matrix. Since Uπ,τ |δ〉 = |δ〉 for any
(π, τ) ∈ G, we immediately have Γ̄|δ〉 = |δ〉 if Γ|δ〉 = |δ〉. By definition of the automorphism group,
we have for any f, g ∈ F and (π, τ) ∈ G

〈P(fπ,τ )|P(gπ,τ )〉 = 〈P(f)|V †π,τVπ,τ |P(g)〉 = 〈P(f)|P(g)〉.

Therefore, for any junk matrix M , we have

1

|G|
∑

(π,τ)∈G
Uπ,τ

(

ρ⊙ ◦M
)

U †π,τ =
1

|G|
∑

(π,τ)∈G

1

|F |
∑

f,g

〈P(f)|P(g)〉Mfg |gπ,τ 〉〈fπ,τ |

=
1

|G|
∑

(π,τ)∈G

1

|F |
∑

f,g

〈P(fπ,τ )|P(gπ,τ )〉Mfπ,τgπ,τ |g〉〈f |

=
1

|F |
∑

f,g

〈P(f |P(g)〉 1

|G|
∑

(π,τ)∈G
Mfπ,τgπ,τ |g〉〈f |

= ρ⊙ ◦ M̄,

where M̄ is the symmetrized version of M . Therefore, if Γ satisfies tr [Γ(ρ⊙ ◦M)] = 0 for any junk
matrix M , we have for Γ̄,

tr
[

Γ̄(ρ⊙ ◦M)
]

=
1

|G|
∑

(π,τ)∈G
tr
[

Uπ,τΓU
†
π,τ (ρ

⊙ ◦M)
]

= tr
[

Γ(ρ⊙ ◦ M̄)
]

= 0.

Similarly, if tr [Πbad(ρ
⊙ ◦M)] ≤ η for any junk matrix M , where Πbad is the projector on the bad

subspace of Γ, then

tr
[

Π̄bad(ρ
⊙ ◦M)

]

= tr
[

Πbad(ρ
⊙ ◦ M̄ )

]

≤ η,

where Π̄bad is the projector on the bad subspace of Γ̄.
Let us now show that substituting Γ by Γ̄ can only make the adversary bound stronger. It

suffices to show that maxx
∥

∥Γ̄− Γ̄x

∥

∥ ≤ maxx ‖Γ− Γx‖, where Γ̄x = Γ̄◦Dx. Recall from Fact 7 that
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Γx =
∑

y Π
x
yΓΠ

x
y , and similarly for Γ̄x. By definition of Πx

y , we have Uπ,τΠ
x
yU
†
π,τ = Π

π−1(x)
τ(y)

and in
turn

Γ̄x =
1

|G|
∑

y

∑

(π,τ)∈G
Πx

yUπ,τΓU
†
π,τΠ

x
y =

1

|G|
∑

y

∑

(π,τ)∈G
Uπ,τΠ

π(x)
τ−1(y)

ΓΠ
π(x)
τ−1(y)

U †π,τ

=
1

|G|
∑

(π,τ)∈G
Uπ,τΓπ(x)U

†
π,τ

Finally, we have

∥

∥Γ̄− Γ̄x

∥

∥ =
1

|G|

∥

∥

∥

∥

∥

∥

∑

(π,τ)∈G
Uπ,τ

[

Γ− Γπ(x)

]

U †π,τ

∥

∥

∥

∥

∥

∥

≤ 1

|G|
∑

(π,τ)∈G

∥

∥Γ− Γπ(x)

∥

∥ ≤ max
x

‖Γ− Γx‖ ,

where we have used the triangle inequality.

Note that the mapping U : (π, τ) 7→ Uπ,τ defines a representation of the automorphism group
G and that Lemma 22 implies that Γ commutes with Uπ,τ for any (π, τ) ∈ G. This means that
the matrices Uπ,τ and Γ block-diagonalize simultaneously in a common basis, where each block
corresponds to a different irrep of G in U . From now on, we will consider the special case where U is
multiplicity-free. This happens for different interesting problems, such as t-fold search [AŠdW07,
Špa08] and Index Erasure (see Section 7.2), as a consequence of the following lemma.

Lemma 23. If, for any f, g ∈ F , there exists (π, τ) ∈ G such that g = fπ,τ and gπ,τ = f , then U
is multiplicity-free.

Proof. Let us consider the set of matrices M = {A ∈ C|F |×|F | : ∀(π, τ) ∈ G, Uπ,τAU
†
π,τ = A}. It is

easy to see that for any A,B ∈ M, we have AB ∈ M, therefore M defines an algebra. Note that U
is multiplicity-free if and only if M is commutative, in which case all matrices in M diagonalize in a
common basis [Cam99, p. 65]. For any matrix A ∈ M, we have At = A since there exists (π, τ) ∈ G

such 〈f |A|g〉 = 〈f |Uπ,τAU
†
π,τ |g〉 = 〈g|A|f〉. This immediately implies that for any A,B ∈ M, we

have AB = (AB)t = BtAt = BA, therefore M is a commutative algebra. (More precisely, it is a
Bose-Mesner algebra associated to an association scheme [Bai04])

6.2 Symmetry of oracle calls

Recall that oracle calls are closely related to the Hadamard product with Dx. We show that the
invariance of Γ under the action of a group G implies the invariance of Γx = Γ ◦ Dx under the
action of the subgroup Gx of G that leaves x invariant.

Lemma 24. For any x ∈ ΣI and y ∈ ΣO, let us define the following subgroups of G

Gxy = {(π, τ) ∈ G : π(x) = x, τ(y) = y},
Gx = {(π, τ) ∈ G : π(x) = x}.

Then Πx
y satisfies Uπ,τΠ

x
yU
†
π,τ = Πx

y for any (π, τ) ∈ Gxy, and Γx satisfies Uπ,τΓxU
†
π,τ = Γx for any

(π, τ) ∈ Gx.
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Proof. Recall that by definition of Πx
y , we have Uπ,τΠ

x
yU
†
π,τ = Π

π−1(x)
τ(y)

for any (π, τ) ∈ G. This

immediately implies the first part of the lemma for (π, τ) ∈ Gxy. Moreover, Fact 7 and Lemma 22

imply that Uπ,τΓxU
†
π,τ = Γπ−1(x) for any (π, τ) ∈ G. This implies the second part of the lemma for

(π, τ) ∈ Gx.

Since U is a representation of G, it is also a representation of the subgroup Gx. However, even
if U is multiplicity-free with respect to G, it is typically not with respect to Gx. Indeed, when
restricting G to Gx, multiplicities can happen due to two different mechanisms. First, an irrep can
become reducible, and one of the new smaller irreps can be a copy of another irrep. Secondly, two
irreps that are different for G could be the same when we restrict to the elements of Gx. Let us
identify an irrep of Gx by three indices (k, l,m): the first index identifies the irrep k of G from which
it originates, the second index identifies the irrep l of Gx, and the last index allows to discriminate
betwen different copies of the same irrep of Gx. For example, two irreps having the same index l
but different indices k are two copies of the same irrep of Gx originating from different irreps of G.
Also, we denote by Vk,l,m the subspace spanned by irrep (k, l,m). These subspaces are such that
⊕

l,m Vk,l,m = Vk, where Vk is the subspace spanned by the irrep k of G (we assume that Vk,l,m
is empty if (k, l,m) does not correspond to a valid irrep). In the following, it will also be useful
to define Wl =

⊕

k,m Vk,l,m which is sometimes called the isotypical component corresponding to
l [Ser77].

Lemma 25. Let U be multiplicity-free for G. Then, Γ can be written as Γ =
∑

k γkΠk, where k
indexes the irreps of G and Πk is the projector onto the space Vk spanned by the irrep k. Also, Γx

block-diagonalizes as Γx =
∑

l Γ
l
x, where l indexes the irreps of Gx, and, for each l, Γl

x is a matrix
on the isotypical component Wl =

⊕

k,m Vk,l,m of l. Moreover, Γl
x can be written as

Γl
x =

∑

k1,m1,k2,m2

γlx;k1m1;k2m2
Πl

k1m1←k2m2
,

where dl is the dimension of irrep l, Πl
k1m1←k2m2

is the “transporter” from Vk2,l,m2
to Vk1,l,m1

, i.e.,
the operator that maps any state in Vk2,l,m2

to the corresponding state in Vk1,l,m1
, and

γlx;k1m1;k2m2
=

1

dl
tr
[

ΓxΠ
l
k2m2←k1m1

]

.

Proof. This directly follows from Lemmas 22-24 using the canonical decomposition of the repre-
sentation U [Ser77].

6.3 Computing the adversary bounds

Lemma 25 tells us how to choose the adversary matrix: it suffices to assign weights γk to each
irrep k of G, i.e., Γ =

∑

k γkΠk. Moreover, it also implies that computing the associated adversary
bounds boils down to bounding for each irrep l of Gx the norm of a small ml ×ml matrix, where
ml is the multiplicity of irrep l.

Theorem 26. Let U be multiplicity-free for G. Then, we have

∥

∥

∥
Γ̃x − Γ̃

∥

∥

∥
= max

l

∥

∥

∥
∆̃l

x

∥

∥

∥
,

∥

∥

∥
Γ1/2
x Γ−1/2

∥

∥

∥

2
= max

l

∥

∥

∥
∆l

x

∥

∥

∥
,

∥

∥

∥
Γ1/2Γ−1/2x

∥

∥

∥

2
= max

l

∥

∥

∥
(∆l

x)
−1
∥

∥

∥
,
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where the maximums are over irreps l of Gx. For each irrep l, ∆̃l
x and ∆l

x are ml ×ml matrices,
where ml is the multiplicity of l for Gx, with elements labeled by the different copies of the irrep
and such that

(∆̃l
x)k1m1,k2,m2

=
1

dl

∑

k,y

γktr
[

Πx
yΠkΠ

x
yΠ

l
k1m1←k2m2

]

− γk1δk1k2

(∆l
x)k1m1,k2,m2

=
1

dl

∑

k,y

γk√
γk1γk2

tr
[

Πx
yΠkΠ

x
yΠ

l
k1m1←k2m2

]

.

Proof. This follows directly from Lemma 25 and the definition of Γx.

We see that to obtain the adversary bounds, we need to compute the traces of products of four
operators. Since Gxy is a subgroup of both G and Gx, each of these operators can be decomposed
into a sum of projectors onto irreps of Gxy (or transporters from and to these irreps). To compute
these traces, we can use the following lemma, which shows that it is sufficient to compute the traces
of products of two projectors onto irreps of Gxy.

Lemma 27. Let λ, µ, ν1, ν2 denote irreps of Gxy. If any of µ, ν1 or ν2 is not isomorphic to λ, then
tr [ΠλΠµΠλΠν1←ν2 ] = 0. Otherwise, we have

tr [ΠλΠµΠλΠν1←ν2 ] =
1

d
tr [ΠλΠµ] · tr [ΠλΠν1←ν2 ] ,

|tr [ΠλΠν1←ν2 ]| =
√

tr [ΠλΠν1 ] · tr [ΠλΠν2 ],

where d is the dimension of the representation λ.

Proof. If two irreps are not isomorphic to each other, they belong to different isotypical subspaces
of U , and therefore the product of their projectors (or transporters) is zero. Let us now assume
that all the irreps are isomorphic to λ, and therefore belong to the same isotypical subspace. Then,

we can define isomorphic bases {|i〉}i∈[d], {|ψi〉}i∈[d], {|φ(1)i 〉}i∈[d] and {|φ(2)i 〉}i∈[d] for the subspaces
spanned by irreps λ, µ, ν1 and ν2, respectively, such that

Πλ =

d
∑

i=1

|i〉〈i|, Πµ =

d
∑

i=1

|ψi〉〈ψi|, Πν1←ν2 =

d
∑

i=1

|φ(1)i 〉〈φ(2)i |.

Let us also choose a basis {|i, j〉}(i,j)∈[d]×[m] for the whole (d×m)-dimensional isotypical subspace,
m being the multiplicity of the irreps. Without loss of generality, we may choose this basis such
that {|i, 1〉}i∈[d] = {|i〉}i∈[d] corresponds to λ itself, and, for any j 6= 1, {|i, j〉}i∈[d] corresponds to a

copy of λ. Since λ, µ, ν1 and ν2 are isomorphic, there exists coefficients {αj}j∈[m], {β(1)j }j∈[m] and

{β(2)j }j∈[m] such that

|ψi〉 =
m
∑

j=1

αj |i, j〉, |φ(1)i 〉 =
m
∑

j=1

β
(1)
j |i, j〉, |φ(2)i 〉 =

m
∑

j=1

β
(2)
j |i, j〉.
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We now have

tr [ΠλΠµΠλΠν1←ν2 ] =

d
∑

i=1

〈i|ψi〉〈ψi|i〉〈i|φ(1)i 〉〈φ(2)i |i〉

= d · 〈1|ψ1〉〈ψ1|1〉〈1|φ(1)1 〉〈φ(2)1 |1〉

=
1

d

d
∑

i=1

〈i|ψi〉〈ψi|i〉 ·
d
∑

j=1

〈j|φ(1)j 〉〈φ(2)j |j〉

=
1

d
tr [ΠλΠµ] · tr [ΠλΠν1←ν2 ] .

Similarly, we also have

tr [ΠµΠν1←ν2 ] · tr [ΠµΠν2←ν1 ] =
d
∑

i=1

〈i|φ(1)i 〉〈φ(2)i |i〉 ·
d
∑

j=1

〈j|φ(2)j 〉〈φ(1)j |j〉

= d2 · 〈1|φ(1)1 〉〈φ(2)1 |1〉〈1|φ(2)1 〉〈φ(1)1 |1〉

=
d
∑

i=1

〈i|φ(1)i 〉〈φ(1)i |i〉 ·
d
∑

j=1

〈j|φ(2)j 〉〈φ(2)j |j〉

= tr [ΠµΠν1 ] · tr [ΠµΠν2 ] .

7 Applications

7.1 Search

By considering Grover’s Search problem [Gro96], which we denote Searchn, we can show that
the inequalities in Theorem 16 are strict.

Theorem 28. For any 0 < ε < 1− 1
n , we have

ADV±ε (Searchn) = Ω
(

(1− ε− 2
√

ε(1 − ε))
√
n
)

ÃDVε(Searchn) = Ω
(

(
√
1− ε− 1/

√
n)2

√
n
)

MADVε(Searchn) = Ω
(

(
√
1− ε− 1/

√
n)
√
n
)

.

In particular, for ε > 1/5, we have MADVε(Searchn) > ÃDVε(Searchn) > ADV±ε (Searchn).

In order to illustrate our method, we will use representation theory to compute the adversary
bounds, even though this is not really necessary for such a simple problem. The Ω(

√
n) lower

bound for large success probability is well-known (see e.g [BBBV97]), and the case of small success
probability has been studied in [Amb05, Špa08] using the multiplicative adversary method. The
fact that a non-trivial bound can also be found in this regime using and additive adversary method
(our hybrid method) is new to the present work.
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Proof. Let us denote by fx the oracle that marks element x, that is, fx(x
′) = 1 if x′ = x and

0 otherwise. Let us consider the symmetric group Sn acting on f as fπ(x) = f(π(x)). This
groups forms an automorphism for Searchn, and the associated representation U corresponds
to the natural representation acting on [n]. This representation decomposes into two irreps, the
one-dimensional trivial representation on V0 = Span{|δ〉}, where |δ〉 = (1/

√
n)
∑

x |fx〉, and an
(n− 1)-dimensional irrep on V1 = V ⊥0 . Following Lemma 22, we set Γ = Π0 + γΠ1.

Let us now fix some input x ∈ ΣI to the oracle (by symmetry, the calculation will be the
same for any x). When restricting G to Gx = {π ∈ G : π(x) = x}, the second representation
splits into two irreps, the first one being a second copy of the trivial representation, now acting on
V1,0 = Span{|δx〉}, where |δx〉 = (|δ〉 − √

n|fx〉)/
√
n− 1. Following our convention, we index the

three irreps of Gx with labels (k, l) as (0, 0), (1, 0) and (1, 1) (no need for a third index as each
irrep of Gx appears only once in a given irrep of G). Since we have one irrep with multiplicity two,
and one irrep with multiplicity one, the matrix Γx will block-diagonalize into two blocks: one 2× 2
block Γ0

x on V0 ⊕ V1,0, and one (n− 1)× (n− 1) block Γ1
x on V1,1.

It is easy to check that only the block corresponding to the trivial representation l = 0 is relevant.
Indeed, since the other representation has multiplicity 1, the corresponding block is characterized
by a single scalar, and it is straightforward to check that ∆̃1

x = 0 and ∆1
x = 1, so that the maximum

in Theorem 26 will not be achieved by this block.
Let us now consider the other representation, corresponding to a 2×2 block. In order to compute

matrices ∆̃0
x, and ∆0

x, we first need to compute Π0 ◦Dx and Π1 ◦Dx, which is straightforward using
Fact 7. In the basis {|δ〉, |δx〉}, we obtain

Π0 ◦Dx =

(

1− 2α2(1− α2) α
√
1− α2(1− 2α2)

α
√
1− α2(1− 2α2) 2α2(1− α2)

)

,

where α = 1/
√
n, and therefore Π1 ◦Dx = I − Π0 ◦Dx. For the additive adversary methods, we

then obtain from Theorem 26

∆̃0
x = (1− γ)α

√
1− α

(

−2α
√
1− α2 1− 2α2

1− 2α2 2α
√
1− α2

)

.

The matrix has eigenvalues ±1, so that
∥

∥

∥
∆̃0

x

∥

∥

∥
= (1− γ)α

√
1− α.

For the usual additive adversary method, we need to choose γ such that tr(Γ̃(ρ⊙ ◦M)) = 0
for any junk matrix M . Here, ρ⊙ = I/n, therefore this condition reduces to tr(Γ̃) = 0, which is

satisfied for γ = −1/(n − 1). This yields
∥

∥

∥
∆̃0

x

∥

∥

∥
= 1/

√
n− 1, and therefore ADV±ε (Searchn) =

(1− ε− 2
√

ε(1− ε))
√
n− 1, which is Ω(

√
n) for ε < 1/5, but negative otherwise.

For the new additive adversary method, we can choose λ̃ = γ, so that Vbad = V0 and η = 1/n.

This implies that as soon as ε < 1−1/n, we have a non-trivial bound ÃDVε(Searchn) = (
√
1− ε−

1/
√
n)2

√
n− 1.

For the multiplicative adversary method, we choose γ > 1 and λ̃ = γ, so that Vbad = V0 and
η = 1/n. We then obtain similarly

∆0
x =

(

1 + 2(γ − 1)α2(1− α2) −γ−1√
γ α

√
1− α2(1− 2α2)

−γ−1√
γ α

√
1− α2(1− 2α2) 1− 2γ−1

γ α2(1− α2)

)

=

(

1 −γ−1√
γ α

−γ−1√
γ α 1

)

+O(α2).
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By Gershgorin circle theorem, the eigenvalues of this matrix lie in the range [1− γ−1√
γn , 1 +

γ−1√
γn ], so

that

MADV(Searchn) ≥
log[1 + (γ − 1)β2]

log[1 + (γ − 1)/
√
γn]

,

where β =
√
1− ε− 1/

√
n. In the limit γ −→

>
1, we obtain the same bound as for the new additive

adversary method. However, for γ = 1 + 1/β2, we obtain

MADV(Searchn) ≥ (log 2) ·
√
γn

γ − 1
= Ω

(

(
√
1− ε− 1/

√
n)
√
n
)

,

where we have used the fact that log(1 + x) ≤ x.

7.2 Index Erasure

Let us now consider the following coherent quantum state generation problem, called Index Era-

sure [Shi02]: given an oracle for an injective function f : [N ] → [M ], coherently generate the
superposition |ψf 〉 = 1√

N

∑N
x=1 |f(x)〉 over the image of f . The name Index Erasure comes from

the fact that we can easily prepare the superposition 1√
N

∑N
x=1 |x〉|f(x)〉 using one oracle call, so

the problem is to erase the index |x〉.
The previously best known lower bound for Index Erasure is Ω( 5

√

N/ logN), which follows
from a reduction to the Set Equality problem [Mid04]. It is also known that this problem may
be solved with O(

√
N) oracle calls. Indeed, given |f(x)〉, one can find the index |x〉 with O(

√
N)

oracle calls using Grover’s algorithm for Search [Gro96]. Therefore, the quantum circuit for this
algorithm maps the superposition |ψf 〉 = 1√

N

∑N
x=1 |f(x)〉 to the the state 1√

N

∑N
x=1 |x〉|f(x)〉. The

algorithm for Index Erasure then follows by inverting this circuit.
We now show that this algorithm is optimal by proving a matching lower bound using the

hybrid adversary method.

Theorem 29. Qε(Index Erasure) = Θ(
√
N).

Proof. Let (π, τ) ∈ SN ×SM act on the set F of injective functions from [N ] to [M ] by mapping f
to fπ,τ = τ ◦ f ◦ π. Since we can obtain the state |ψf 〉 from |ψfπ,τ 〉 by applying the permutation
τ−1 on the target register, the whole group G = SN × SM defines an automorphism group for the
problem.

Representations. Let us study the representation U corresponding to the action of G on the
set of injective functions F . From Lemma 23, this representation is multiplicity-free: indeed, for
any f, g ∈ F , it is easy to construct a group element (π, τ) that maps both f to g and g to f .
Therefore, any irrep of G appears in U at most once. Let us now show that many irreps do not
appear at all. Recall that irreps of G = SN × SM can be represented by pairs of Young diagrams
(λN , λM ), where λN has N boxes, and λM has M boxes [Sag01]. We show that only irreps where
the diagram λN is contained in the diagram λM can appear. We show this by induction on M ,
starting from M = N . For the base case, the set of injective functions F is isomorphic to the set
of permutations in SN , and (π, τ) ∈ SN ×SN acts on a permutation σ as τσπ. Therefore, the only
irreps which occur in U are those where the two diagrams are the same, that is, λN = λM . When
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a)

×
N boxes M boxes b)

×
N boxes M − 1 boxes

Figure 3: We use N = 10 and M = 15. a) Young diagrams corresponding to the one-dimensional
space V0. The initial state ρ0 is the projector over V0 ; b) Young diagrams corresponding to
the (M − 1)-dimensional space V1. The target state ρ⊙ has a large overlap (1 − N/M) with the
completely mixed state over V1.

extending the range of functions in F from M to M + 1, we induce irreps of SN × SM to irreps of
SN × SM+1 by adding an extra box on the diagram corresponding to SM . Since we start from a
case where the two diagrams are the same, we can only obtain pairs of diagrams (λN , λM ) where
λN is contained inside λM .

Initial and target states. The initial state is ρ0 = |δ〉〈δ|, where |δ〉 = 1√
|F |
∑

f∈F |f〉 is the su-

perposition over all injective functions, which is invariant under any element (π, τ) ∈ G. Therefore,
it corresponds to the trivial one-dimensional irrep of SN × SM , represented by a pair of diagrams
(λN , λM ) where both diagrams contain only one row of N and M boxes, respectively (see Fig. 3).
Let V0 = Span{|δ〉} be the corresponding one-dimensional subspace. We now show that the target
state ρ⊙ is a mixed state over V0⊕V1, where V1 = Span{|φy〉 : y ∈ [M ]} is the (M −1)-dimensional
subspace spanned by states |φy〉 =

√

1− (N/M)|ψy〉 −
√

N/M |ψ̄y〉, |ψy〉 being the uniform super-
position over functions f such that y ∈ Im(f), and |ψ̄y〉 the uniform superposition over functions
f such that y /∈ Im(f). This subspace corresponds to the irrep represented by diagrams (λN , λM )
where λN contains only one row of N boxes, and λM has M − 1 boxes on the first row and one box
on the second (see Fig 3). We have for the target state

ρ⊙ =
1

|F |
∑

f,f ′∈F
〈ψf |ψf ′〉|f ′〉〈f | = 1

|F |
∑

f,f ′∈F

|Im(f) ∩ Im(f ′)|
N

|f ′〉〈f |

=
1

M

M
∑

y=1

|ψy〉〈ψy| =
N

M
|δ〉〈δ| +

(

1− N

M

)

1

M

M
∑

y=1

|φy〉〈φy|

=
N

M
ρ0 +

(

1− N

M

)

ρ1,

where ρ0 and ρ1 are the maximally mixed states over V0 and V1, respectively.

Adversary matrix. Since we start from state ρ0 and we want to reach state ρ⊙ which has a large
weight over ρ1, the strategy for the lower bound is to show that it is hard to transfer weight from V0
to V1. More precisely, we divide all irreps (and by consequence their corresponding subspaces) into
two sets: one set of bad irreps containing all irreps represented by diagrams (λN , λM ) where λN
and λM only differ in their first row, and one set of good irreps containing all the other irreps (see
Fig. 4). By this definition, the irrep corresponding to V0 is bad, while the irrep corresponding to V1
is good. The lower bound is based on the fact that it is hard to transfer weight onto good subspaces
(in particular V1) starting from V0. As mentioned in Section 1, from now on, we note the irreps
only by their part under the first row; (λ, λ′) then denotes an irrep of SN × SM . Therefore, bad
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a) ×
λN λM

λ

b) ×

λ 6= λ′

Figure 4: We use N = 17 and M = 21. a) Example of a “bad” irrep λN × λM : the shape of the
diagrams below the first row for SN and SM are the same λ ; b) Example of a “good” irrep: the
shape of the diagram below the first line of SN is strictly included into the one for SM .

irreps are precisely those such that λ = λ′. Recall from Lemma 24 that constructing an adversary
matrix Γ̃ amounts to assigning an eigenvalue to each irrep of G. We choose Γ̃ such that it has
eigenvalue 0 on good irreps, and eigenvalue γ|λ| on a bad irrep (λ, λ), which only depends on |λ|,
i.e.,

Γ̃ =
∑

λ

γ|λ|Π(λ,λ),

where Π(λ,λ′) is the projector onto the subspace corresponding to the irrep (λ, λ′). We set

γ|λ| =

{

1− |λ|√
N

if λ <
√
N

0 otherwise.

Therefore, we have γ0 = 1 and 0 ≤ γ|λ| ≤ 1 for any λ, and Γ̃ is a valid additive adversary matrix.
Let Vbad denote the direct-sum of the bad subspaces. Since ρ⊙ only has overlap N/M over Vbad,
we have tr(Πbadρ

⊙) ≤ N/M . Therefore, we can set the threshold eigenvalue λ̃ = 0 and the base
success probability η = N/M .

Discussion. From Theorem 26, we see that we need to compute the norm of a matrix ∆l
x for

each irrep l of Gx = SN−1 ×SM . We show that these matrices are non-zero only for three different
types of irreps of Gx. Indeed, for irreps k of G and l of Gx, the quantity γktr

[

Πx
yΠkΠ

x
yΠ

l
k1m1←k2m2

]

is non-zero only if: ① k is a bad irrep (otherwise γk = 0); ② k and l restrict to a common irrep of
Gxy = SN−1 × SM−1 (otherwise the product of the projectors is zero). The restrictions of an irrep
(λ, λ′) of G to Gxy are obtained by removing one box from each of the diagrams λ and λ′. Similarly,
the restrictions of an irrep (λ, λ′) of Gx to Gxy are obtained by removing one box from λ′. ③ Note
that not all irreps of Gxy appear in the projector Πx

y , as it projects on all injective functions such
that f(x) = y. Therefore, this set is isomorphic to the set of injective functions from [N − 1] to
[M − 1], and we know that the irrep U acting on this set is multiplicity-free, and that only irreps
(λ, λ′) where λ is contained in λ′ can occur. Altogether, this implies that only three type of irreps
of Gx = SN−1 × SM lead to non-zero matrices (see Fig. 5)

1. l = (λ, λ): Same diagram for SN−1 and SM below the first row. This irrep has multiplicity
one since there is only one way to induce to a valid irrep of SN ×SM , by adding a box in the
first row of the left diagram, leading to irrep k = (λ, λ).

2. l = (λ, λ+): Diagram for SM has one additional box below the first row. This irrep has
multiplicity two since there are two ways to induce to a valid irrep of SN × SM , by adding a
box either in the first row, leading to k = (λ, λ+), or at the missing place below the first row,
leading to k = (λ+, λ+).
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Gx = SN−1 × SM

λ, λ λ, λ+ λ−, λ λ−, λ+ λ−, λ− λ−, λ̃

Gxy = SN−1 × SM−1

λ, λ λ−, λ λ−, λ−

G = SN × SM

λ, λ

①

③

②

Figure 5: In accordance with our convention, we draw only the part of the diagram below the first
row. The condition ① imposes that the two diagrams on top have the same shape. From the first
to the second row, one should remove one box to each diagram. When the removed box does not
belong to the first row, it is show in light gray. The condition ③ imposes that the left diagram is
included into the right one. The condition ② gives the third row of diagrams. Finally we have 3
“generic” types of irreps: case 1 (blue) where the irreps have the same shape; case 2 (green) where
the right diagram has one more box; and case 3 (red) where the the right diagram has 2 more
boxes.

3. l = (λ, λ++): Diagram for SM has two additional boxes below the first row. This irrep has
multiplicity three since there are three ways to induce to a valid irrep of SN ×SM , by adding
a box either in the first row, leading to k = (λ, λ+), or at to one of the missing places below
the first row, leading to k = (λ+, λ++).

Let us now consider these three cases separately.

Case (λ, λ). Since this irrep has multiplicity one, we just need to compute a scalar. As an irrep
of SN−1 × SM , (λ, λ) restricts to only one valid irrep of SN−1 × SM−1, by removing a box on the
first row of the right diagram, therefore this irrep is also labeled (λ, λ). Inducing from this irrep of
SN−1×SM−1 to SN ×SM , we obtain three valid irreps, two “bad” ones, (λ, λ) and (λ+, λ+), and a
good one, (λ, λ+). To differentiate between projectors of irreps of the different groups, we will from
now on use superscripts (for example ΠN,M

λ,λ denotes a projector on the irrep (λ, λ) of SN × SM).
We therefore have from Theorem 26

∆λ,λ
x =

γ|λ|

dN−1,Mλ,λ

∑

y

tr
[

Πx
yΠ

N,M
λ,λ Πx

yΠ
N−1,M
λ,λ

]

+
γ|λ|+1

dN−1,Mλ,λ

∑

y

tr
[

Πx
yΠ

N,M
λ+,λ+Π

x
yΠ

N−1,M
λ,λ

]

− γ|λ|

=
Mγ|λ|

dN−1,Mλ,λ dN−1,M−1λ,λ

· tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]

· tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]

+
Mγ|λ|+1

dN−1,Mλ,λ dN−1,M−1λ,λ

· tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]

· tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]

− γ|λ|,
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where we have used Lemma 27 and the fact that all terms in the sum over y are equal by symmetry.
We also have

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]

= tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ

]

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]

= tr
[

ΠN−1,M−1
λ,λ ΠN,M−1

λ+,λ

]

,

since the only way for (λ, λ) as an irrep of SN ×SM to restrict to (λ, λ) as an irrep of SN−1×SM−1
is to first restrict to (λ, λ) as an irrep of SN−1×SM , and similarly for (λ+, λ+). Therefore, we only
have two traces to compute. For the first one, we consider the maximally mixed state ρN−1,M−1λ,λ

over the corresponding irrep. By inducing from SM−1 to SM we find that its overlap over the irrep
(λ, λ) of SN−1 × SM is given by

tr
[

ρN−1,M−1λ,λ ΠN−1,M
λ,λ

]

=
dN−1,Mλ,λ

MdN−1,M−1λ,λ

=
dMλ

MdM−1λ

.

Similarly, we obtain

tr
[

ρN−1,M−1λ,λ ΠN,M−1
λ+,λ

]

=
dN,M−1
λ+,λ

NdN−1,M−1λ,λ

=
dNλ+

NdN−1λ

,

and finally

∆λ,λ
x = γ|λ|

dMλ
MdM−1λ

+ γ|λ|+1

dNλ+

NdN−1λ

− γ|λ|

=
1√
N

+O(
1

N
),

where we have used the hook-length formula for dimensions of irreps and the fact that the number
of boxes |λ| below the first row is at most

√
N , otherwise γ|λ| = 0.

Case (λ, λ+). This irrep has multiplicity two, so we need to compute a 2×2 matrix. Let (λ, λ+, 1)
denote the copy of (λ, λ+) irrep of SN−1 × SM which is inside the (λ+, λ+) irrep of SN × SM . Let
(λ, λ+, 2) denote the copy of (λ, λ+) irrep of SN−1×SM which is inside the (λ, λ+) irrep of SN×SM .

Let the first row and the first column of ∆λ,λ+

x be indexed by (λ, λ+, 1) and the second row and
the second column be indexed by (λ, λ+, 2).

An irrep (λ, λ+) of SN−1×SM restricts to two valid irreps of SN−1×SM−1: (λ, λ) and (λ, λ+).
Those two irreps can be induced to the following bad irreps of SN×SM : (λ, λ) and any irrep (λ′, λ′)
which has one more square below the first row than λ. (λ′ may be equal or different from λ+.)

For brevity, we denote ∆λ,λ+

x simply by ∆. Since (λ, λ+, 1) is contained inside a bad irrep of
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SN × SM , we have

∆1,1 =
γ|λ|

dN−1,M
λ,λ+

∑

y

tr
[

Πx
yΠ

N,M
λ,λ Πx

yΠ
N−1,M
λ,λ+,1

]

+
γ|λ|+1

dN−1,M
λ,λ+

∑

λ′

∑

y

tr
[

Πx
yΠ

N,M
λ′,λ′Π

x
yΠ

N−1,M
λ,λ+,1

]

− γ|λ|+1

=
Mγ|λ|

dN−1,M
λ,λ+ dN−1,M−1λ,λ

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ

]

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]

+
Mγ|λ|+1

dN−1,M
λ,λ+ dN−1,M−1λ,λ

(

∑

λ′

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

]

)

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]

+
Mγ|λ|+1

dN−1,M
λ,λ+ dN−1,M−1

λ,λ+

tr
[

ΠN−1,M−1
λ,λ+ ΠN,M

λ+,λ+

]

tr
[

ΠN−1,M−1
λ,λ+ ΠN−1,M

λ,λ+,1

]

− γ|λ|+1

We start by evaluating the sum
∑

λ′

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ′,λ′

]

.

We consider the maximally mixed state ρN−1,M−1λ,λ over the corresponding irrep of SN−1×SM−1. By
inducing λ from SN−1 to SN , we find that the dimension of the induced representation is NdN−1λ
and the induced representation decomposes into irrep λ of SN , with dimension dNλ and irreps λ′.
Therefore,

∑

λ′

tr
[

ΠN,M
λ′,λ′ ρ

N−1,M−1
λ,λ

]

= 1− dNλ
NdN−1λ

≤ 1− 1

N
(9)

where the inequality follows by comparing the hook-length formulas of dNλ and dN−1λ . Similarly, we
have

tr
[

ΠN,M
λ,λ ρN−1,M−1λ,λ

]

= O

(

1

N

)

. (10)

We now evaluate a similar quantity for ρN−1,M−1
λ,λ+ . By inducing λ+ from SM−1 to SM , we find that

the dimension of the induced representation is MdM−1
λ+ and the induced representation decomposes

into irrep λ+ of SM , with dimension dMλ and irreps λ++ which have one more square below the
first row than λ+. Therefore,

tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ+

]

=
dMλ

MdM−1λ

= O

(

1

M

)

. (11)

By using eqs. (9), (10) and (11), we have

∆1,1 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]

+O

(

1

N

)

− γ|λ|+1. (12)

We have
tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,1

]

= tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]

because the other irreps of SN−1×SM contained in the irrep (λ+, λ+) of SN ×SM have no overlap
with the irrep (λ, λ) of SN−1 × SM−1. Let ρN−1,M−1λ,λ be the completely mixed state over (λ, λ).
Then,

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]

= dN−1,M−1λ,λ tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]

= dN−1,M−1λ,λ

dNλ+

NdN−1λ

.
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Here, the second equality follows by inducing λ from SN−1 to SN . We have

dN−1,M−1λ,λ

dNλ+

NdN−1λ

= dN−1λ dM−1λ

dNλ+

NdN−1λ

=
dM−1λ dNλ+

N
.

By matching up the terms in hook-length formulas, we have

dM−1λ dNλ+ =

(

1 +O

(

1

N

))

N

M
dN−1λ dMλ+ . (13)

Therefore,

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ+,λ+

]

=

(

1 +O

(

1

N

))

dN−1,M
λ,λ+

M
(14)

and

∆1,1 = O

(

1

N

)

Similarly to eq. (12), we have

∆2,2 =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]

+O

(

1

N

)

. (15)

We have

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,2

]

= tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]

= dN−1,M−1λ,λ tr
[

ΠN,M
λ,λ+ρ

N−1,M−1
λ,λ

]

,

because the other irreps of SN−1 × SM contained in the irrep (λ, λ+) of SN × SM have no overlap
with the irrep (λ, λ) of SN−1 × SM−1.

By inducing λ from SM−1 to SM , we get

tr
[

ΠN,M
λ,λ+ρ

N−1,M−1
λ,λ

]

+ tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]

=
dMλ+

MdM−1λ

. (16)

By inducing λ from SN−1 to SN , we get

tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ

]

=
dNλ+

NdN−1λ

. (17)

By subtracting eq. (17) from eq. (16), we get

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]

=
dMλ+d

N−1
λ

M
− dNλ+d

M−1
λ

N
.

Because of eq. (13),

tr
[

ΠN−1,M−1
λ,λ ΠN,M

λ,λ+

]

= O

(

dMλ+d
N−1
λ

MN

)

. (18)

By substituting this into eq. (15), we get ∆2,2 = O( 1
N ).
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Last, we have to bound ∆1,2 and ∆2,1. Similarly to eq. (12), we have

∆i,j =
Mγ|λ|+1

dN−1,M
λ,λ+

tr
[

ΠN−1,M−1
λ,λ ΠN−1,M

λ,λ+,i←j

]

+O

(

1

N

)

.

By using Lemma 27 and eqs. (14) and (18), we get

∆i,j = O

(

1√
N

)

.

We have shown that ∆i,j = O( 1√
N
) for all i, j. Therefore, ‖∆‖ = O( 1√

N
).

Case (λ, λ++). This irrep of SN−1×SM has multiplicity three, so we need to bound the elements
of a 3× 3 matrix. Let (λ, λ++, 1) denote the copy of the irrep that lies inside the irrep (λ, λ++) of
(SN×SM), (λ, λ++, 2) be the copy that lies inside the irrep (λ+, λ++) of (SN×SM ), and (λ, λ++, 3)
be the copy that lies inside the irrep (λ′+, λ++) of (SN × SM), where λ+ and λ′+ correspond to
the two different ways a box can be added to λ. Since these two last copies have exactly the same
structure, they can be treated similarly and we really need to compute only 4 different matrix
elements (2 diagonal elements and 2 non-diagonal elements). Let us also note that none of these
copies are contained in bad irreps of SN × SM .

Let us now denote ∆λ,λ++

x by ∆, and index the rows and columns of this matrix by the three
copies of the irrep. Note that the irrep (λ, λ++) of SN−1 × SM restricts to three valid irreps of
SN−1×SM−1: (λ, λ++), (λ, λ+) and (λ, λ′+). Also only these last two irreps induce two bad irreps
of SN ×SM , (λ+, λ+) and (λ′+, λ′+), respectively. Therefore, we have for the first diagonal element

∆1,1 =
γ|λ|+1

dN−1,M
λ,λ++

∑

y

{

tr
[

Πx
yΠ

N,M
λ+,λ+Π

x
yΠ

N−1,M
λ,λ++,1

]

+ tr
[

Πx
yΠ

N,M

λ′+,λ′+Π
x
yΠ

N−1,M
λ,λ++,1

]}

=
2Mγ|λ|+1d

N−1,M−1
λ,λ+

dN−1,M
λ,λ++

tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ+

]

· tr
[

ΠN−1,M
λ,λ++,1

ρN−1,M−1
λ,λ+

]

.

Studying as before the overlap of ρN−1,M−1
λ,λ+ over the irreps of SN ×SM , we obtain for the two traces

tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ+

]

≤ dMλ+

MdM−1
λ+

, (19)

tr
[

ΠN−1,M
λ,λ++,1

ρN−1,M−1
λ,λ+

]

= tr
[

ΠN,M
λ,λ++ρ

N−1,M−1
λ,λ+

]

≤ dNλ+

NdN−1
λ+

, (20)

and in turn

∆1,1 ≤
2Mγ|λ|+1d

N
λ+d

M
λ+

NdN−1
λ+ dM

λ++

= O

(

1

MN

)

.
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For the second diagonal element, we find similarly

∆2,2 =
γ|λ|+1

dN−1,M
λ,λ++

∑

y

{

tr
[

Πx
yΠ

N,M
λ+,λ+Π

x
yΠ

N−1,M
λ,λ++,2

]

+ tr
[

Πx
yΠ

N,M

λ′+,λ′+
Πx

yΠ
N−1,M
λ,λ++,2

]}

=
Mγ|λ|+1d

N−1,M−1
λ,λ+

dN−1,M
λ,λ++

tr
[

ΠN,M
λ+,λ+ρ

N−1,M−1
λ,λ+

]

·
{

tr
[

ΠN−1,M
λ,λ++,2

ρN−1,M−1
λ,λ+

]

+ tr
[

ΠN−1,M
λ,λ++,2

ρN−1,M−1
λ,λ′+

]}

≤
2γ|λ|+1d

M
λ+

dM
λ++

= O

(

1

M

)

,

where we have used eq. (20) and the fact that the other overlaps are at most 1.
Using exactly the same arguments, we find for the non-diagonal elements

|∆1,2| ≤
2γ|λ|+1d

M
λ+

dM
λ++

√

dN
λ+

NdN−1
λ+

= O

(

1

M
√
N

)

,

|∆2,3| ≤
2γ|λ|+1d

M
λ+

dM
λ++

= O

(

1

M

)

.

Since the irreps (λ, λ++, 2) and (λ, λ++, 3) are of the same type, we also have ∆3,3 = O(1/M) and
∆1,3 = O(1/(M

√
N)). Therefore, all elements of ∆ are at most O(1/M), so that ‖∆‖ = O(1/M).

Finally, since the matrices corresponding to all irreps have norm at most O(1/
√
N), we have

from Theorem 26
∥

∥

∥
Γ̃x − Γ̃

∥

∥

∥
= O(1/

√
N), and in turn

Qε(Index Erasure) = Ω
(

(
√
1− ε−

√

N/M )2
√
N
)

.

8 Conclusions and outlook

The hybrid adversary method we introduced in this paper has a strength that—in a precise, mathe-
matical sense—lies between that of the known additive and of the multiplicative adversary methods.
In our opinion, our new method combines the advantages of the additive and multiplicative bounds:
(i) it is not more complicated to use than the additive method and (ii) it can lead to lower bounds
even for cases of algorithms with small success probability, like the multiplicative method. Further-
more, it can prove lower bounds for quantum state generation problems. We have also shown how
to leverage the symmetries of a problem to simplify the computation of the adversary bound, using
group representation theory. Altogether, this allowed us to prove a new and tight lower bound for
the Index Erasure problem.

There are several directions for future research that might present themselves as this point. By
clarifying the relation between the different adversary methods, we are one step closer to a proof
that the additive bound satisfies a strong direct product theorem like the multiplicative bound.
Indeed, our results imply that it is sufficient to prove that whenever the multiplicative adversary
method can prove a lower bound in the limit λ → 1, there exists some fixed λ > 1 which leads to
the same bound. The most important consequence would be for the quantum query complexity
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of functions, which would itself satisfy a strong direct product theorem for any function, since the
additive adversary method is known to be tight in that case [Rei09, LMRŠ10].

As far as Graph Isomorphism is concerned, one natural question to consider is if the methods
can be extended beyond the model considered here. In particular to allow more powerful oracles
that do not have such strong restrictions for the access to the graphs. One interesting open question
is if a limitation can be shown for any quantum walk based approach to Graph Isomorphism.
The results shown in this paper are a first step in this direction but significantly new ideas would
be necessary. Finally, there is an open question that touches on the issue of “junk”: in the paper we
showed lower bounds for the coherent quantum state generation problem. We conjecture that the
extension to the case where some undesired state is generated along with the target state should
also be possible, however, we have not been able to establish this result so far.
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